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Abstract 
Especially high health risks associated with impacts of metallic nanoparticles 
(Me-NPs) and their presence in the workplace and ambient air of not only the 
nano-industry but also of some long-existing traditional technologies make it 
necessary, along with keeping respective dangerous exposures as low as possi-
ble, to look for ways of increasing the organism’s resistance to them. Based on 
theoretical premises of such beneficial interference with toxicokinetics and 
toxicodynamics of Me-NPs developed by our research team and on under-
standing general and specific key mechanisms of different Me-NPs’ toxic ac-
tion, we proposed several bioprotective complexes (BPCs) comprising mainly 
pectin, some vitamins, glutamate, glycine, N-acetylcysteine, omega-3 PUFA, 
and different essential trace elements. Results of our animal experiments with 
different Me-NPs showed that, against the background of such BPCs’ oral 
administration, the integral and specific toxicity of Me-NPs and even their 
genotoxicity can be markedly attenuated. Therefore we would recommend to 
further develop this vector of nano-toxicological research. 
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1. Background 

Nanoparticles (NPs) of elemental metals and some metalloids, and even more so 
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of their oxides are of special interest in the framework of health risk assessment 
and risk management problems. Along with engineered metallic NPs (Me-NPs), 
there usually exists a substantial nanoscale fraction of condensation aerosols 
generated as byproducts of many long existing and new technologies (steel and 
nonferrous metallurgies, arc-welding, laser metals treatment, etc) and thus pol-
luting both workroom and ambient air in respective industries and adjacent 
areas. Other fractions of such aerosols are 8 usually presented mostly be submi-
cron particles with dimensions above 100 nm. Examples illustrating these state-
ments are given in Figure 1 and Figure 2. 

In such industries air is, as a rule, polluted by multi-component mixtures of 
chemically different particles of similar or dissimilar geometry. For instance, in 
arc-welding and alloyed steel making one usually finds different combinations of 
iron, chromium, nickel, manganese and silicon oxides, while in crude copper 
smelting and copper refining-those of copper, lead, cadmium, zinc, and arsenic 
oxides.  

In the vast nano-toxicological literature of the last decade, studies concerned 
with the assessment of Me-NP toxicity are quite numerous. We can refer, for 
example, to several works devoted to the same Me-NPs that were the sub-
ject-matter of our own studies: silver [1]-[25], gold [26]-[38], copper and copper 
oxide [25] [39]-[48], nickel oxide [43] [49]-[53], manganese oxides [54] [55] 
[56], zink oxide [57]-[61], lead oxide [62] [63], silicon dioxide ([64]-[71], and a  
 

 
Figure 1. Particles of SiO2 collected in the flue gas duct from the hood over a silicon smelting ore-thermal 
furnace (scanning electron microscopy, magnification ×35,930). 
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Figure 2. Particles sampled from copper smelter workplace air (SEM, magnification ×25,080). 

 
lot of others). However, the prevailing majority of these researchers assessed ad-
verse effects of Me-NPs in vitro on stable cell lines. This approach features a 
number of well-known advantages relating, in particular, to analysis of primary 
toxicity mechanisms on cellular and sub-cellular levels. At the same time, any 
extrapolation of the results of these experiments to the organism level and even 
the organ-systemic level is associated with a number of uncertainties and as-
sumptions. Moreover, some important aspects (in particular¸ organism level 
toxicokinetics, relationships between doses and systemic responses, the func-
tioning and efficiency of supracellular self-regulatory and protective mechan-
isms, etc.) can generally be addressed only through experiments on the whole 
mammalian organism. In such experiments carried out during 2010-2016 we 
[72]-[87] demonstrated that Mt-NPs should be considered one of the most dan-
gerous occupational and environmental hazards due to their especially high tox-
icity and virtually obligatory genotoxicity.  

2. Some Theoretical Premises of Biological Protection 

Beyond any doubt, the most protectively effective way to manage occupational 
and environmental health risks associated with any hazardous impact would be 
to decrease the latter to a level exerting no observed adverse effects. However, 
due to the especially high toxicity and virtually obligatory genotoxicity of Me- 
NPs, their NOAELs and respective permissible exposures to Me-NPs proposed 
so far are so much lower than those for chemically analogous Me-MPs (e.g. [75] 
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[88] [89]) that they are hardly practicable in reality. We therefore decided to try 
and make the same goal attainable going from the other end, namely to enhance 
the natural resistance to the adverse health effects of Me-NPs [86]. This idea of 
possibly efficient “biological protection” against nano-toxicity was based on our 
long-term experience of successful bio-protection of the animal and human or-
ganism against various other toxicants, including some mineral microparticles 
[78] [80] [90].  

