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ABSTRACT 
 
Cognitive radar is a new framework of radar system proposed by Simon Haykin recently. Adaptive wave-
form selection is an important problem of intelligent transmitter in cognitive radar. In this paper, the problem 
of adaptive waveform selection is modeled as stochastic dynamic programming model. Then Q-learning is 
used to solve it. Q-learning can solve the problems that we do not know the explicit knowledge of state- 
transition probabilities. The simulation results demonstrate that this method approaches the optimal wave-
form selection scheme and has lower uncertainty of state estimation compared to fixed waveform. Finally, 
the whole paper is summarized. 
 
Keywords: Waveform Selection; Q-Learning; Space Division; Cognitive Radar 
 
1. Introduction 
 
Radar is the name of an electronic system used for the 
detection and location of objects. Radar development 
was accelerated during World War Ⅱ. Since that time it 
has continued such that present-day systems are very 
sophisticated and advanced. Cognitive radar is an intel-
ligent form of radar system proposed by Simon Haykin 
and it has many advantages [1]. However, cognitive ra-
dar is only an ideal framework of radar system, and there 
are many problems need to be solved.  

Adaptive waveform selection is an important problem 
in cognitive radar, with the aim of selecting the optimal 
waveform and tracking targets with more accuracy ac-
cording to different environment. In [2], it is shown that 
tracking errors are highly dependent on the waveforms 
used and in many situations tracking performance using 
a good heterogeneous waveform is improved by an order 
of magnitude when compared with a scheme using a 
homogeneous pulse with the same energy. In [3], an 
adaptive waveform selective probabilistic data associa-
tion algorithm for tracking a single target in clutter is 
presented. The problem of waveform selection can be 
thought of as a sensor scheduling problem, as each pos-
sible waveform provides a different means of measuring 
the environment, and related works have been examined 
in [4,5]. In [6], radar waveform selection algorithms for 
tracking accelerating targets are considered. In [7], ge-
netic algorithms are used to perform waveform selection 

utilizing the autocorrelation and ambiguity functions in 
the fitness evaluation. In [8], Incremental Pruning me- 
thod is used to solve the problem of adaptive waveform 
selection for target detection. The problem of optimal 
adaptive waveform selection for target tracking is also 
presented in [9]. 

In this paper, the problem of adaptive waveform selec-
tion in cognitive radar is viewed as a problem of stochas-
tic dynamic programming and Q-learning is used to 
solve it. 

 
2. Division in Radar Beam Space 
 
The most important parameters that a radar measures for 
a target are range, Doppler frequency, and two orthogo-
nal space angles. However, in most circumstances, angle 
resolution can be considered independently from range 
and Doppler resolution. We may envision a radar resolu-
tion cell that contains a certain two-dimensional hyper-
volume that defines resolution.  

Figure 1 is abridged general view of range and Dop-
pler. Range resolution, denoted as ΔR, is a radar metric 
that describes its ability to detect targets in close prox-
imity to each other as distinct objects. Radar systems are 
normally designed to operate between a minimum range 
Rmin, and maximum range Rmax. Targets seperated by at 
least ΔR will be completely resolved in range. Radars use 
Doppler frequency to extract target radial velocity (range 
rate), as well as to distinguish moving and stationary 
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Figure 1. A closing target. 

 
targets or objects such as clutter. The Doppler phenome- 
non describes the shift in the center frequency of an in-
cident waveform. 

In general, a waveform can be tailored to achieve ei-
ther good Doppler or good range resolution, but not both 
simultaneously. So we need to consider the problem of 
adaptive waveform scheduling. The basic scheme for 
adaptive waveform scheduling is to define a cost func-
tion that describes the cost of observing a target in a par-
ticular location for each individual pulse and select the 
waveform that optimizes this function on a pulse by 
pulse basis.  

We make no assumptions about the number of targets 
that may be present. We divide the area covered by a 
particular radar beam into a grid in range-Doppler space, 
with the cells in range indexed by t=1,…,N and those in 
Doppler indexed by v=1,…,M. There may be 0 target, 1 
target or NM targets. So 

0 1 2 1... 2NM NM NM
NM NM NM NM NMC C C C C         (1) 

The number of possible scenes or hypotheses about 
the radar scene is 2NM. Let the space of hypotheses be 
denoted by X. The state of our model is Xt=x where x∈X. 
Let Yt be the measurement variable. Let ut be the control 
variable that indicates which waveform is chosen at time 
t to generate measurement Yt+1, where ut∈U. The prob-
ability of receiving a particular measurement Xt=x will 
depend on both the true, underlying scene and on the 
choice of waveform used to generate the measurement.  

