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Abstract 
While experimenting with the more and more popular neodymium magnetic 
ball sets, the author developed a method, by which models of atomic nuclei 
can be created. These macroscopic models visually represent several features 
of nuclei and nuclear phenomena, which can be a useful mean during the 
teaching of nuclear physics. Even though such macroscopic models are unable 
to depict the true quantum physical nature of nuclear processes, they can be 
much more useful didactically than the previously used disordered sets of 
balls, to represent the atomic nucleus. 
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1. Introduction 

While teaching nuclear physics, a fundamental need can be experienced quite 
often to illustrate somehow the basic properties of atomic nuclei. Currently the 
representations of atomic nuclei are usually disordered sets of two differently 
colored ball-like objects (see Figure 1). However, this depiction is quite rudi-
mentary, as none of the most important properties of atomic nuclei are appear-
ing on these models. 

Obviously a three-dimensional model can help more in the visualization of a 
nucleus, than a two-dimensional representation. The nowadays more and more 
popular neodymium magnetic ball sets can be a very good tool for the three- 
dimensional modeling of the nucleus. Initially the author used disordered 
spherical sets of two differently colored magnetic balls to illustrate the nuclei. 
But after becoming more familiar with the possibilities these magnetic ball sets 
can provide, the author realized that some symmetric forms are more practical, 
as they can represent certain properties of the atomic nuclei: the effect of the  
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Figure 1. An atomic nucleus is usually depicted as a disor-
dered set of particles. 

 
Pauli principle, symmetries, deformed states, magnetic moments and even exci-
tations. Thus, we are going to see in the following sections, that these magnetic 
ball sets offer surprising possibilities for the modeling of atomic nuclei. 

2. Why Macroscopic Objects—Sets of Magnetic Balls—Can 
Be Used to Model the Nucleus? 

Although it seems a bit primitive method to model the nucleus by setting ma-
croscopic spheres into symmetric forms, due to some reasons, this idea is not 
entirely a hopeless attempt. For these reasons, the creation of geometric models 
can prove to be a very eloquent mean of nuclear physics education. 

Some of these reasons are the consequences of the properties of nucleons. The 
nucleons-protons and neutrons are complex objects, made of other particles. 
This means that they can never be point-like objects at any energy: their mini-
mum size is 0.8 × 10−15 m. To know the actual expanse of the wave function of 
the nucleons, one must know their mean energy in the nucleus. We know that 
from theory and experiment as well: it is about 20 - 30 MeV/nucleon. At this 
energy the De Broglie wavelength of the nucleons appears to be roughly the 
same as their actual size: 0.5 - 0.8 × 10−15 meters. That is, the probability ampli-
tude of position does not exceed significantly the physical boundaries of the 
nucleon, as a complex system. To associate a graphic image to the nucleons of an 
atomic nucleus: they are more like spheres that ripples only at the edges—just as 
a blurry image of a defocused camera—than actual waves. 

Thus, despite the small size of the nucleons and their quantum physical na-
ture, due to their relatively large mass and energy, a classical description is not 
necessarily false. Fortunately, the velocity of the nucleons in the nucleus is mod-
erate, so we do not have to deal with relativistic effects as well. This means that 
the average 20 - 30 MeV energy of the nucleons is a kind of a window for clas-
sical approximations: at lower energies one cannot take a step without the use of 
quantum mechanics, while at higher energies relativistic effects are distorting the 
picture. However this energy gap, the mean energy of the nucleons in an atomic 
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nucleus allows the possibility for a classical approach: at these energies the clas-
sical models are not completely useless. 

It is a fortunate coincidence that the magnetic force generated between the 
dipole moments of the balls of the models, has similarities to the strong force 
between the nucleons for an extent. Namely, the strength of both forces decrease 
very rapidly with increasing distance, so they both have an effect only on neigh-
boring objects. Again it is true for both interactions that the lines of forces prefer 
to close in the shortest possible distance. These features allow us for an extent to 
use the magnetic force as the analogy of the strong force between the nucleons. 

3. Symmetric Shapes and the Pauli Principle 

The packing of same sized spheres is a several hundred years old problem in 
mathematics. One of the first and most important statements of this topic is, that 
the packing density of ordered structures is usually much higher, than that of the 
disordered forms. Disordered forms fill maximum 64% of the available space— 
leaving 36% useless—while ordered symmetrical shapes can reach up to 74% 
packing density [1]. Due to the binding forces, the nucleons are also pursuing to 
minimize the space they occupy, when forming the nucleus. Thus, even though 
there are other factors that must be taken into consideration, the maximal pack-
ing density principle suggest that one must examine the role of the ordered, 
symmetrical structures, when modeling the nucleus. 