The organism-level mechanisms of what we designate as bio-protection or 
bio-prophylaxis are schematically presented in the flow-chart (Figure 3). Al-
though it has already been discussed by us in this Journal [80], we reckon it use-
ful to be briefly presented here.  

In general terms, we the mammalian organism can be protected against occu-
pational or environmental toxic impacts using: 

1) bio-protectors aimed primarily at increasing the effectiveness of the natural 
mechanisms of bio-transformation and/or elimination of toxics, and thus, at re-
ducing the inner dose of a harmful substance retained in the organism and espe-
cially in the target organs (designated in our chart as “toxicokinetic effects”); 

2) bio-protectors aimed at enhancing the functional reserves at all levels of the 
organism affected by a toxic substance; at increasing the effectiveness of repair 
and compensatory processes; and at employing physiological and toxicological 
antagonisms (designated in the chart collectively as “toxicodynamic effects”). 

However, these two modes of action are usually interrelated and interdepen-
dent, as it is schematically shown with reciprocally directed arrows. Indeed, by 
reducing the retention of a toxic substance in the organism and especially in 
target organs, a bio-protector inhibits the development of a pathological process 
(thus, a bio-protector of a primarily toxicokinetic type of action produces a 
beneficial toxicodynamic effect). On the other hand, primary enhancement of 
resistance to the damaging impact of a toxic on the cells and organs that control 
the processes of its elimination or biotransformation (pulmonary macrophages, 
liver, kidneys) maintains the effectiveness of these processes and, thus, reduces 
the retention of this toxic in the organism (so we see a beneficial toxicokinetic 
effect of a toxicodynamic bio-protector). Such bilateral interdependence of tox-
icokinetic and toxicodynamic effects is pronounced to a varying degree in re-
sponse to the action of different harmful substances but, on the whole, can be  

 

 
Figure 3. Schematic presentation of anti-toxic biological prophylaxis. 
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considered as a consistent pattern. 
The flow-chart shows also that both toxicokinetic and toxicodynamic bio- 

protectors can be: 
• more or less specific with regard to a particular toxic or a particular range of 

toxics if bioprotection interferes with the mechanisms of toxicokinetics and 
toxicodynamics pertaining just to these toxics or to a class of similarly acting 
ones; 

• predominantly non-specific, if their effect is realized through such integral 
responses at the organism level as Selye’s general adaptation syndrome or a 
related but still distinct concept of “non-specifically enhanced resistance” 
developed by the school of late Nikolay Lazarev, an outstanding Russian tox-
icologist and pharmacologist. 

However, one and the same bio-protector may, in different cases. either rend-
er a largely specific effect or help the organism mainly as an agent enhancing its 
nonspecific defenses and thus decreasing its sensitivity or increasing its resis-
tance to harmful exposures (see respective boxes and links in the same chart).  

In our experiments, bio-protectors employing mechanisms that are not fully 
identical proved to be most effective when administered in combinations which 
we call “bio-protective complexes”, or BPCs [78] [80] [90].  

As concerns bio-protection against the adverse effects of metallic nanopar-
ticles, we have so far chosen, based on the above formulated theoretical premis-
es, and experimentally tested four BPCs protecting from nano-silver [78], na-
no-copper oxide [82], and combinations of NiO-NP + Mn3O4-NP [83] [84] [85] 
and PbO-NP + CuO-NP + ZnO-NP [91]. Being different in some important de-
tails depending on specific toxicodynamic and toxicokinetic mechanisms un-
derlying the toxic action of different metals, the compositions of all those BPCs 
still has much in common. The most important components in all our experi-
ments were: 

