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Abstract

In this article, we report the derivation of high accuracy finite difference method based on arithmetic average

1
discretization for the solution of u”=F(x,u,u’)+ J' K(x,s)ds, 0 <x <1, 0<s<1 subject to natural boundary
0

conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the
integro-differential equation with singular coefficients. We need not require any special discretization to ob-
tain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion
convection equation is briefly discussed. The presented variable mesh strategy is applicable when the inter-
nal grid points of the solution space are both even and odd in number as compared to the method discussed
by authors in their previous work in which the internal grid points are strictly odd in number. The advantage
of using this new variable mesh strategy is highlighted computationally.

Keywords: Variable Mesh, Arithmetic Average Discretization, Non-Linear Integro-Differential Equation,
Diffusion Equation, Simpson’s ng Rule, Singular Coefficients, Burgers’ Equation, Maximum

Absolute Errors

1. Introduction and
F(xu,u’)+1(x)=G(x,u,u’)
We consider the non-linear differential equation with a

source function in integral form: Then we may re-write (1) as

u"=G(xu,u’),0<x<1 3)

1
u"=F(xu.u )+.([K(X’S)ds’ 0<xs<I. (M) Keller [1] has given the conditions under which the

differential Equation (3) together with the boundary con-

Th.e two point boundary conditions associated with (1) ditions (2) has a unique solution. We assume that these
are given by: conditions are satisfied in the problem that we are con-
u(0)=7,,u(l)=x ) sidering. In addition, we assume that u(x)eC°[0,1]

and K(x,5)eC*[0,1].

Many physical problems from fluid mechanics, fluid
dynamics, elasticity, magneto-hydrodynamics, plasma
dynamics, oceanography, biological model, boundary
1 layer theory, ...etc are described mathematically by non-
1(x) = IK(X,S)dS linear integro-differential equations. Davis and Rabi-

0 nowitz [2], Philips [3], Linz [4], Lakshmikantham and

where y,, 7, are finite constants. We assume that K(X, s)
is a real valued function of both variables in the range
0<x,s<1.

Let
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Rao [5], Atkinson [6], and Agarwal and O’Regan [7]
have discussed various techniques for numerical integra-
tion and methods for approximate solution of integro-
differential equations and their applications to various
physical models. Most of the nonlinear differential equa-
tions cannot be solved analytically. So it is required to
obtain efficient numerical methods. Jain et al. [8] have
discussed variable mesh methods for the solution of two
point nonlinear boundary value problems; however, their
methods are not applicable to differential equations with
singular coefficients. In recent years, Mohanty et al. ([9-
12]) have discussed a family of third order variable mesh
methods for the solution of two point non-linear bound-
ary value problems and obtained convergent solution for
singular problems. More recently, Mohanty and Dhall
[13] have proposed a three-point third order variable
mesh method for the solution of non-linear integro-dif-
ferential Equation (1), which is applicable only when the
internal grid points of the solution region are odd in
number. In this paper, we propose an efficient third order
variable mesh method based on arithmetic average dis-
cretization for the solution of non-linear integro-differ-
ential Equation (1), which is applicable when the internal
grid points of the solution region are both odd and even
in number. In next section, we give mathematical details
of the method. In Section 3, we discuss the application of
the proposed method to an integro-differential equation
with singular coefficients and study the convergence
analysis. In Section 4, we give numerical results to jus-
tify the utility of the proposed new strategy. Final re-
marks are given in Section 5.

2. Mathematical Details of the
Discretization

We discretize the solution region [0,1] with the non-
uniform mesh such that 0=Xx, <X ---<Xy,; =1. Let
N, =X, —X >0 be the variable mesh size in X-di-
rection, where k =0(1)N +1. Grid points are given by

X =X, + Y N, i=1(1)N +1. The mesh ratio is
k=1
o =(h. /N )>0.When o, =1, then it reduces to the

constant mesh case. The off-step points are defined by

h
and X | =X, —7" etc. Let the exact

oh,

X =X+
2

solution of u(X) at the grid point X, be denoted by

U, =u(x,) and u, be the approximate value of U, .

