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Abstract 
The programs offered for solving nonlinear equations, usually the old method, 
such as alpha, chordal movement, Newton, etc. have been used. Among these 
methods may Newton’s method of them all be better and higher integration. 
In this paper, we propose the integration method for finding the roots of non-
linear equation we use. In this way, Newton’s method uses integration me-
thods to obtain. In previous work, [1] and [2] presented numerical integration 
methods such as integration, trapezoidal and rectangular integration method 
that are used. The new method proposed here, uses Simpson’s integration. 
With this method, the approximation error is reduced. The calculated results 
show that this hypothesis is confirmed. 
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1. Introduction 

Let :f R R→  be a smooth nonlinear function with a simple root *x , i.e. 
( )* 0f x =  and ( )* 0.f x′ ≠ . We consider iterative methods for the calculation 

of *x  that uses f  and f ′  but not the higher derivatives of f  and that ge-
neralizes the Newton method. Modifications for multiple roots will not be con-
sidered in the present contribution. 

To find the roots of an equation of nonlinear methods, there are many me-
thods. Most famous method to find the approximate root of *x  from the equa-
tion, non-linear and using the first derivative, is what called Newton’s method. 
([3]-[8]). 

We know that Newton’s method, an iterative procedure is to obtain an ap-
proximate root of the equation ( ) 0f x = , with an initial guess 0x R∈ , for  

0,1, 2,n =   values 
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f x+ = −
′

                             (1) 

Calculates show that this formula is repeated, with the convergence of order 
two. 

2. Elementarily Methods 

Newton’s iteration formula in different ways and in many ways can be found 
[3]-[8]. But in this paper specific integration methods, we use. According to the 
definite integral 

( ) ( ) ( )d
n

x
nx

f t t f x f x′ = −∫                     (2) 

can write 

( ) ( ) ( )d
n

x
n x

f x f x f t t′= + ∫                     (3) 

The definite integral in this regard can be calculated by different methods. If 
this is the definite integral of the square method [1] to obtain, can be written 

( ) ( ) ( )d
n

x
n nx

f t t x x f x′ ′≅ −∫                     (4) 

After placement in relation to certain integration, we get the following state-
ment. 

( ) ( ) ( ) ( )n n nf x f x x x f x′≅ + −                  (5) 

According to ( ) 0f x =  is due to the new value 
( )
( )

n
n

n

f x
x x

f x
= −

′
 to obtain  

the same formula is repeated Newton [9].  
As well as to find solutions integrator can be used as [1] of midpoint method. 

( ) ( )d
2n

x n
nx

x xf t t x x f + ′ ′≅ −  
 ∫                (6) 

And with Placement 
( )
( )

n
n

n

f x
x x

f x
= −

′
 that is Newton iteration, to new itera- 

tion will reach a formula. 

( )
( )
( )

1

2

n
n n

n
n

n

f x
x x

f x
f x

f x

+ = −
 
′ −  ′ 

                  (7) 

However, if we use trapezoidal method and midpoint method instead of rec-
tangular method [1] [2], then the method can be written 

( ) ( ) ( ) ( )d
2n

x n
nx

x x
f t t f x f x

−
′ ′ ′ ≅ + ∫               (8) 

And the placement of certain integration, we get the following statement. 

( ) ( ) ( ) ( ) ( )
2

n
n n

x x
f x f x f x f x

−
′ ′ ≅ + +            (9) 

And according to ( ) 0f x =  is the new value of 
( )

( ) ( )
2 n

n
n

f x
x x

f x f x
= −

′ ′ + 
 to 
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obtain by replacing ( )f x′  with ( )1nf x +′ , where 
( )
( )1

n
n n

n

f x
x x

f x+ = −
′

 is New-  

ton repeated the following three methods to obtain explicit order. 

( )

( ) ( )
( )

1

2 n
n n

n
n n

n

f x
x x

f x
f x f x

f x

+ = −
 

′ ′+ −  ′ 

                 (10) 

This relationship, modified Newton iteration formula [10] is. 

3. Preliminary Results 

Now back to the original Equation (3) return. 
To find the definite integral in the above equation, we use the method of 

Simpson [3]. We can write 

( ) ( ) ( )2d 4
3 2n

n
x n

nx

x x
x xf t t f x f f x

−
 +  ′ ′ ′ ′= + +  

  
∫          (11) 

By substituting the equation can be written 

( ) ( ) ( ) ( )4
6 2

n n
n n

x x x xf x f x f x f f x−  +  ′ ′ ′= + + +  
  

         (12) 

According to the ( ) 0f x = , we will gain new value 
( )

( ) ( )

6

4
2

n
n

n
n

f x
x x

x xf x f f x
= −

 +  ′ ′ ′+ +    

 and substitution x  with 1nx +  expli-

cit method to obtain, where in 
( )
( )1

n
n n
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f x
x x

f x+ = −
′

 is Newton method. 
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And then we’ll simplify. 
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n
n n

n n
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f x
x x

f x f x
f x f x f x

f x f x
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    

′ ′ ′− + − +       ′ ′     

   (13) 

This relationship, a new iterative method is a convergence of order higher 
than two. 

Methods that have already been presented, rectangular and trapezoidal inte-
gration method is used. These methods have convergence times lower than 
Simpson’s method. In the future we will see that this method is superior to other 
methods and convergence is it better than before. 

Here, all computing software Maple is done and we have one of the following 
stop conditions: 
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Table 1. Example 1. 

n  nx  ( )nf x  

1 1.6504206952163954715 0.34641095924425665672 

2 1.9305183053827568405 0.00547642190321585418 

3 1.9345632028456436684 81.071944817796 10−×  

4 1.9345632107520242676 0. 

5 1.9345632107520242676 0. 

 
Table 2. Example 2. 

n  nx  ( )nf x  

1 0.78027135582726141440 0.01676581394101499529 

2 0.77288330212111547221 77.7296437954397 10−×  

3 0.77288295914921011288 207 10−×  

4 0.77288295914921011285 0. 

5 0.77288295914921011285 0. 

 
(I) 1n nx x ε+ − <  

(II) ( )1nf x ε+ <  

In each of them 100010ε −=  and also all computations were done using Maple 
using 128 digit floating point arithmetic (Digits: = 128). 

4. Numerical Experiments 

In this section, we will test several functions in obtained iteration formula. 
Example 1: 
Consider the equation ( ) sin 1 0f x x x= − + = . Starting from the point  

0 1.0x = , we obtain the value of 1.9345632107520242676 , if 
1.9345632107520242676  is the exact answer. Different iterations of this me-
thod in Table 1. 

Example 2: 
Consider the equation ( ) 3 e 0xf x x −= − = . Starting from the point 0 1.0x = , 

we obtain the value of 0.77288295914921011285 , if  
0.77288295914921011285  is the exact answer. Different iterations of this me-
thod in Table 2. 

5. Conclusion 

In this paper, to solve a nonlinear equation formula offered new iteration, we 
have seen that this formula iteration was obtained using Simpson integration. It 
was observed that using examples provided, its accuracy is higher than the accu-
racy of Newton iterative method. 
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