We define x xa   is state transition probability where 

1( |x x t ta P x x x x  )              (2) 

We define x xb   is the measurement probability where  

1( ) ( | , )x x t t t tb u P Y x X x u             (3) 

Assume the transmitted baseband signal is s(t), and the 
received baseband signal is r(t). The matched filter is the 
one with an impulse response h(t)=s*(–t), so an output 
process of our matched filter is 

( ) ( ) ( )x t s t r d                (4) 

In the radar case, the return signal is expected to be Dop-
pler shifted, then the matched filter to a return signal 

with an expected frequency shift v0 has an impulse re-
sponse 

02*( ) ( ) j th t s t e                 (5) 

The output is given by 

02 ( )( ) ( ) ( )j tx t s t e r d             (6) 

where v0 is an expected frequency shift.  
The baseband received signal will be modeled as a re-

turn from a Swerling target: 
2( ) ( ) ( )dj tr t As t e I n t            (7) 

where 2( , , ) ( ) dj t
ds t s t e    

22 A

 is a delayed t and Dop-

pler-shifted vd replica of the emitted baseband complex 
envelope signal s(t); I is a target indicator. A approaches 
a complex Gassian random variable with zero mean and 
variance  . We assume n(t) is complex white Gaus-

sian noise independent of A, with zero mean and vari-
ance 2N0. 

At time t the magnitude square of the output of a filter 
matched to a zero delay and a zero Doppler shift is  

2
2

0
( ) ( ) ( )

t
x t r s t d               (8) 

When there is no target 

( ) ( )r t v t                  (9) 

So 
0

0 0
( ) ( ) ( )0x n s d


               (10) 

The random variable 0( ).x   is complex Gaussian, 

with zero mean and variance given by 

 2
0 0 0( ) ( ) 2E x x N0             (11) 

ξ is the energy of the transmitted pulse. 
When target is present 

2( ) ( ) ( )dj tr t As t e I n t            (12) 

0 2
0 00

( ) ( ) ( ) ( )djx As e n s d
               (13) 

This random variable is still zero mean, with variance 
given by 

 2
1 0 0

2 2
2 A
0 02

0

( ) ( )

2
(1 ( , ))

E x x

A

  

 
0    





   
     (14) 

A(t,v)is ambiguity function, given by 

 
2

2
22

1
( , ) ( ) ( )

( )

jA s s e d
s d

    
 

 


  (15) 

Recall that the magnitude square of a complex Gaus-
sian random variable 2~ (0, )ix N   is exponentially 
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distributed, with density given by  

222
2

1
~

2
i

y

i

y x e 





              (16) 

We consequently have that the probability of false 
alarm Pf is given by 

2
02

2
0

1

2

2
02

x D

f D
P e dx e 



 
            (17) 

And the probability of detection Pd by 

2 2
2
0 022

01

2
2 (1 ( , ))

2
2
1

1

2

A

D

x
A

d D
P e dx e

 
0    







 
 



  (18) 

In the case when a target is present in cell ( , )  , as-

suming its actual location in the cell has a uniform dis-
tribution 

2 2
2
0 0 02

0

2
2 (1 ( , ))

( , )

1
A

a a

D

A

d A
P e d

A

 
    



  a ad 



  


   (19) 

where A is the resolution cell centred on (t,v) with vol-
ume |A|. 
 
3. Q-Learning-Based Stochastic Dynamic 

Programming  
 
A target for which measurements are to be made will fall 
in a resolution cell. Another target, conceptually, does 
not interfere with measurements on the first if it occupies 
another resolution cell different from the first. Thus, 
conceptually, as long as each target occupies a resolution 
cell and the cells are all disjoint, the radar can make 
measurements on each target free of interference from 
others. 

Define 0 1{ , ,..., }Tu u u   where T=1 is the maximum 

number of dwells that can be used to detect and confirm 
targets for a given beam. Then   is a sequence of 
waveforms that could be used for that decision process.  