1) Glutamate used by us, based on lung positive experience, as an effective cell 
membrane stabilizer acting through the intensification of ATP synthesis under 
exposure to the damaging effect of various cytotoxic particles (e.g. [92]) and, at 
the same time, as one of the precursors of glutathione. The latter, in its turn, 
serves a powerful cell protector against oxidative stress which is regarded as one 
of the key primary mechanisms underlying high cytotoxicity and genotoxicity of 
virtually all metallic NPs [93]. In addition to these non-specific and almost uni-
versal bio-protective effects of glutamate, it may more specifically increase resis-
tance to the neurotoxicity of manganese, lead and some other Me-NPs due to its 
major role in the transmission of excitatory signals in the mammalian central 
nervous system and thus its involvement in most aspects of normal brain func-
tioning. It is known, for instance, that manganese impairs the expression and 
function of the main glutamate transporters in astrocytes [94] and that lead in-
terferes with glutamate release in the hippocampus [95]. It stands to reason that 
additional glutamate supply to the brain would partly compensate for these ad-
verse effects of the respective Me-NPs. 

2) The other two glutathione precursors: glycine and cysteine (the latter in a 
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highly active and metabolically well available form of N-acetylcysteine). The 
reasons for including these amino-acids into our BPCs were both theoretical 
(taking into consideration the above-mentioned general important role played 
by oxidative stress as a mechanism of Me-NP toxicity) and experimental as there 
were data of other researchers demonstrating that glutathione deficiency poten-
tiates some specific metal toxicities-e.g. manganese-induced damage to the rat 
striatum and brainstem [96]. 

3) Other agents of the organism’s anti-oxidant system: vitamins А, Е, and С, 
and selenium (on the same theoretical grounds).  

4) Omega-3 polyunsaturated fatty acids (PUFA) whose intracellular derivatives- 
eicosanoids-activate DNA replication and thus play an important part in its re-
pair. Meanwhile the DNA fragmentation was found to be a common effect of all 
Me-NPs studied by us up to now. 

5) Iodine, taking into consideration the well-known disturbances of the thy-
roid function caused by lead, manganese and some other metallic intoxications.  

6) Trace elements when they are known to be antagonists of the specific metal 
that form Me-NPs under study. 

7) Pectin enterosorbent as an agent that hinders the re-absorption of toxic 
metals excreted into the intestines with bile (which, again, is of special impor-
tance for metals that are excreted predominantly by this route (e.g. manganese 
and copper) or released within the GIT by Me-NPs translocated there after de-
position in the airways. 

In all the studies we have found that, as was expected, the in vivo cyto = and 
organo-systemic toxicity as well as genotoxicity of Me-NPs could be noticeably 
attenuated against the background administration of adequately composed BPCs 
or by the pre-medication with them. It should be stressed that we never claimed 
to be the first who have shown a possibility of inhibiting some metallic nanopar-
ticles’ toxicity with the help of this or that agent targeted at a certain mechanism 
of such toxicity. However, other researchers would demonstrate this possibility 
in experiments in vitro as a rule and used it as evidence of the importance of this 
mechanism (e.g. [10]) rather than as the foundation of a holistic bio-protective 
system. In the meantime, the goal of our mechanistically substantiated approach 
is just such a system (“biological prophylaxis” in our terminology), and as far as 
we know, we were the first indeed who began to investigate the effects of 
bio-protectors against metallic nanoparticles in animal experiments in vivo.  

3. Examples of Results Obtained in Our Experiments 

We have demonstrated the high beneficial efficacy of anti-MeNP bioprotection 
in our experiments using a lot of indices, but in this self-overview we illustrate 
this efficacy but with some typical examples.  

Thus, virtually all Me-NPs studied by us prove to be markedly nephrotoxic, 
causing, in particular, significant damage to the epithelial cells of proximal con-
voluted renal tubules. Histological preparations of kidneys in rats repeatedly ex-
posed intraperitoneally to these nanoparticles during 6 - 7 weeks revealed partial 
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destruction of the brush border and marked degenerative and necrotic changes 
in these cells up to their disappearance, while rats exposed to the same nanopar-
ticles against background BPC administration demonstrated absence or marked 
alleviation of such tubular damage. Figure 4 presents as a typical example mi-
croscopic picture of kidneys from rats exposed to a combination of NiO-NPs 
and Mn3O4-NPs with or without concomitant oral administration of a BPC 
comprising pectin, glutamate, glycine, N-acetylcysteine, vitamins A, C, E, sele-
nium, iodide and omega-3 PUFA. 