There are two kinds of ordered structures, into which same sized spheres can 
organize: lattices and rotationally symmetric structures. Both types are characte-
rized by the symmetries of the sets. The well-known lattices have translational 
symmetries in several directions. The other kind of symmetry is the rotational or 
radial symmetry: there are structures that can be rotated with a certain degree, 
and the rotated object will be identical to the original one (see Figure 2). The 
angle of rotation must be a definite portion of 360˚: if the degree in question is 
360˚/n, we speak of n-fold symmetry. For example the threefold symmetry of a  
 

 
Figure 2. Structures of 3, 4, 5 and 6-fold rotational symmetry. 
With the proper rotation, the colored balls are replacing each 
other. 
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structure means, that a rotation leaves the object unchanged, if the angle of rota-
tion is 360˚/3 = 120˚ or its multiples. 

A basic feature of lattice structures is that the number of particles in the lattice 
is not limited by any restriction. By the characteristic translations of the grid, in 
principle one can increase the number of particles in the lattice to infinity, nev-
ertheless it remains the same lattice. In the case of the structures with rotational 
symmetry there are some restrictions however. The number of particles is unli-
mited in this case as well, but the rotational symmetry can appear only at certain 
particle numbers. If we add a new sphere to a structure of n-fold symmetry, the 
symmetry breaks, until further spheres are added to the structure. In the case of 
three-fold symmetry, three spheres are needed to complete the new structure. In 
the case of four-fold symmetry, four spheres are necessary, and so on: in the case 
of n-fold symmetry, n spheres are necessary to create a new structure, which 
again have n-fold symmetry. Of course, the new spheres must be placed in such 
a way, that they replace each other by the characteristic rotation of the symme-
try. 

The two groups, the lattices and the structures with n-fold symmetry are in-
terlinked in some cases. Some structures have not only rotational, but transla-
tional symmetries as well. These structures are indeed such kinds of lattices, 
which have rotational symmetry. Let’s think for example of a two-dimensional 
honeycomb structure: it can have three and six-fold rotational symmetry, but it 
is created as a lattice, by placing particles at given distances. There are exceptions 
however: no lattice exists with five-fold symmetry for same sized spheres [2]. 

The detailed examination of various lattices and rotationally symmetric 
structures is beyond the scope of this article. Fortunately, we do not need such 
details at all. Even the study of the simplest forms can lead to the conclusion that 
for modeling atomic nuclei, only structures of 4-fold symmetry need to be con-
sidered. When creating spherical structures with 3-, 4-, 5- or 6-fold symmetries, 
one does not observe any special feature regarding the objects with 3-, 5- or 
6-fold symmetries. However, the numbers of particles in the 4-fold structures are 
reminiscent to magic numbers of nuclear physics. Those compact structures are 
more or less spherical, and have 4-fold rotational symmetry, number 4, 16 and 
40 particles. This is identical to the numbers of nucleons in the most stable nuc-
lei—the 4He, 16O and 40Ca nuclei—in which both the protons and the neutrons 
have so called magic numbers. In nuclear physics, these numbers are indicating 
closed shell structures. 

In the case of 3, 5 or 6-fold symmetry, there is no such coincidence. One can 
create shell-like structures with 3, 5 or 6-fold symmetries, and by uniting them, 
it is possible to create compact, spherical objects. But in these cases, the numbers 
of balls in the structures are definitely unlike any special number appearing in 
nuclear physics. Indeed, in the case of 5-fold symmetry, very compact, durable, 
almost “solid” structures can be created. But the numbers of particles in these 
structures have no connection with nuclear physics. For example, the di-
amond-shaped pentagonal bipyramids number 7, 23, 54, 105, 181, etc. particles 



G. Bihari 
 

210 

(see Figure 3). These numbers have no special meaning in nuclear physics. In 
the case of 3- or 6-fold symmetries, it is very difficult to create spherical objects, 
as these numbers are usually creating planar structures: 2 or 3 dimensional lat-
tices. Nevertheless, the task is not impossible, but the created structures again 
show worthless particle numbers. So these symmetries—3, 5 or 6-fold rotational 
symmetries—are alluring with less success even at the beginning. 

The similarity between the magic numbers of nuclear physics and the number 
of particles in the world of the objects with 4-fold symmetry can help us to fol-
low an easy way to create useful models of atomic nuclei. The case is indeed 
quite simple, and after understanding the cause of this similarity, it seems to be 
an obvious possibility to model the nucleus with symmetrical objects. 