Let us construct a numerical method for evaluating the
1

integral J #(x)dx, where ¢(x) is a real-valued con-
0

tinuous function in [0,1].
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Using the derivation technique discussed in [13], we
obtain a fourth order accurate integral formula based on

Simpson’s % rd rule (see Evans [14]).

Xk 41

;[ $(x)dx =%[¢k +44,. +¢k+,}

“
k=0,1,2,--N
where ¢ = (X ), B = (X)) = (% + )
h +
¢k% = ¢(XK+J = gzﬁ[xk +%) , etc.
Then on the variable mesh the value of the integral
1 X XN+
I :j¢ dx+j¢ X)dx+---+ I #(x)dx
0 X XN
o 5)
BV
k=0

can be found by the repeated application of (4).

Now we discuss the third order numerical method based
on arithmetic average discretization for the differential
Equation (3).

At the grid point X, , we denote

UIZ’ :G(Xk9Uk9UI:)EGk (Say)s

oG oG
a =—| B =|—1| .
‘ (8ujxk g (6U’lk

Using Taylor expansion, from (3), we obtain

and

(U —(1+0 Uy +0 U, )

_ o |:O'kG 1 +(l-i-ak)
3 K

4=
2

G +G 1}o(h;), (6)
2
o, 21

We need the following approximations:

— 1
=500, (7a)
2
— 1
=5 (U 0y, (7b)
2
-, 1
Uk+7:0-_h(uk+1_uk)’ (70)
k' k
-, 1
0!, = =(U=Ui). (7d)
k
AM
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_ 1 _ 02h2
Ug = u 1 u U, |, G ,=G ,+—*(3U/e +U +0
K (1+O'k)h [ k+1 ( Uk) Ok k—1:| (7e) k% k% 24 ( K%k kﬁk) ( ) (92)
and let , o1
= h
_ o =G , +—=(3U/a, +U"B8)+0(h),
G :G{Xk pU U J ®) 17y i IR O
) 2o o #1
It is then easy to see that From (9a) and (9b), it follows that
G ,+G 1:2Uk”+h—k(ak—1)Uk’ i(1+6k)(3U”ak+Uk  +30,")+0(), 0, %1 (10a)
ko ke 2 24
G -G 1:h—k(1+o—k)uk"'+i( F—1)(3Ufa, +U[B +3U )+O(h), oy =1 (10b)
kel ks 2 24
Now, let 0, =U, +2ah2U;+O(K), 0, 21, (12a)
ﬁk:uk+ahk2[é +G ,J, (11a) =, h?
ey ke . =U, +?"[ak+3b 1+0,) ]U +O(h ) (12b)
- _ _ o, #1
U,=Ug+bh |G | -G , 11b
oK “ k% k—% (11b) Further, we define
where “a” and “b” are parameters to be determined. G=‘k = G(xk,ﬁk,ﬁl:) (13)

With the help of (10a) and (10b), from (11a) and (11b),

we obtain

2

G, =G, +2ah2U/a,

h
+?k[0'k+3b(1+0'k)}uk

and with the help of (12a) and (12b), it follows that

 +0(N). o %1 (14)

Then at each internal grid point Xy, the differential Equation (3) is discretized by

(U —(1+ 0V, +0 U, ) =

where T, = O(hlf ) , provided o, #1.
Now with the help of the approximations (9a), (9b)

4

7=
72

The proposed numerical method (15) to be of O(hf ),
the coefficient of h, in (16) must be zero and we obtain

the values of parameters
e —(1—O'k +O_k2),b: —(l+0'k +Uk2)
8 6(1+0,)

and the local truncation error given by (16) becomes
T =0(h), o, #1.