Table 1 provides respective morphometric results obtained in this experiment 
[83] and quite similar results of an earlier experiment involving copper oxide 
nanoparticles [81] [82] against which we tested a BPC of a similar composition 
plus vitamin B12 and biotic doses of iron, zinc, molybdenum and manganese. 

Another well established adverse effect of virtually all Me-NPs is damage to 
the organs rich in RES cells, in particular, to the spleen and liver, which accu-
mulate them more avidly than any other organs. Indeed, in both of these organs 
we observed an explicit pathology the type of which virtually did not depend on  

 

 
Figure 4. (a) Kidney of a control rat (proximal convoluted tubules with an intact brush 
border). (b) Kidney of a rat exposed to NiO-NPs + Mn3O4-NPs (marked degenerative and 
necrobiotic changes in tubular epithelial cells up to their disappearance; partial des- 
truction of the brush border). (c) Kidney of a rat similarly exposed against background 
administration of a BPC. Periodic Acid Schiff (PAS) stain, magnification ×400. 

 
Table 1. Some morphometric indices for tubular epithelium damage in the kidneys of 
rats after repeated intraperitoneal injections of some metallic oxides nanoparticles with or 
without background oral administration of a BPC (X ± s.e.) 

Groups of rats given 
Brush border loss 

(% lengthwise) 
Epithelial desquamation 

(% lengthwise) 

NiO nanoparticles + Mn3O4 nanoparticles 

Water (control) 5.44 ± 0.90 0.00 ± 0.00 

Nanoparticles 12.33 ± 2.30* 2.43 ± 1.00* 

Nanoparticles + BPC 7.08 ± 1.70 0.00 ± 0.00+ 

CuO nanoparticles 

Water (control) 5.39 ± 0.42 0.33 ± 0.13 

Nanoparticles 8.36 ± 0.76* 1.16 ± 0.38* 

Nanoparticles + BPC 5.98 ± 0.46+ 0.98 ± 0.35 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test). 
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the chemical nature of the Me-NPs, and this pathology was also alleviated by 
background BPCs administration as exemplified in Table 2 by the results of an 
experiment with Ag-NPs [78]. 

A more specific adverse effect characterizing the toxicity of Mn3O4-NPs (act-
ing either with or without NiO-NPs) and CuO-NPs was marked damage to some 
specialized structures of the brain (to the striatum and the hippocampus espe-
cially). In both cases, this damage was also significantly attenuated by the re-
spective BPCs [81] [83]. Examples are given in Figure 5 and Table 3. 
 
Table 2. Some morphometric indices of the cell structure of liver and spleen in rats ex-
posed to Ag-NPs with or without background BPC1 administration(x ± s.e.). 

Index 
Rats injected 

with water 
(control) 

Rats injected with 
nanoparticles 

Rats injected with 
nanoparticles and 

administered a BPC 

Liver 

Akaryotic hepatocytes  
per 100 cells 

17.6 ± 0.6 18.5 ± 1.3 13.0 ± 1.0*+ 

Kupffer cells per 100  
liver cells 

16.5 ± 0.5 25.0 ± 0.8* 20.0 ± 0.6*+ 

Average particle load of 
Kupffer cells, score# 

0 0.91 ± 0.7 0.51 ± 0.09+ 

Spleen 

White to red pulp ratio† 0.59 ± 0.036 0.37 ± 0.035* 0.59 ± 0.086+ 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test); #the particle burden of a cell is visually estimated as a score 
of points from 0 to 4. The weighted average index is calculated allowing for the percentage ratio between 
cells given different scores (the total number of scored cells = 100); †Measured with the help of a planime-
tric grid. 

 
Table 3. Some morphometric indices for the state of rat’s brain after repeated intraperi-
toneal injections of NiO and Mn3O4 nanoparticles with or without background oral ad-
ministration of a BPC (X ± s.e.). 

Golgi neurons (%%) 
Rats injected 

with water 
(control) 

Rats injected with 
nanoparticles 

Rats injected with  
nanoparticles and  
administered BPC 

Nucleus caudatus 

Without a nucleolus 30.50 ± 2.77 60.30 ± 2.26* 37.15 ± 2.89+ 

With a distinct centrally 
located nucleolus 

25.12 ± 1.16 12.35 ± 0.95* 23.28 ± 1.09+ 

Hippocampus (CA 1) 

Without a nucleolus 30.50 ± 2.30 70.40 ± 3.75* 41.30 ± 2.14*+ 

With a distinct centrally 
located nucleolus 

46.4 ± 2.92 11.0 ± 1.13* 30.5 ± 1.96*+ 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test). 