According to the Pauli principle, the nucleons of the atomic nuclei—as any 
other fermionic particle—can occupy the possible states in limited numbers. In 
the case of nucleons the highest possible number is four: two protons and two 
neutrons can occupy each state with opposite spins. Thus, any visualization of 
the Pauli principle has to use such structures, which have 4-fold symmetry: in 
this way every state allows four identical positions to place a particle. Not more, 
not less, but exactly four particle should sit in equivalent spatial positions in the 
models. And this requirement can be fulfilled only with structures of 4-fold 
symmetry. 

In this way, we found our first principle, which help us to create geometric 
models of atomic nuclei: it is indeed the geometric visualization of the Pauli 
principle. The massiveness, the denseness of the nucleus can be interpreted by a 
simple disordered set of magnetic balls. But, if we would like to visualize other 
important nuclear features, like Pauli’s principle, than we have to use symmetric 
structures—in this case those with 4-fold rotational symmetry. In these macros-
copic models every “state” is filled with four magnetic balls, placed in four 
equivalent spatial positions. Just like in the nucleus, where every state is filled 
with four nucleons. 

4. Structures with 4-Fold Symmetry and the Nuclear Shell 
Model 

The structures, that have 4-fold rotational symmetry—just as any other symme- 
 

 
Figure 3. Pentagonal bipyramids with increasing particle numbers. The complete struc-
tures number 7, 23, 54, 105 particles. The particle numbers of such structures have noth-
ing in common with nuclear structures, except for the case of some structures of 4-fold 
symmetry. 
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trical structures—can be created from smaller symmetrical units. In the case of 
lattices, these smaller units are the unit cells, which are repeated along the axes 
of symmetry. Whereas in the case of structures with rotational symmetry, these 
units are rings, which create planes or curved shells, that can be organized fur-
ther into complex objects. In the case of 3 or 6-fold symmetry, the balls are or-
ganized into flat planes, without any curvature, while in the case of four or five-
fold symmetries, tightly packed balls cannot form flat surfaces. In these cases 
shell-like structures are formed with a convex and a concave side, and thus, these 
three dimensional shells can obviously be organized into three dimensional ob-
jects. 

In the case of 4-fold symmetry, the building blocks, the rings should be made 
of 4, 8, 12 etc. balls. The numbers of balls in the rings are always multiples of 
four: 4n. One can build a shell-structure of these rings starting with the smallest 
one and continuing with rings of increasing size. The simplest shell is made of 
only one ring, the smallest ring with 4 balls. The next shell consists of two rings 
that are made of 4 and 8 balls. The third shell consists of three rings, made of 4, 8 
and 12 particles, and so on (see Figure 4). As these numbers are forming an 
arithmetic series, we know that the number of balls in the shells are N= 2n(n + 1): 
4, 12, 24, where N is the number of balls in the nth shell. 

Of these hemi-spherical shells one can create spherical objects. These structures are 
made of the first, the first two, the first three, etc. shells consisting 4, 4 + (4 + 8) = 16 
and 4 + (4 + 8) + (4 + 8 + 12) = 40 particles. To continue the building after the 
spherical structure of 40 balls, we have to fit the fourth domed shell, which is a 
bit difficult, but possible task. This structure will count 4 + (4 + 8) + (4 + 8 + 12) 
+ (4 + 8 + 12 + 16) = 80 balls (see Figure 4). 

We could proceed further ahead, but the main point can be seen at this stage 
 

 
Figure 4. Rings, shells and spheres with 4-fold symmetry. The 
spherical objects number 4, 16 and 40 particles, just as the 
most stable nuclei. The cause of similarity is simply the visua-
lization of Pauli’s principle. 
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already. In the first three cases there is a perfect match with the particle numbers 
of the most stable atomic nuclei. The first model can be associated with the 4He 
nucleus. The second model corresponds to the 16O nucleus, while the third one 
to the 40Ca nucleus. Nevertheless in the fourth case, the particle number of the 
fourth model does not meet with that of any outstandingly stable nucleus. In-
deed, the first attempts of the shell model of atomic nuclei proposed an island of 
extreme stability to the particle number 80. But reality tells a different story: due 
to the increasing repulsion of positively charged protons, beyond 40Ca, the nuclei 
with identical proton and neutron numbers are no longer stable. On the other 
hand, the interaction of the angular momenta of particles—the spin and orbital 
momentum—further complicates the situation, so the next particularly stable 
nuclei have 50 protons or neutrons. 

