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Abstract 
A mathematical modelling of diagnostic biosensors system at three basic types 
of enzyme kinetics is discussed in the presence of diffusion. Enzyme kinetics is 
adopted to be first order, Michaelis-Menten and ping-pong mechanism. In 
this paper, approximate analytical solutions are obtained for the non-linear 
equations under steady-state conditions by using the new Homotopy pertur-
bation method. Simple and closed forms of analytical expressions for concen-
trations of substrate, product and co-substrate and corresponding current re-
sponse have been derived for all possible values of parameters. Furthermore, 
the numerical simulation of the problem is also reported here by using Matlab 
program. Good agreement between analytical and numerical results is noted. 
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1. Introduction 

A biosensor is an analytical device used for the detection of an analyte that com-
bines a biological component with a physicochemical detector [1] [2]. The earli-
er biosensors were catalytic systems that integrated especially enzymes with 
transducers that converted the biological response into an electronic signal. The 
next generation of biosensors, took advantage of different biological elements, 
such as antibodies, receptors (natural or synthetic), or nucleic acids [3] [4]. 

Biosensors for environmental application include the detection of harmful 
bacteria or pesticides in air, water, or food. New technologies are likely to en-
compass all-printed systems capitalising on the printed electronics revolution 
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and systems with high compatibility with future mobile technology such as tab-
lets and 4G phones [5]. 

Rangelova et al. [6] [7] [8] described the models in biosensors and investi-
gated the influence of the diffusion and kinetic parameters on the response of 
the biosensor. Tothil et al., [9] deals with the recent developments in biosensors 
and their potential use in the agricultural diagnostic market. Mishra et al. [10] 
reviewed various cancer biomarkers in saliva and compared the biomarkers effi-
cacy with traditional diagnostics and state-of-the-art bioelectronics. Cortina et al. 
[11] presented the development and validation of a portable, robust and inex-
pensive electrochemical magnetic biosensor. 

Lawal et al. [12] summarized the fabrication of carbon nanotubes-based elec-
trochemical biosensors. They also discussed the synthesis, along with the appli-
cation of carbon nanotubes to the assembly of carbon nanotube-based electro-
chemical sensors, its analytical performance and future expectations. Recently 
Gruhl et al. [13] described the latest applications of biosensors in diagnostic ap-
plications. In this paper the current state and future trends of biosensors are 
presented. Also Mascini et al. [3] reviewed the application of biosensor sin med-
ical diagnostics, taking into account several crucial features. 

The numerical method of solving the system of partial differential equations is 
to make calculation at all intervals of substrates concentration and at different 
diffusion and enzymatic reaction rates. The diffusion equations [14], containing 
a nonlinear term related to the enzymatic reaction, are carried out using the im-
plicit difference scheme [15]. In recent years, analytical solutions are reported 
for various types of biosensors [16] [17] [18] [19]. The analytical results of diag-
nostic biosensor are relevant because their solutions describe important applica-
tions such as bioreactors and biofuel cells, among others [20] [21]. 

To the researcher’s knowledge no rigorous analytical solution of substrate 
concentration product with concentration profiles co-substrate concentration 
and corresponding current response has been derived for all possible values of 
parameters under steady-state conditions [22]. The purpose of this communica-
tion is to derive approximate analytical expressions for the steady-state concen-
trations and current over the diagnostic of biosensor transducers for first order, 
Michaelis-Menten and ping-pong kinetics using Homotopy perturbation me-
thod.  

2. Mathematical Description of the Boundary Value Problem 

Only biosensors systems will be investigated in the active membrane, because it 
is known that the concentrations of substrate ( )S x , Product ( )P x  and 
co-substrate ( )C x  in other two membranes are changed linearly. Biosensors 
are function under diffusion control. It is assumed that the electrode has sym-
metrical geometry and the enzyme is homogeneously distributed in the active 
membrane. The diffusion is one dimensional in space and is described with the 
second Fick’s law. The two parameters diagnostic biosensor transducers are 
based on oxygen electrode. The steady-state reaction-diffusion equation for bio-

http://www.tandfonline.com/author/Mascini%2C+M


K. P. T. Preethi et al. 
 

495 

sensor systems in the dynamic mode has the following form [22]: 