 

 

1In this case, the BPC comprised pectin, glutamate, glycine, N-acetylcysteine, vitamins A, C, E, sele-
nium, copper, calcium and omega-3 PUFA. 
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Figure 5. Number of cells without a nucleolus per 100 Golgi 
cells in nucleus caudatus of rats exposed (A) to water (Con-
trol); (B) to water suspension of CuO nanoparticles; (C) to the 
same against the background of bioprotective complex (BPC) 
administrations; (D) to the BPC only; (E) to water suspension 
of Cu/Cu2O submicron particles (Average values with 95% 
CI). Differences are statistically significant between (B) and 
(A), (E) and (A), and (C) and (B) (p < 0.05 by Student’s t-test). 

 
Still another metal-specific outcome of a subchronic Me-NP intoxication was 

an increased reticulocytes percentage under the impact of PbO-NPs (24.7‰ ± 
2.7‰ against 10.2‰ ± 1.4‰ in control rats, P < 0.05). This effect was even more 
pronounced under a combined impact of PbO-NPs + CuO-NPs + ZnO-NPs 
(29.7‰ ± 3.2‰) but was significantly attenuated (18.00‰ ± 1.6‰, p < 0.05)  
under the same impact against background administration of a BPC2. Similar 
attenuation (although statistically non-significant) was observed in respect to the 
decrease in the hemoglobin level and to the increase in the δ-ALA urine concen-
tration [91]. 

To illustrate the efficacy of bioprotection against non-specific systemic toxic 
effects of Me-NPs, we may once again provide some results of the experiment 
involving nickel oxide in combination with manganese oxide nanoparticles. 
Table 4 presents the values of those indices for which the difference between the 
groups exposed to these Me-NPs with vs. without BPC administration proved 
statistically significant, but there were even more indices in the protected group 
that lost their statistically significant distinction from the control values. In gen-
eral, the group exposed to the Me-NPs combination without protection had a 
statistically significant adverse deviation from the control value in 25 out of the 
50 functional and biochemical indices for the organism’s status, whereas only 
one index (decrease in the number of head dips into holes) was observed to have 
such deviation in the group so exposed along with background BPC administra-
tion [83]. This table also demonstrates that the BPC, which significantly atte-
nuated the adverse effects caused by nanoparticles, had by itself no effect on the 
respective indices. This is quite typical of all our experiments. 

It should also be stressed that significant attenuation in the toxic effects was 
not necessarily associated with a decrease in the target organ’s burden of toxic  

 

 

2Apple pectin, glutamate, glycine, N-acetylcysteine, vitamins A, C, D3, E, selenium, omega-3 rich 
PUFA, calcium, iodide, iron supplements 
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Table 4. Some functional indices for the condition of rat after repeated intraperitoneal 
injections of NiO and Mn3O4 nanoparticles and/or oral administration of a BPC (X ± s.e.). 

Index 
Groups given: 

Water 
(control) 

Nanoparticles 
Nanoparticles 

and BPC 
BPC 

Leukocytes, 103/µl 4.3 ± 0.4 6.1 ± 0.5* 5.7 ± 0.6+ 4.3 ± 0.4 

Bilirubin in blood 
serum, μmol/L 

2.02 ± 0.40 1.15 ± 0.10* 1.5 ± 0.1+ 1.7 ± 0.1 

Albumin in blood 
serum, g/L 

46.6 ± 0.8 38.6 ± 0.8* 41.8 ± 1.1+ 47.3 ± 1.2 

Diuresis, ml 32.7 ± 1.8 17.9  ± 2.9* 30.2 ± 2.7+ 31.2 ± 4.5 

Urine relative 
density 

1.017 ± 0.001 1.023 ± 0.001* 1.019 ± 0.001+ 1.019 ± 0.001 

Creatinine in 
urine, mmol/L 

1.09 ± 0.10 1.8 ± 0.20* 1.2  ± 0.1+ 1.2 ± 0.1 

δ-ALA in urine, 
µmol/day 

0.23 ± 0.07 0.54 ± 0.13 0.22 ± 0.02+ 0.25 ± 0.08 

Note: *statistically significant difference from the control group; + from the group given NiO-NPs + 
Mn3O4-NPs (without the BPC) (p < 0.05 by Student’s t-test with Bonferroni correction). 