Thus, modeling the nuclei above atomic number 40 is a difficult task. Never-
theless, for the light nuclei there is a chance to demonstrate the shell model of 
the nucleus in a simple form. The observation that the light nuclei prefers the 
same, magic” numbers as the objects of four-fold rotational symmetry, high-
lights the possibility for visualizing the shell model of nuclei on our models. 
Such a demonstration of the nuclear shell model can be a very useful aid in edu-
cation, as it attaches a macroscopic picture to an abstract physical phenomenon. 
Although, as teachers we would like to avoid superficial approaches, such a 
palpable model can simplify the process of understanding. 

According to the nuclear shell model, the structures of the above nuclei are: 
4He: 1s1/2; 16O: 1s1/2, 1p3/2, 1p1/2; 40Ca: 1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2—for pro-
tons and neutrons as well. This means that the energy structure of the above 
nuclei consist energy levels on which two protons and two neutrons, or four 
protons and four neutrons, or six protons and six neutrons can be found. In to-
tal, these are 4, 8 or 12 particles. Our previous magnetic models are made of 
rings that consist of 4, 8 or 12 magnetic balls. Thus the analogy is promising. If 
we would like to demonstrate the energy and shell structure of the atomic nuclei, 
we have to see the rings of the macroscopic models as kind of “orbits”. These 
rings can symbolize the energy levels or “orbits” of the nucleus. At the same 
time, the shells of the models, made of rings can symbolize the shells of the nuc-
leus, made of several different orbits. 

The first nuclear shell, the 1s shell is made of one orbit, one energy level that 
holds four nucleons: it is symbolized with the 4 ball ring. The second 1p shell is 
made of two energy levels, the 1p3/2, 1p1/2 levels, which accommodate 8 and 4 
nucleons respectively. The analogy of this nuclear shell in the macroscopic mod-
el is the shell that is made of a 4 and an 8 ball ring. The third shell that is formed 
in the nuclear potential well is built of three energy levels: the 1d5/2 and the 1d3/2 
levels, and the 2s1/2 level. They are accommodating 12, 8 and 4 nucleons, and 
thus, it is obvious that the third shell of our macroscopic model—with 4, 8 and 
12 ball rings—can represent this third nuclear shell. 

Along with the shells of the nuclear shell model, we can obtain an expressive 
image on one more feature of the energy levels, the “orbits”. As it was mentioned 
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before, regarding the Pauli principle, only 4 particles can occupy the same 
quantum state in a nucleus. Nevertheless, we have energy states that are filled 
with 8, 12 etc. nucleons, which means that these energy levels are degenerate: 
they are made of several different states with identical energy. This feature of the 
nucleus can be easily demonstrated on the 16O model for example. In this model 
the 8 ball ring goes along a zigzag line, while encircling the model. In other 
words, four of the 8 balls are in higher positions than the other four balls. They 
are part of the same ring, but there are two different spatial positions available 
for the balls in this ring. And only four are occupying each of these positions 
(see Figure 5). However, these spatial states are equivalent each other: this be-
comes obvious as the model is turned upside down and the states change their 
positions—while the model is the same and undistinguishable from the original 
form. 

The models of the nuclear orbits, that is, the rings of the geometric models 
help to visualize one more interesting feature of the atomic nuclei: the angular 
momenta of the nucleons. The analogy is not perfect, though: the angular mo-
mentum is a feature that is impossible to display on macroscopic level. But, at 
least there are some similarities between the models and the quantum mechani-
cal reality. Namely the models can show the difference of angular momentum on 
the s, p, d, f etc. orbits. It is easy to see, that the more balls a ring contain, the 
larger is its diameter. And so, if we rotate the models—either in reality or just in 
imagination—the larger rings will have larger angular momentum than the 
smaller ones. The 4 ball ring will have the smallest angular momentum, the 8 
ball ring will have larger. The 12 ball ring outside of them will have even larger 
angular momentum–although all the rings are rotating together in one single 
model. 

5. Other Models with Four-Fold Symmetry 

The above thoughts are mostly based on the characteristics of the 16O and 40Ca 
models. Once, however, we managed to find parallels between the nuclear shell 
 

 
Figure 5. The degenerate 1p3/2 orbit of the 16O nucleus is 
shown on this magnetic model with colored balls. The four 
balls that form a + shape is one state of the orbit, while the 
other four colored balls, creating an X shape is the other state 
of the orbit. 



G. Bihari 
 

214 

model and the geometric models, we have the guidance to build the geometric 
model of any nucleus. All we need to know for modeling is the shell structure of 
the nucleus in question: which states are occupied by the nucleons. We construct 
the appropriate rings, depicting the completed states and orbits and then inter-
connect them for creating the model, which illustrates several features of the 
nucleus in question. 