( ) ( ) ( )
2 2 2

2 2 2

d 1 d 1 d, 0, , 0, , 0
d d d

S P CS C S C S C
x x x

ϑ ϑ ϑ
λ µρ

− = − = − =     (1) 

The non-dimensional coordinates, variables and parameters are as follows: 

[ ] [ ] [ ] [ ]

( )
( )2

, , , , ,

, , and

o
S C P S

m SS S S

P C C S

S C P S
x S C P S

l K K K K
V KD D K

D D K I D

δ

λ µ ρ φ

= = = = =

= = = =
           (1a) 

where , &S C PD D D  are diffusion coefficients for substrate, co-substrate and 
product. iK  denotes the reaction constant for concentration profiles ( , ,i S P C= ), 
respectively. mV  is the enzyme rate and δ  represents the coordinate distance. 
The diagnosis of the biosensor system depends on the enzyme kinetics and the 
enzyme reaction as well as on the basic transducer. The kinetics is distinguished 
in to three kinds: 

First order kinetic:  

( ) 2,S C Sϑ φ=                           (2) 

Michaelis-Menten kinetic:  

( )
2

,
1

SS C
S

φ
ϑ =

+
                         (3) 

Two substrateping-pong kinetic: 

( )
2

, 1 11

SS C

S C

φ
ϑ =

+ +
                       (4) 

The three types of biosensors can be described with the following system of 
differential equations: 
 

Inhibitor First-order kinetic Michaelis-Menten kinetic Ping-pong kinetic 

Substrate 
2

2
2

d 0
d
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φ− =  (5) 
2 2

2
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+
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2 2
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2 2
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C S
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C S
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Equations (5)-(13) are subjected to the following boundary conditions: 

( ) ( ) ( )0 00, , 0,x S x s P x C x c= = = =  

( ) ( )d1, 0, 0, 0
d
Sx P x C x
x

= = = =                 (14) 

where l  represents the thickness of active membrane, 2φ  is the Thiele Mod-
ule, λ  is diffusion coefficient of product, µ  is the diffusion coefficient of 
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co-substrate and ρ  is reaction rate constant for co-substrate. The initial cur-
rent of the biosensor system is recorded normally in substrate, product and 
co-substrate concentrations at the electrode and are as follows: 

0

d
dS S

SI nFAD
δδ =

 =  
 

                    (15) 

0

d
dP P

PI nFAD
δδ =

 =  
 

                    (16) 

0

d
dC C
CI nFAD

δδ =

 =  
 

                    (17) 

where n  is the number of electrons taking part in electrochemical reaction, F  
is the Faraday’s number, and A  is the area of the electrode surface [m2]. 

Analytical Solutions of Concentrations of Substrate, Product  
and Co-Substrate under Steady-State Condition Using the New  
Homotopy Perturbation Method 

Recently, many authors have applied the HPM to solve the various non-linear 
problem in engineering sciences [23]-[28]. This method is a combination of 
Homotopy in topology and classic perturbation techniques. The HPM has uni-
queness in its applicability, accuracy, and efficiency. Recently, a new approach of 
HPM with zeroth iteration has been applied to solve the nonlinear problem. In 
this work, a new approach to Homotopy perturbation method is used (Appen- 
dix A and Appendix B) to solve the nonlinear differential Equations (5)-(13). 
Using this method, the analytical expression of the concentration of substrate 
( )S x , Product ( )P x  and co-substrate ( )C x  can be obtained as follows: 
The first order kinetic Equations (18)-(20) represent the simple and closed 

form of analytical expressions of concentrations of substrate, product and co- 
substrate for all possible values of the parameters. By using Equations (5)-(7) 
with boundary conditions (14), the following relation is also obtained: 

First order kinetic 
 

Inhibitors Analytical solutions Figures Current Solutions Figures 

Substrate ( )
2

0 1 2
xS x s A x 

= + − 
 
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1 1
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S
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Product ( ) ( )21

2
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1(c) 