 
metal, although this beneficial toxicokinetic effect of the BPCs was also observed 
in some experiments, as illustrated by Table 5 [82]. In the experiment with a 
combined exposure to NiO-NPs plus Mn3O4-NPs [83], BPC administration sig-
nificantly decreased the retention of nickel, though not of manganese, in the liv-
er, spleen and brain. Under exposure to Ag-NPs, the retention of silver in the 
liver, spleen and kidneys over the control levels was very significant but did not 
depend at all on BPC administration [78]. We believe that this seeming incon-
sistency is due to the predominance of toxicodynamic bio-protection mechan-
isms over toxicokinetic ones. 

All of the above-described results demonstrate the attenuating effects of the 
bioprotectors on the subchronic systemic toxicity of Me-NPs. Meanwhile, it was 
similarly demonstrated that the same bioprotectors also beneficially influenced 
the immediate pulmonary response to the deposition of NPs in the lower air-
ways. To this end, we carried out two experiments with BPC premedication 
during 4 weeks before the instillation of NiO-NPs + Mn3O4-NPs [79] or 
PbO-NPs + CuO-NPs + ZnO-NPs [97] and assessed this response by total and 
differential cell counts and by some biochemical BALF indices. In both experi-
ments, as demonstrated by Table 6, we observed the usual prevalence of neu-
trophil leukocyte (NL) recruitment over that of alveolar macrophages (AMs), 
which is the most characteristic feature of the immediate pulmonary reaction to 
an impact of cytotoxic particles, including all Me-NPs studied by us up until 
now. In both experiments, the increase in the BALF NL count and NL/AM ratio 
over the respective control values was significantly lower in rats exposed to the 
same Me-NPs after a premedication with BPCs.  

Taking the experiment with PbO-NPs + CuO-NPs + ZnO-NPs as an example,  
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Table 5. Copper content of some organs (mcg/g of dry-frozen tissue) in rats after re-
peated intraperitoneal injections of copper oxide nanoparticles and/or oral administra-
tion of a BPC (х ± s.e.). 

Group of rats given Kidneys Liver Spleen Brain 

Water (control) 42.4 ± 2.9 12.2 ± 2.4 22.5 ± 2.1 18.9 ± 0.7 

CuO-NPs 62.5 ± 7.1* 28.8 ± 6.3* 24.2 ± 1.5 21.5 ± 1.7 

CuO-NPs and BPC 59.4 ± 10.0 22.1 ± 3.5* 18.0 ± 2.5+ 18.8 ± 1.4 

BPC 50.4 ± 5.6 10.6 ± 0.3 25.3 ± 2.2 20.8 ± 1.5 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test). 

 
Table 6. Influence of bioprotective premedication on the cell counts in the bronchoal-
veolar lavage fluid (BALF) of rats exposed to different metallic nanoparticles (x ± s.e.) 

Exposure to: 

Number of cells ×106 

NL/АМ 
count ratio total 

neutrophil 
leukocytes 

(NL) 

alveolar  
macrophages 

(АМ) 

24 hours after the intratracheal instillation of NiO-NPs and Mn3O4 + NPs 

Me-NPs 9.6 ± 1.6* 7.17 ± 1.24* 2.3 ± 0.43 3.44 ± 0.62* 

Me-NPs after 4 
weeks BPC  

administration 
5.7 ± 1.49 3.36 ± 1.38*+ 2.3 ± 0.29 1.46 ± 0.54*+ 

Water after 4 
weeks BPC  

administration 
3.8 ± 0.75 0.67 ± 0.21 3.09 ± 0.64 0.23 ± 0.07 

Water (control) 3.8 ± 0.9 0.34 ± 0.12 3.4 ± 0.86 0.12 ± 0.05 

24 hours after the intratracheal instillation of PbO-NPs + CuO-NPs + ZnO-NPs 

Me-NPs 7.93 ± 0.62* 5.86 ± 1.52* 2.07 ± 0.21 2.83 ± 0.77 

Me-NPs after 4 
weeks BPC  

administration 
3.30 ± 0.53*+ 1.47 ± 0.36+* 1.82 ± 0.40 1.11 ± 0.30+ 

Water after 4 
weeks BPC  

administration 
2.18 ± 0.41 1.20 ± 0.35* 0.98 ± 0.25 1.59 ± 0.55* 

Water (control) 1.40 ± 0.07 0.094 ± 0.029 1.30 ± 0.07 0.075 ± 0.024 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test). 