We can obtain different   according to different en-
vironment in cognitive radar. Let 

0

( ) [ ( , )]
T

t
t t t t

t

V X E R X u


            (20) 

where R（Xt,ut） is the reward earned when the scene Xt 
is observed using waveform ut and γ is discount factor. 
Then the aim of our problem is to find the sequence    
that satisfies 

0

( ) max [ ( , )]
T

t
t t

t

V X E R X u






  t        (21) 

However, knowledge of the actual state is not avail-
able. Using the method of [10], we can obtain that the 
optimal control policy    that is the solution of (21) is 

also the solution of  

0

( (0)) max [ ( , )]
T

t
t t

t

V E R






 p p u        (22) 

where Pt is the conditional density of the state given the 
measurements and the controls and P0 is the a priori 
probability density of the scene. P is a sufficient statistic 
for the true state Xt. So we need to solve the following 
problem 

0

max [ ( , )]
T

t
t t

t

E R u




 p             (23) 

The refreshment formula of Pt is given by 

1 '
t

t
t

 
BAp

p
1 LAp

               (24) 

where B is the diagonal matrix with the vector  
the non-zero elements and 1 is a column vector of ones. 
A is state transition matrix. 

( ( ))x x tb u

If we wanted to solve this problem using classical dy-
namic programming, we could have to find the value 
function  using ( )t tV p

1 1( ) max( ( , ) { ( ) | })
t

t t t t t t t t
u

V R u E V   p p p p  (25) 

It can also be written in probability form 

1( ) max( ( , ) ( , ) ( ))
t

t t t t t t t t
u

V R u P u V 


   
p P

p p p p p (26) 

However, in radar scene, explicit knowledge of target 
state-transition probabilities are unknown. So directly 
using Bellman’s dynamic programming is very hard. The 
Q-leaning algorithm is a direct approximation of Bell-
man’s dynamic programming, and it can solve the prob-
lem that we do not know explicit knowledge of 
state-transition probabilities. For this reason, Q-learning 
is very suitable to be used in the problem of adaptive 
waveform selection in cognitive radar. 

We define a Q-factor in our problem. For a state-ac-
tion pair , ( , )t tup

1( , ) ( , )[ ( , ) ]t t t t t t t tQ u P u R u V 


  
p P

p p p p p   (27) 

According to (26), (27) we can derive  
* max ( , )

t
t

u
V Q pt tu               (28) 

The above establishes the relationship between the 
value function of a state and the Q-factors associated 
with a state. Then it should be clear that, if the Q-factors 
are known, one can obtain the value function of a given 
state from above fomula. 

So Q form of Bellman equation is  

1
1 1

( , )

( , )[ ( , ) max ( , )]
t

t t

t t t t t t t
u

Q u

P u R u Q u


 


  
p P

p

p p p p p
(29) 
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Let us denote the ith independent sample of a random 
variable X by Si and the expected value by E(X). Xn is the 
estimate of X in the n th iteration. So 

1( ) lim

n
i

i

n

s
E X

n






             (30) 

1

n
i

n i

s
X

n



                (31) 

We can derive  
1 1 1(1 )n n n n 1nX X s              (32) 

where 

1 1

1
n

n
  


               (33) 

So  

1
1 1( , ) [ ( , ) max ( , )]

t
t t t t t t t

u
Q u E R u Q u


  p p p p  (34) 

where E is the expectation operator. We could use this 
scheme in a simulator to estimate the same Q-factor. 
Using this algorithm, Equation (29) becomes: 

1

1 1

1
1 1

( , ) (1 ) ( , )

[ ( , ) max ( , )]
t

n n n
t t t t

n n
t t t t t

u

Q u Q u

R u Q u



 


 


 

 

 

p p

p p p
 (35) 

Obviously, we do not have the transition probabilities 
in it. 

Our Q-learning algorithm is as follows: 
Step 1. Initialize the Q-factors to 0. Set n=1. 
Step 2. For t=0,1,…T,do step 3-step 6. 
Step 3. Simulation action ut. Let the curren state be Pt, 

and the next state be Pt+1. 
Step 4. Find the decision using the current Q-factors: 

1arg max ( , )
t

n n
t t

u
u Q  pt tu          (36) 

Step 5. Update Q(Pt,ut) using the following equation: 

1

1 1

1
1 1

( , ) (1 ) ( , )

[ ( , ) max ( , )]
t

n n n
t t t t

n n
t t t t t

u

Q u Q u

R u Q u



 


 


 

 

 

p p

p p p
(37) 

Step 6. Find the next state: 

1 '
t

t
t

 
BAp

p
1 BAp

            (38) 

Step 6. Increment n. If n<N, go to step 2. 
Step 7. For each Pt∈P, select  

1 1( ) arg max ( , )
t

t t
u

d Q  p p tu       (39) 

The policy generated by the algorithn is . Stop. d̂

4. Simulation 
 
In this section, we make three experiments. In order to 
explain the necessity of waveform selection, we make 
the curve of measurement probability versus SNR of 
three waveforms. Curve of uncertainty of state estima-
tion demonstrates validity of our proposed algorithm. We 
also plot the figure of Q value space versus state and 
waveform. 