A simple nucleus for example is the 12C. According to the shell model, there 
are three orbits in this nucleus: 1s1/2, 1p1/2, 1p3/2. The first two accommodate only 
four nucleons, and even though the third one could be filled with 8 nucleons, 
there are only four on it–two protons and two neutrons. So, every orbit of this 
nucleus contains four particles. The model of the 12C thus comprises two 4-ball 
rings and four separate balls that actually do not form a visible ring (see Figure 
6). The easiest way to build the model is to create the second shell of 12 balls: a 4 
and an 8 ball ring, joined together. Then, the only thing we need is to push the 
four corner of the larger ring to join them together—thus four balls move from 
the 1p3/2 orbit to the 1p1/2 orbit. 

Another interesting example is the geometric model of the 20Ne nucleus. The 
shell structure of this nucleus is similar to the 12C, as both nuclei have 
half-vacant shells. The 20Ne nucleus has three completely filled orbits: a 1s1/2 and 
a 1p1/2 orbit with 4-4 nucleons, and a 1p3/2 orbit with 8 nucleons—these are in-
deed the complete orbits of the 16O. While there is an orbit with only 4 nucleons: 
the 1d3/2 orbit. The easiest way to create the geometric model of such a nucleus is 
to use three rings with 4-4 and 8 balls and 4 separate balls. We have to fit one of 
the 4 ball ring to the 8 ball ring. Than the four separate balls have to be fitted to 
the open side of the 8 ball ring, which create a zig-zag line out of the 8 ball ring. 
This line can be closed with the only left 4 ball ring. 

An interesting feature of this model is that, it is impossible to distinguish the 
1p3/2 and 1d3/2 orbits from each other. They create a ring that contains 1 ball- 
2balls-1ball-2balls etc. in a row (see Figure 6). Even though this feature has only 
a superficial similarity to the pairing of quantum mechanical states, one can use 
it to demonstrate the latter. 

The next model after the 20Ne with four-fold rotational symmetry is the model 
of 24Mg that contains 4 more balls. The orbit structure of the 24Mg nucleus is very 
simple. It comprises four completely filled orbits: there are 4 nucleons on the1s1/2 
and the 1p1/2 orbits, and 8 nucleons on the 1p3/2 and 1d3/2 orbits. That is, the 
 

 
Figure 6. The geometric models of the 20Ne and 12C nuclei. 
The nucleons of the 1p3/2 and the 1d3/2 orbits are represented 
with purple colored balls. 
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model of this nucleus consists of two 4 and two 8 ball rings. It is very simple to 
build this model. We need to join the 4 and the 8 ball rings to form two hemis-
pherical shells and then, these two hemispheres can be fitted together into a 
spherical model. The result is a surprisingly symmetrical model. It has not only 
one but three rotational symmetry axes, perpendicular to each other. 

The 24Mg model suggests two interesting ideas. One of them is related to the 
symmetry of the model. The observation of the three rotational symmetry axes 
of the model leads to the conclusion that the model can be interpreted as the 
group of 6 rings made of 4 balls (see Figure 7). But we have seen previously that 
the 4 ball ring—on its own—is the model of the 4He nucleus itself. Thus, the 
model of the 24Mg nucleus is indeed naturally made of 6 4He cluster. That is, un-
intentionally a cluster model of the 24Mg nucleus is created. 

Up till now, we did not dealt with the cluster model of the atomic nuclei, ac-
cording to which the nuclei—and especially the deformed states of nuclei—can 
be interpreted as bounded states of several smaller, more stable nuclei. In the 
case of the 24Mg model we found a natural overlapping of the shell model and 
the cluster model of the atomic nuclei. The geometric model of the 24Mg nucleus 
was built by the help of the shell model, but the final picture can be interpreted 
with the help of the cluster model as well. 

Another interesting feature of the 24Mg model is the cavity inside the model. 
The inner cavity, which was created by the joining of two hemispheres, is not 
large enough to accommodate 4 balls. That is, the inner cavity must be unfilled. 
Due to the Pauli principle, our models have to have a four-fold rotational sym-
metry, and so, in the case of 24Mg, the inner cavity must be empty, if there is no 
space for 4 balls. No matter how logical it seems to fill the empty space inside the 
model, one can put only 1 - 2 or 3 balls inside. Nevertheless, this is unacceptable: 
for preserving the 4-fold symmetry, we must fit 4 balls to every possible state. 
Surprisingly, nuclear data can support such cavity in the inner core of light nuc-
lei. It was observed in the case of several light nuclei, that the mass and charge 
density is decreased in the central part of the nucleus [3]. 