1 1 2
P

P
P
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Co  
substrate 

( ) ( ) ( )21
0 1

2
AC x x x c xµρ

= − + −

(20) 

1(d)  
and  
1(f) 

1 1 02
C

C
C

I l A c
nFAD

µρψ  = = − + 
 

 

(23) 

7(a)  
and 
7(b) 

 
The Michaelis–Menten kinetic Equations (24)-(26) represent the simple and 

closed form of analytical expressions of concentrations of substrate, product and 
co-substrate for all possible values of the parameters. By using Equations (8)-(10) 
with boundary conditions (14), the following relation is also obtained: 
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Michaelis-Menten kinetic: 
 

Inhibitors Analytical solutions Figures Current solutions Figures 
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(29) 

7(c)  
and  
7(d) 

 
The Ping pong kinetic: Equations (30)-(32) represent the simple and closed 

forms of analytical expressions of concentrations of substrate, product and co- 
substrate for all possible values of the parameters. By using Equations (11)-(13) 
with boundary conditions (14), the following relation is also obtained: 

Ping pong kinetic: 
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3. Numerical Simulation 

The system of non-linear differential Equations (5)-(13) with boundary conditions 
(14) have been solved numerically using MATLAB software. A MATLAB script 
pdex4 is provided in Appendix C. In Figure 4, Tables 1-3 the numerical solu-
tions are compared with the analytical results. The maximum average relative 
error between our analytical and numerical result is 0.94% for first order kinetic, 
0.91% for Michaelis–Menten kinetic and 1.54% for Ping pong kinetic. 

4. Results and Discussion 

The dinensonless non-linear differential equations are solved using a new Ho-
motopy perturbation method. Equations (18)-(20), (24)-(26) and (30)-(32) re- 
present the analytical expression of the concentrations of substrate, product and 
co-substrate for various values of Thiele modulus 2φ  and the dimensionless 
parameters for first order, Michalies-Menten and Ping-Pong kinetics respective-
ly. The analytical results are compared with the numerical results.  
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Table 1. Comparison of dimensionless concentrations ( ) ( ) ( ), andS x P x C x  (Equa-

tions (18)-(20)) and numerical simulation for first order kinetics when fixed value of  
2 0.3, 10, 1 and 1φ λ µ ρ= = = = . 

Substrate Product Co-substrate 

x  

This  
Work 

Equation 
(18) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation 
(19) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation 
(20) 

Numerical 
soln 

% of 
Error 

0.0 1.0000 1.0000 0.00 0.0000 0.0000 0.00 1.0000 1.0000 0.00 

0.2 0.9512 0.9530 0.18 0.2400 0.2383 0.17 0.7760 0.7748 0.15 

0.4 0.9139 0.9133 0.06 0.3600 0.3685 0.23 0.5640 0.5631 0.15 

0.6 0.8875 0.8859 0.19 0.3600 0.3565 0.98 0.3640 0.3617 0.63 

0.8 0.8719 0.8715 0.04 0.2400 0.2419 0.78 0.1760 0.1751 0.51 

1.0 0.8667 0.8667 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

Average % error 0.94 Average % error 0.43 Average % error 0.29 

 
Table 2. Comparison of dimensionless concentrations ( ) ( ) ( ), andS x P x C x  (Equation 

(24)-(26)) and numerical simulation for Michaelis-Menten kinetics when fixed value of 
2 0.3, 50, 1 and 1φ λ µ ρ= = = = . 

Substrate Product Co-substrate 

x  

This  
Work 

Equation 
(24) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation 
(25) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation  
(26) 

Numerical 
soln 

% of 
Error 

0.0 0.0000 0.0000 0.00 0.0000 0.0000 0.00 1.0000 1.0000 0.00 

0.2 0.9730 0.9700 0.30 0.600 0.5911 1.50 0.7880 0.7967 1.09 

0.4 0.9520 0.9513 0.07 0.900 0.8999 0.01 0.5820 0.5886 1.12 

0.6 0.9370 0.9380 0.10 0.900 0.8997 0.03 0.3820 0.3865 1.16 

0.8 0.9280 0.9300 0.21 0.600 0.6081 1.33 0.1880 0.1903 1.20 

1.0 0.9250 0.9273 0.24 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

Average % error 0.18 Average % error 0.58 Average % error 0.91 

 
Table 3. Comparison of dimensionless concentrations ( ) ( ) ( ), andS x P x C x  (Equa-

tions (30)-(32)) and numerical simulation for ping pong kinetics when fixed value of  
2 0.1, 10, 10 and 1φ λ µ ρ= = = = . 