We consider a simple situation. The state space is 4×
4. We consider 5 different waveforms where for each 
waveform u, and each hypotheses for the target x , the 

distribution of x is given in Table 1. The discount fac-
tor γ=0.9. State transition matrix A is given by 

0.96 0.02 0.01 0.04

0.01 0.93 0.03 0.04

0.02 0.03 0.95 0.02

0.01 0.02 0.01 0.9

 
 
 
 
 
 

A        (40) 

Following the approach described in [11,12], linear 
form of reward function will be adopted:  

( , ) ' 1R u  p p p             (41) 

The formula E(–R) can be considered as the uncer-
tainty in the state estimation. In other words, it can be 
considered as the tracking errors. 

Figure 2 is curve of measurement probability versus 
SNR of three waveforms. From this curve we can see 
that with the same SNR, different waveforms correspond 
to different measurement probability. Generally speaking, 
the waveform with wide pulse duration corresponds to 
high measurement probability. From this point of view, 
the waveform with wide pulse duration is better. How-
ever, wide pulse duration means large energy of the 
transmitted pulse. So we should improve measurement  
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Figure 2. Curve of measurement probability versus SNR of 
three waveforms. 
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Table 1. Measurement probabilities for the example scenario. 

 
x=1 

x’=1,2,3,4 
x=2 

x’=1,2,3,4 
x=3 

x’=1,2,3,4 
x=4 

x’=1,2,3,4 

u=1
0.97,0.01 
0.01,0.01 

0.01,0.01 
0.96,0.02 

0.01,0.02, 
0.01,0.96 

0.96,0.01, 
0.01,0.02 

u=2
0.96,0.01 
0.02,0.01 

0.02,0.95 
0.01,0.02 

0.01,0.01, 
0.01,0.97 

0.02,0.96, 
0.01,0.01 

u=3
0.94,0.02 
0.03,0.01 

0.02,0.02 
0.01,0.95 

0.02,0.96, 
0.01,0.97 

0.01,0.02, 
0.95,0.02 

u=4
0.96,0.01 
0.01,0.02 

0.01,0.02 
0.96,0.01 

0.97,0.01, 
0.01,0.01 

0.03,0.95, 
0.01,0.01 

u=5
0.95,0.02 
0.01,0.02 

0.01,0.97 
0.01,0.01 

0.02,0.01 
0.96,0.01 

0.04,0.94 
0.01,0.01 

 
probability through changing waveforms according to 
different environment and make a balance between the 
width of pulse duration and the energy of the transmitted 
pulse. We can also derive measurement probabilities for 
the example scenario from this curve, as is shown in Ta-
ble 1. 

Figure 3 is curve of uncertainty of state estimation. 
From this curve we can see that for all the cases, the un-
certainty of state estimation is decreasing with time, no 
matter how the state is changing with time. Compared to 
a fixed waveform, Q-learning algorithm we proposed has 
lower uncertainty of state estimation. That means our 
algorithm will reduce uncertainty in locating targets. 
Meanwhile our algorithm approaches the optimal wave-
form selection scheme even though explicit knowledge 
of state-transition probabilities is unknown. 

Figure 4 is the figure of Q value space versus state and 
waveform. Q value of different state-waveform pair can 
be obtained in this figure. We can see that the proposed 
algorithm has lower computational cost. 
 
5. Conclusions 
 
Adaptive waveform selection is an important problem in 
cognitive radar and the problem of adaptive waveform  
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Figure 3. Curve of uncertainty of state estimation. 
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Figure 4. Q value space versus state and waveform. 

 
scheduling can be viewed as a stochastic dynamic pro-
gramming problem. In this paper, Q-learning-based 
waveform selecting algorithm is proposed. The advan-
tages of Q-learning over fixed waveform have been 
shown with simulations. The Q-learning algorithm can 
minimize the uncertainty of state estimation compared to 
fixed waveform and approaches the optimal waveform 
selection scheme. Meanwhile, Q-learning can solve the 
problems in which explicit knowledge of state-transition 
probabilities are unknown. Reasearch on alogorithms 
which approach the optimal waveform selection scheme 
and has lower computational cost is an important problem. 
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