6. Geometric Models of Deformed Nuclei and the Cluster 
Model 

Until now, it was a clear task to create the geometric models. Based on the shell- 
 

 
Figure 7. Two identical models of 24Mg. The first one show 
the 4He clusters within the model with different colors, while 
the second one highlights the four orbits with different colors. 
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orbit structure of the nuclei to be modeled, one can create the rings that corres-
pond to the orbits of the nucleus and adjoining these rings finalizes the model. 
However, some special phenomena appear as we move away from the 24Mg 
model with its particular symmetry and an inner cavity. When increasing the 
number of balls to 28, the spherical symmetry breaks and the inner cavity is 
filled in several different ways. Thus, the next model with four fold symmetry, 
the 28Si model can exist in several different forms, which is indeed very similar to 
the true nature of the 28Si nucleus. 

The 28Si nucleus is a major milestone in the world of the nuclear structures. 
The smaller nuclei can have deformed states, but these states are forming only at 
very high excitation energies, and so, the deformed nucleus is at the verge of 
disintegration. Usually these deformed states are decaying with the emission of 
nucleons or 4He nuclei, which indeed, means the disintegration of the nucleus. 
As a consequence of this, the deformed states of the light nuclei are not long 
lived metastable states, but in fact the first steps to their disintegration. 

With the case of the 28Si nucleus, we leave the realm of the light nuclei. The 
deformed states of the 28Si nucleus are quite stable, so much so, that these me-
tastable states have their own excited states, their own vibrational and rotational 
spectra. And beside the several long-lived deformed states, even the ground state 
of this nucleus itself is not spherical, but deformed. Thus, from the 28Si nucleus, 
the world of medium heavy nuclei follows, where the nuclei often exist in several 
different shapes, with considerably long half-lives. 

We know the various deformed states of the 28Si nucleus quite well. The lowest 
energy state, the ground state is not a spherical form, but a slightly flattened 
shape, a so called oblate shape. The other, excited states may form strongly flat-
tened oblate shapes, or elongated prolate shapes. Typically, the higher is the ex-
citation energy of the state, the greater is the deformation [4]. 

Such deformed states can be illustrated easily with the geometric models made 
of magnetic balls. The 28 magnetic balls can form several different structures 
with four-fold rotational symmetry. None of them is spherical, just as in the case 
of the 28Si nucleus. Some of them are shown in Figure 8, along with the orbit 
and shell structure of the nuclear states they correspond in Table 1. 

The several deformed but rotationally symmetric models of the 28 balls can 
again contribute to the understanding of nuclear processes. Namely, the cluster-
ing of heavier nuclei in deformed states can be visualized by the help of these 
models. During nuclear experiments, it is often observed, that the elongated, 
prolate forms of heavy or medium nuclei can disintegrate in the presence of 
excess energy and thus creating two or three smaller nuclei. These decay prod-
ucts are usually the extremely stable 4He, 12C, 16O nuclei. The accepted theory of 
this clusterization process is that inside the highly excited nucleus dense zones 
are formed and the later decay products are formed in these zones, before the 
actual decay. Thus, during the clustering process, the highly stable products are 
formed before the disintegration of the original nucleus. 

The deformed models of the figure below can present a fitting example to this  
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Figure 8. Structures of 28 magnetic balls with 4-fold symme-
try. The axes of the upper, flattened shapes point outwards of 
the picture. The lower, elongated shapes situated so, that the 
axes are in the image plane, north-south direction. By these 
models, the deformed states of 28Si nucleus can be visualized. 

 
Table 1. Structures of the above macroscopic models in terms of the nuclear shell model. 
Beside the ground state (first model in the first line) the oblate excited state (second mod-
el in the first line) and the first prolate excited state (first model in the second line) is de-
scribed. 

 1s1/2 (4) 1p3/2 (8) 1p1/2 (4) 1d5/2 (12) 1d3/2 (8) 2s1/2 (4) 

ground state 4 4 4 8 4 4 

oblate excited 4 8 0 8 8 0 

prolate excited 4 8 4 0 8 4 

 
process. The elongated models can be considered as joined structures of smaller 
models, namely (12C + 4He + 12C) or (4He + 20Ne + 4He) models—see Figure 8, 
second row. And in fact, these elongated structures can be actually prepared by 
the adjoining of these smaller models. That is, these deformed models can serve 
a very simple demonstration, as to how the clustering process appears in the 
highly excited and deformed states: indeed, they are made of smaller nuclei. 

Along with the clustering process, the group of models on the above picture 
may illustrate us the phenomenon of collective excitations. In the case of collec-
tive excitations, the incoming energy is not concentrated on one single nucle-
on—these are the one-nucleon excitations—but several nucleons get simulta-
neously to a higher energy state. As the excitation energy changes the wave func-
tion of several nucleons—so to say, dislocates them” to another orbit—this kind 
of excitation often leads to a deformed state of the nucleus. Thus the collective 
excitation process and the deformed state of the nucleus are usually going along. 