Substrate Product Co-substrate 

x  

This  
Work 

Equation 
(30) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation 
(31) 

Numerical 
soln 

% of 
Error 

This  
Work 

Equation  
(32) 

Numerical 
soln 

% of 
Error 

0.0 1.0000 1.0000 0.00 0.0000 0.0000 0.00 1.0000 1.0000 0.00 
0.2 0.9940 0.9965 0.25 0.0266 0.0213 0.66 0.7733 0.7799 0.84 

0.4 0.9893 0.9937 0.44 0.0400 0.0389 2.82 0.5600 0.5676 1.33 

0.6 0.9860 0.9922 0.62 0.0399 0.0393 1.52 0.3600 0.3673 1.98 

0.8 0.9840 0.9916 0.76 0.0266 0.0259 2.70 0.1733 0.1760 1.53 

1.0 0.9833 0.9899 0.12 0.0000 0.0000 0.00 0.0000 0.0000 0.00 

Average % error 0.44 Average % error 1.54 Average % error 1.14 
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Figures 1-3 show the plots of all the concentrations versus dimensionless dis-
tance x  for various values of parameters. For 2 1φ > , biosensors act in diffu-
sion regime, and for 2 1φ < , the biosensors act in rule of limiting kinetic. Reac-
tion rate constant for substrate SK  is dependable from enzyme concentration 
and characterized enzyme. There are different enzymes for various tissues, 
where as reaction rate constant is permanent for the given tissue. The strong af-
finity between enzyme and substrate shows low value of kinetics and poor affin-
ity shows high value. 

The substrate concentration ( )S x  approaches unity at 0x = . The substrate 
concentration increases with decreasing Thiele module. When the ratio of diffu-
sion coefficient λ  increases, the Thiele module increases the product. The con-
centration of co-substrate increases, when Thiele module decreases. If the ratio 
of diffusion coefficient µ  and ratio of reaction rate constant ρ  increases, the 
concentration of co-substrate decreases.  

Figure 4 focuses the concentration on the first-order kinetics, Michaelis- 
Menten kinetics, and ping-pong kinetic mechanism of the substrate ( )S x , 
product ( )P x  and co-substrate ( )C x  for particular values of parameters. 
The analytical results are compared with the numerical results as given in Tables 
1-3 for fixed values of parameters and satisfactory agreement is noted. In all the 
cases, the average relative error is less than 1.54%.  

Figure 5 represents the concentration of the substrate, product and co-sub- 
strate vursus distance for the first-order kinetics, Michaelis–Menten kinetics, 
and ping-pong kinetic mechanism for particular values of parameters. From this 
figure, it is inferred that the concentration of the ping-pong kinetics largely cor-
responds to the other two mechanisms. But for the co substrate, the concentra-
tion does not show much difference. From these Figure, it is concluded that the 
dimensionless concentration of substrate and co-substrateis greater for the 
Ping-Pong than the first order and M-M kinetics. 

Figure 6 and Figure 7 represent the dimensionless current profiles of product 
and co-substrate for various values of dimensionless parameters. The current 
depends on the product and co-substrate gradient at the electrode surface. SD  
has no influenced over biosensor response, but CD  and PD  has been increas-
ing the value of the diffusion constant CD  and PD  leads to small values of 
response time. 