 
Table 7 demonstrates that all biochemical BALF indices for AM damage (such 
as the release of lysosomal enzymes) or for inflammation with increased vascular 
permeability (increased albumin content) were also lower in rats exposed after 
BPC premedication. Although the intergroup difference for each index is not 
significant statistically, the probability of a unidirectional chance difference be-
tween the groups in all 4 indices is <0.1 (0.0625) 

In the same context of pulmonary anti-NP protection, of interest are also  
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Table 7. Influence of bioprotective premedication on the biochemistry of the bronchoal-
veolar lavage fluid (BALF) of rats exposed i.t. to a Me-NP combination (x ± s.e.). 

Indices 

Exposure to 

Water  
(control) 

Ме-NPs 
Me-NPs after 4 

weeks BPC  
administration 

Water after 4 
weeks BPC 

administration 

Albumin, g/L 1.90 ± 0.08 2.50 ± 0.16* 2.20 ± 0.06* 1.99 ± 0.05 

Amylase, IU/L 6.56 ± 1.20 49.09 ± 15.46* 27.75 ± 7.86* 9.81 ± 1.47 

γ-Glutamyl 
transpeptidase, 

IU/L 
1.01 ± 0.52 4.02 ± 0.93* 3.64 ± 1.10 1.15 ± 0.43 

Lactate  
dehydrogenase, 

IU/L 
54.60 ± 10.74 91.10 ± 18.96 57.36 ± 6.59 36.20 ± 7.14 

Note: *statistically significant difference from the control group (p < 0.05 by Student’s t-test). 

 
some data obtained by us in a chronic inhalation experiment with iron oxide 
nano-aerosol (Sutunkova et al., 2016). Airborne Fe2O3-NPs with a mean diame-
ter of 14 ± 4 nm obtained by sparking from 99.99% pure iron rods were fed 
during 4 months, 5 times a week, 4 hrs per day into a nose-only exposure cham-
ber for rats, while an analogous chamber was used for sham exposures. The 
mean (±s.e.) concentration of Fe2O3-NPs was equal to 1.21 ± 0.17 mg/m3. When 
being out of the chambers, half of the animals were given to drink 1.5% sodium 
glutamate solution (which is an obligatory component of all our BPCs) instead 
of water. It had been repeatedly demonstrated that drinking this solution in-
creased dramatically organism’s resistance to the cytotoxicity, pulmonotoxicity 
and fibrogenicity of inhaled quartz dust and even decreased respective indices in 
control rats as well (e.g. [92]).  

As follows from the results of this experiment (Table 8), glutamate proved to 
be an effective bioprotector against inhaled Fe2O3-NPs even if administered 
alone. Its protective efficacy was demonstrated in the same rats also when as-
sessing the influence of iron oxide inhalation, with or without drinking the glu-
tamate solution, by the activity of well known marker enzymes in the BALF. 
Thus, for lactate dehydrogenase activity, the average values (x ± s.e.) were 33.80 ± 
2.78 IU in control (sham exposed) rats and 43.00 ± 7.39 IU in those inhaling 
NPs, while the same inhalation exposure with glutamate drinking provided only 
26.40 ± 2.96 IU (p < 0.05). For γ-glutamyl transpeptidase, the respective values 
were 4.08 ± 0.28, 6.09 ± 0.87 and 4.02 ± 0.44 IU (p < 0.05). 

Along with protective action of the tested BPCs on cell and organ-systemic 
levels, it was demonstrated also on sub-cellular and molecular ones. 

In rats exposed to repeated IP injection of CuO-NPs, PbO-NPsand/or ZnO- 
NPs [91], transmission electron microscopy of liver, spleen, kidney, myocar-
dium, brain, thymus and testicle tissues revealed uniform ultrastructural changes, 
the most frequent being vacuolisation of the cytoplasm with concentric mem-
branous inclusions in it, demyelinizations of nervous fibres in the brain and  
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Table 8. Influence of glutamate solution drinking on the cell counts in the bronchoalveo-
lar lavage fluid (BALF) of rats chronically exposed to Fe2O3-NPs in the inhaled air (x ± 
s.e.). 