The exact explanation of these collective excitations is quite complex. A sim-
plified view is that the deformed state, which is created by the excitation, with its 
deformed potential well shifts the energy levels of the nucleus. In this way, some 
of the excitation levels can be reached by the nucleons at much lower energies. 
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So much so, sometimes 4 or 8 nucleons can be excited with smaller energy than 
one single nucleon. The excitation of one single nucleon usually does not affect 
the energy levels of a nucleus, but the excitation of several nucleons can do it. 
Thus, sometimes multi-nucleon transfer to another orbit can require less energy 
than a single-nucleon excitation. 

The illustrative presentation of collective excitations is very simple by using 
the geometric models. The best way is perhaps to observe the transformation 
between the two oblate models of 28 balls. At the top of the model that corres-
ponds to the ground state of the 28Si nucleus, there is a 4 ball ring, which corres-
ponds to an s1/2 orbit. If the bounds of this ring is somehow breaks, the balls 
jump downwards to the p3/2 orbit below, which previously had 4 particles. By the 
dissolution of the upper s1/2 ring, the p3/2 ring under is now complete: it has 8 
particles instead of 4 (see Figure 9). 

Needless to say, that the dislocation of only 1 particle would need large 
amount of energy: the s1/2 ring, a 4He cluster must be broken, but at the same 
time the p3/2 ring is not filled with this single particle. When the s1/2 ring is com-
pletely dissolved and the p3/2 ring is thus filled, it needs much less energy than 
moving just one particle. Thus the energy balance between the breakup of bonds 
and creating new bonds can lead to the process of collective excitations and the 
change in the shape of the nucleus, the deformation. 

It can be seen in this case, that a single particle excitation may consume large 
amount of energy, while the dissolution of an orbit and the completion of 
another creates a more balanced situation. Large amount of energy is needed to 
dissolve the bonds of an orbit, but almost the same energy can be released when 
another is completed with the same particles. And thus, a metastable state can 
form in the process with a new shell structure and shape. With the help of the 
geometric models, even the process can be visualized. By pushing the upper s1/2 
ring from upwards—with a pen for example—the ring breaks up and the balls  
 

 
Figure 9. The two oblate models of 28Si that helps to visualize 
the collective excitations. The purple colored four particle ring 
of the first model dissolves and the particles completing the 8 
particle ring below. 
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automatically jump to the hollows of the p3/2 ring, thus completing it. The 
process is reversible: by symmetrical lateral pressure, the 4 balls can be torn out 
of the p3/2 ring and by the attractive force they jump together again, forming the 
4 ball s1/2 ring. 

The preparation of elongated models is the simplest in the same way. For ex-
ample, if one is pressing 4 balls of an 8 ball ring inwards, the balls are shifted to 
the inner parts of the model and two 4 ball ring are formed. In this way, the 
shape of the model can be changed, new orbits can be formed. Several such de-
formations can form the above mentioned clusters out of the original model. In 
the case of lighter nuclei, there are only 4 or 8 particles on the orbits, so the 
„collective excitations”—deformations of the models and the clustering 
process—can be illustrated in an easy and spectacular way. 

7. Magnetic Moment in the Geometric Models 

We have seen so far, that geometric models built of magnetic balls may help to 
illustrate several phenomena of the nuclear world for students. These models are 
not just disorderly packages of balls to represent the nucleons of an atomic nuc-
leus. Symmetrical forms can illustrate the Pauli principle, the shell-orbit struc-
ture of a nucleus, the mechanism of collective excitations and deformation, and 
through these, the appearance of clustering process. These examples are more 
than enough to prove that such geometric models can be useful in illustrating 
the basic features of a nucleus while teaching nuclear physics. Nevertheless, there 
are even more possibilities. 

One possibility is to take advantage of the magnetic nature of the balls, the 
models are made of. These balls have similar dipole magnetic field as the nucle-
ons. For this reason, the magnetic moment of the balls gives us an opportunity 
to demonstrate the dipole moment of the nucleons. In those nuclei, which have 
even proton and neutron numbers, the spins and magnetic moments of protons 
and neutrons usually cancel each other. Thus, at least in the ground state, these 
nuclei usually have zero spin and magnetic moment. 