4. Conclusion 

In this work, a mathematical model that describes the steady-state response of a 
two parameters diagnostic of biosensor is discussed. Anew Homotopy perturba-
tion method is employed to solve the system of steady-state non-linear differen-
tial equations for three types of kinetics. Analytical expressions corresponding to 
substrate, product and co-substrate concentrations are derived as the function of 
dimensionless parameters. For all different concentrations, the analytical results 
match well with the simulated results. The analytical results provided in this 
work are useful to understand the behaviour of the system. The extension  
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(a)                                                            (b) 

  
(c)                                                            (d) 

  
(e)                                                            (f) 

Figure 1. (a)-(f) Plot of dimensionless concentrations of the substrate ( )S x , product ( )P x  and co-substrate ( )C x  versus 

dimensionless distance x of the first-order kinetics are calculated using Equations (18), (19) and (20), respectively for different 
values of the Thiele modulus 2φ , Diffusion coefficient of λ , Reaction rate constant for co-substrate µ , and Diffusion coeffi-
cient of co-substrate ρ . 
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(a)                                                            (b) 

  
(c)                                                            (d) 

  
(e)                                                            (f) 

Figure 2. Plot of dimensionless concentrations of the substrate ( )S x , product ( )P x  and co-substrate ( )C x  versus dimen-

sionless distance x of the Michalies menten kinetics are calculated using Equations (24), (25) and (26), respectively for different 
values of the Thiele modulus 2φ , Diffusion coefficient of λ , Reaction rate constant for co-substrate µ , and Diffusion coeffi-
cient of co-substrate ρ . 
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(a)                                                            (b) 

  
(c)                                                            (d) 

  
(e)                                                            (f) 

Figure 3. (a)-(f) Plot of dimensionless concentrations of the substrate ( )S x , product ( )P x  and co-substrate ( )C x  versus 

dimensionless distance x of the Michalies menten kinetics are calculated using Equations (30), (31) and (32),respectively for dif-
ferent values of the Thiele modulus 2φ , Diffusion coefficient of λ , Reaction rate constant for co-substrate µ , and Diffusion 
coefficient of co-substrate ρ . 
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(a) 

 
(b) 

 
(c) 

Figure 4. Concentration of substrate ( )S x , Product ( )P x  and co-substrate ( )C x  

versus dimensionless distance x of first order, Michalies-Menten and ping-pong kineti-
care represented using Equations (18)-(20) for substrate and Equations (24)-(26) for 
product and Equations (30)-(32) for co-substrate, respectively for some fixed values of 
parameters. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Concentration of substrate ( )S x , Product ( )P x  and co-substrate ( )C x  

versus dimensionless distance x of first order, Michalies-Menten and ping-pong kinetic 
are represented using Equations (18), (24) and (30) for substrate and Equations (19), (25) 
and (31) for product and Equations (20), (26) and (32) for co-substrate, respectively for 
some fixed values of parameters. 
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(a) 

 
(b) 

 
(c) 

Figure 6. Generalised graph of the dimensionless current for product 
iPψ  versus Thiele 

module 2φ  of first order, Michalies-Menten and ping-pong kineticare represented using 
Equations (22), (28) and (34), respectively for some fixed values of parameters. 
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Figure 7. Generalised graph of the dimensionless current for co-substrate product 

iCψ  versus Thiele module 2φ  of first order, 

Michalies-Menten and ping-pong kineticare represented using Equations (23), (29) and (34), respectively for some fixed values of 
parameters. 
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of the procedure to other systems nonlinear equation in various type of biosen-
sor seems to be possible. 
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Appendix A 

Approximate analytical solutions for Equations (8)-(10) (Michaelis-Men- 
ten kinetic) using HPM: 

In order to solve Equation (8-10) by means of the new HPM, first the Zeroth 
order deformation equation is constructed.  
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Substituting (A4) in Equation (A1) and equating the like powers of p, we get  
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Substituting (A4) in Equation (A2) and equating the like powers of p, we get  
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Substituting (A4) in Equation (A3) and equating the like powers of p, we get 
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The boundary conditions in Equation (14) becomes 
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Now by applying the boundary conditions (A11) in (A5), (A7) and (A9), we 
get 

( )0 0S x s=                        (A13) 

( )0 0P x =                         (A14) 

( ) ( )0 0 1C x c x= −                     (A15) 

Substituting the values of 0 0,S P  and 0C  in Equation (A6), (A8) and (A10), 
and respectively by solving the equations using the boundary conditions (A12), 
the following results are obtained: 
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Adding Equations (A13) and (A16), we get Equation (24) in the text. Similarly, 
Equation (25) and Equation (26) are got in the text. 