Exposure 

Number of cells ×106 

NL/АМ 
count ratio Total 

Neutrophil 
leukocytes 

(NL) 

Alveolar  
macrophages 

(АМ) 

Sham (drinking  
water) 

2.16 ± 0.22 0.22 ± 0.05 1.93 ± 0.19 0.12 ± 0.02 

Sham (drinking  
glutamate) 

1.52 ± 0.13* 0.11 ± 0.02 1.40 ± 0.13 0.09 ± 0.05 

Fe2O3-NPs  
(drinking water) 

1.96 ± 0.18 0.43 ± 0.07* 1.51 ± 0.18 0.32 ± 0.07* 

Fe2O3-NPs (drinking 
glutamate) 

1.76 ± 1.53 0.24 ± 0.04+ 1.52 ± 0.09 0.15 ± 0.02+ 

Note: *statistically significant difference from the control group; +from the group inhaling nanoparticles 
without the glutamate drink (p < 0.05 by Student’s t-test). 

 
especially damage to mitochondria with partial or complete loss of cristae 
(Figure 6 and Figure 7).  

Using the percentage of damaged mitochondria as a semi-quantitative meas-
ure of this effect, we introduced the following scale: 0—0%, 1—to 30%, 2—over 
30% to 70%, 3—over 70%. Considering not only the morpho-functional similar-
ity of mitochondria in different cells of a given animal organism but also the re-
peatability of damage to the organelles in all organs and in all groups, it seemed 
admissible to sum up the scores across a given exposure group irrespective of 
organ. In this way, the mitochondrial toxicity of the triple NP combination 
(CuO-NP + PbO-NP + ZnO-NP) was assessed by 14 points, while the same 
combination against background BPC administration gave a minimal total score 
of 6, whereas in the control group it was equal to 2, all the differences being sta-
tistically significant (p < 0.05 by the Friedman rank test and the Kruskal-Wallis 
test).  

One of the most important effects of subchronic exposures to the studied 
Me-NPs on the molecular level was the DNA fragmentation. All the BPCs tested 
by us up till now significantly attenuated this most adverse effect. An example 
pertaining to the experiment with Ag-NP [78] is given by Table 9. 

4. Conclusions 

Highly adverse effects of metallic nanoparticles on all levels from molecular to 
organ-systemic can be markedly attenuated by background administration of or 
premedication by adequately composed combinations of some bioactive agents 
in innocuous doses. We therefore believe that, along with decreasing exposures 
to nanoparticles, enhancing the organism’s resistance to their adverse effects 
with the help of such bio-protectors can be an efficient auxiliary tool of health 
risk management.  
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Figure 6. Concentric membranous formation and cytoplasmic vacuolization (arrow), and marked damage 
to mytochondria (asterisks) in a spleen cell from a rat exposed to ZnO-NPs. TEM, magnification ×13,420. 

 

 
Figure 7. A partially destroyed mitochondrion (marked by asterisk) in a thymus cell of a rat exposed to 
PbO-NPs and ZnO-NPs. TEM, magnification ×34,070. 
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Table 9. Coefficients of the genomic DNA fragmentation in rats exposed to subchronic 
administration of silver nanoparticles with or without BPC based on the results of RAPD 
test (X ± s.e). 

Group of given: 
Tissues 

Liver 
Bone  

marrow 
Spleen Kidney 

Nucleated  
cells of blood 

Water (controls) 0.40 ± 0.001 0.39 ± 0.003 0.38 ± 0.002 0.39 ± 0.003 0.38 ± 0.001 

Nano-particles 0.46 ± 0.002* 0.46 ± 0.032* 0.46 ± 0.001* 0.42 ± 0.008* 0.41 ± 0.012* 

Nanoparticles 
and BPC 

0.41 ± 0.011+ 0.37 ± 0.003*+ 0.42 ± 0.003*+ 0.40 ± 0.006*+ 0.39 ± 0.007 

Note: *statistically significant difference from the control group; +from the group given nanoparticles 
without the BPC (p < 0.05 by Student’s t-test. 

 
Our previous positive experience in organizing first a selective and then a 

large-scale “biological prophylaxis” of adverse health effects of many other tox-
icants makes us expect that it would be no less practicable and effective in the 
field of nanotoxicology as well.  
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