The same is true for the geometric models, if they are made of magnetic balls. 
Looking at a ring that is part of a larger model, one may observe, that the mag-
netic field is basically goes around inside the circular rings. The dipole moment 
of a ball is a vector that point to one neighbor of the ball to the other: the vector 
is indeed parallel to the tangent of the ring at every ball. This means, that until a 
ring is complete, the magnetic moment of the ring is zero (see Figure 10). The 
magnetic moment of every ball is compensated by another ball, which is just in 
the opposite position of the ring. What is more, the balls which are opposite to 
each other, and thus compensating the magnetic moments of each other, are in 
equivalent geometric positions. A rotation by 180 degrees exchange these balls, 
which means that they are in the same “state”: they are representing nucleons in 
the same state with opposite spins, regarding the Pauli principle. 

One must not forget of course, that this macroscopic model is false by its 
birth, just as every other model. The nucleons have quite large energies in the  
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Figure 10. Direction of magnetic moments in a ring of mag-
netic balls. 

 
nucleus, and thus, moving continuously in their common potential well. Their 
behavior can be described only by the help of quantum mechanics. Thus, it is 
meaningless to state that some nucleons of a nucleus are in opposite positions. 
But when visualizing the possibility that some nucleons are creating pairs and 
compensating the magnetic moments of each other, these models may give some 
help. So, even though the picture is false, it can help to visualize the intangible 
reality of the nucleus. When looking at the rings of the models, one can imagine 
how the angular moments and magnetic moments of the nucleons compensate 
each other. And also, how the spin and magnetic moment of the nucleus created 
by a single nucleon, if its pair is missing from the nucleus. 

When visualizing the magnetic moments of the models, we do not need to re-
ly only on our imagination. Although we cannot see the magnetic field of the 
nucleus, we can see that of the model. A very simple, age-old method gives us 
nice results: the magnetic field is made visible by laying a sheet of paper on the 
model and sprinkling fine iron powder on it (see Figure 11). The models have 
quite complex magnetic picture, which again gives food for some thoughts. 

First of all, these magnetic images reveal, how important is the effect of clos-
ing the field lines. The model of 4He, a closed ring of four balls has a very weak 
field outside the model, compared to a linear arrangement of four balls. And 
even though we are seeing only the magnetic field of some macroscopic balls, 
one can imagine the similar effect of closure of field lines in the case of the 
strong nuclear force. And examining the magnetic properties of the more com-
plex models, it becomes clear, that the models made of closed rings have very 
faint magnetic field outside the model. However, it is enough for one ball to be 
missing from the model; a burst of magnetic field appears on the picture (see 
Figure 12). Such pictures indeed, nicely illustrating, how the strong force burst 
out of those nuclei, which misses only one or two nucleons to have a closed shell. 
In the case of these nuclei the absorption cross section is much higher than in 
the case of nuclei with completely filled shells. And indeed, these models, that 
miss only one ball to fill a ring, drags a single magnetic ball from a much larger 
distance, than other models with closed rings. 
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Figure 11. Magnetic field of the open line and closed ring of 
four magnetic balls. 

 

 
Figure 12. Magnetic field of the models made of 16 and 15 
balls. The former model has only closed rings, while the latter 
has an open 7 ball ring. The burst of magnetic field highlights 
the position of the missing 16th ball. Interestingly, the “missing 
ball field” is similar to the dipole field of a single ball. 

8. Concluding Remarks 

At first, it may seem to be a weird idea to model a complex, multi-particle 
quantum mechanical system by the help of macroscopic objects; we have seen 
that sometimes there are some similarities. The above thoughts have shown that 
modeling the atomic nucleus with sets of magnetic balls is not as weird idea as it 
may sound. Even though this modeling process has its limitations, these models 
might prove that the macroscopic visualization of nuclear features is not a com-
pletely hopeless task. These models may give a tangible picture as to how the 
piles of nucleons can arrange to such complex structures as the atomic nuclei. 

Due to the spatial limitations of this article, several interesting topics had to be 
neglected. For example, 3-fold symmetry may apply for the modeling of those 
nuclei, in which there are two times more neutrons than protons or more pro-
tons than neutrons. In these cases there are only three nucleons in every state, so 
the models have to have 3-fold symmetry. Again, interesting structures appear, 
when the protons and neutrons are modeled with differently colored balls: as the 
spin-pairs of nucleons must be opposite to each other in the models, chains of 
protons and neutrons appear within the model (see Figure 13). Also, modelings  
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Figure 13. Models of the 12C, 16O, 40Ca nuclei. The purple/sil- 
ver colors in this case helps to distinguish the protons/neu- 
trons of the models. 

 
of very light nuclei and heavy nuclei are two fascinating tasks. Thus, there are 
wide perspectives in the geometric modeling of atomic nuclei. 
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