Appendix B 

Approximate analytical solutions for Equations (11-13) (ping-pong ki-
netic) using HPM: 

In order to solve Equations (11-13) by means of the new HPM, first the Ze-
roth order deformation equation is constructed. 
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The approximate solutions of Equations (B1), (B2) and (B3) are as follows  
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Substituting (B4) in Equations (B1) and equating the like powers of p, we get 
2

0 0
2

d
: 0

d
Sp
x

=                        (B5) 

2 2
1 1

2
0 0

d:
1 1 1d

Sp
s cx
φ

=
+ +

                  (B6) 



K. P. T. Preethi et al. 
 

511 

Substituting (B4) in Equation (B2) and equating the like powers of p, we get  
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The boundary conditions in Equation (14) becomes 
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Now by applying the boundary conditions (B11) in (B5), (B7) and (B9), we 
get 
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( ) ( )0 0 1C x c x= −                     (B15) 

Substituting the values of 0 0,S P  and 0C  in Equation (B6), (B8) and (B10), 
and solving the equations using the boundary conditions (B12), the following 
results are obtained: 
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Adding Equations (B13) and (B16), we get Equation (30) in the text. Similarly, 
Equation (31) and Equation (32) are got in the text.  

Appendix C 

Scilab/Matlab program for the numerical solution of the system of non- 
linear Equations (5-13). 
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function pdex4 
m = 0; 
x = linspace(0,1); 
t=linspace(0,100000); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
u3 = sol(:,:,3); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%------------------------------------------------------------------ 
figure 
plot(x,u2(end,:)) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(x,2)') 
% -------------------------------------------------------------- 
figure 
plot(x,u3(end,:)) 
title('u3(x,t)') 
xlabel('Distance x') 
ylabel('u3(x,2)') 
 %-------------------------------------------------------------- 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1; 1];  
f = [1; 1; 1] .* DuDx;  
l=0.1;mu=0.5;q=1;p=5; 
F=-q^2*u(1); 
F1=l*q^2*u(1); 
F2=-mu*p*q^2*u(1); 
s=[F; F1; F2]; 
% -------------------------------------------------------------- 
function u0 = pdex4ic(x);  
u0 = [1; 1; 1];  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)  
pl = [ul(1)-1;ul(2)-0;ul(3)-1]; 
ql = [0; 0; 0]; 
pr = [0; ur(2)-0;ur(3)-0]; 
qr = [1;0; 0]; 
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Nomenclature 

Symbol 

1 2 3, ,A A A  Dimensionless parameters 
[ ]S  Concentration of substrate (mmol) 
[ ]P  Concentration of substrate (mmol) 

][C  Concentration of substrate (mmol) 
S  Dimensionless concentration of substrate (mmol) 
P  Dimensionless concentration of product (mmol) 
C  Dimensionless concentration of co-substrate (mmol) 

0s  Initial concentration of substrate (mmol) 

0p  Initial concentration of product (mmol) 

0c  Initial concentration of co-substrate (mmol) 

iK  Reaction rate constant (mmol) 

iD  Diffusion coefficient (m2/s)  

mV  Enzymatic rate (mmol/s) 

iI  Output current 
n  Number of electrons 
F  Faraday’s number (C/mol) 
A  Area of the electrode surface (m2) 
l  Dimensionless distance 
Greek symbols 
λ  Diffusion coefficient of substrate and product (Dimensionless) 
µ  Diffusion coefficient of substrate and co-substrate (Dimensionless) 
ρ  Reaction rate constant for substrate and co-substrate (Dimensionless) 

2φ  Thiele Module (Dimensionless) 
δ  dimension distance (m) 

iψ  Current (Dimensionless) 
Subscripts , ,i S P C=  
S  Substrate 
P  Product 
C  Co-Substrate 
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