3. Application to Singular Problems

Consider the linear second order model integro-different-
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2
ohy

_ 1 _
0,G 1+( +O-k)

K+t k-~
+5 2

G +G 1}rT_k,k=1(1)N (15)
2

and (14), from (6) and (15), we obtain the local trunca-
tion error

o, (1+0,)[3(1-0y + 07 +8a)aUf +(1+ 0, + 07 +6b(1+0,)) UL |+ O(K), o, #1 (16)

tial equation

d?u du 0
F=A(r)E+B( Ju+f(r +.([K (r,s) C a7
o<r,s<l1
where A(r)=%,8(r):%. For ¢ =1 or 2, the
r

equation above represents cylindrical or spherical prob-
lem, respectively. Replacing the variable X by r and ap-
plying the formula (15) to the integro-differential equa-
tion (17), we obtain

AM
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~[a U, —(1+ 0 )U, +U,, |+ 3h {o-k[A u’ 1+B u 1+f ot 1]
2 2 2 (18)

-, _ 1+ 0 =, =
J{Ak U’ +B U +f 1JrlkJ{ 2kj(AKUk+BkUk+fk+lk):|+Tk:0,k:1(1)N

2 2 2 2 2
where
U, =u(r), A =A(r),B =B(r), f = f(r),
1 hn N+
Ik:I(rk):IK r.s)ds = I+j+ +I (r.s)
0
— (1 o, +op ) he . _ ' _
 =U, - 2 i lirBMl ol k1+|+l+Ak_1U 1 +B kl+fk_l+|k_l ,
2 2 2 2 2 2 2 2 2 2 2
5. g, _{reuroih AU +B U0 +f +1 -A U0 -B 0  —f -I
KTk 6(1+0, ) el T kis ki el TR TR TR TR e |
and T, :O(h,f). and
Note that the scheme (18) is directly applicable to sin- |
gular problem (17) and do not require any fictitious 1 :i| (rk): jK'(I’k,S) ds
points outside the solution region to compute the scheme. dr 0
The scheme is also applicable when the internal grid Non Nt
points of the solution region are both even and odd in = J'+J'+ + j K'(r,s)ds,
number as compared to the scheme discussed by Mo- non M

hanty and Dhall [13] in which the internal grid points are

. . 2 1
strictly odd in number. = d—2 I(r)= I K" (r.,s)ds
For convergence of the scheme (18), we use the fol- dr 0
lowing approximations: N sl
O'khk hk2 3 - I+J‘+ + ,[ K"(I’k,S)dS
e e (+0(h).  (19a) oo 'y
Using the approximations (19) in (18), neglecting high
h ., h2 ) order terms and simplifying we get the modified scheme
Ik,l =l __I é( Iy —O(hf), (19b) in compact form
2
-0y +sub JU,_, +[1+ 0, +diag, |U,
_ oh o ah 3 [ KTk ¥ (20)
Ak%_A*Jr Act—— A+ (hk)’ (19¢) +[-1+sup JU ., + 4 +T, =0
) , where
: Ak——Ak+ Ak o(h). (19d)
2 —oph h h h,
E sub, = —k kAk—M{Ak ——kA‘:-i-—kAk”:|
Similarly, we can define the approximations for B | 6 3 2 8
. LG h, h
and f |, where k6 [B_ kB}
K+—
o, (1+o-k +0, )Akth
,_d ,_d - 2A —h (A +B
&:JA(rk)’Bk:EB(rk)» 72 [ A—h(A k)]
o,(1+o0,)(1-0, +o; )AB’
fk'=if(l’k),K’(r,S)=%,--~etc + f k)( X k) KX
dr or 48
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diagk:_(l_”k) k _Uk(“"k)hfh_(l—ok)hk N,}ak(lwk)hf[Bk+(ak—1)hk5k' (-oiroi)ne;
6 6 4 3 4 8
(1+0)(1+ 0y + o AN’ cpn] (1+0,)(1-0, +02) BN
+ k ( 3; k) k A - k2k k| k ( 4£ k) k k[(l—o'k)A(—zﬁkBkhk],
h o.h oh ., ohl | o/ oh _,
N[N R I L]
(1+ak+7crk)Akhz[2Ak+ak (& +BIR]- (1+crk)(1—o:8+crf)AkBkhs,

B, (1—0‘k +O'k2)hk2
4

o, (1-1—0',()hk2
6

{Gk_l_(

and T, =0(h;).

Incorporating the boundary values U, =y,, Uy., =7,
the difference Equation (20) in matrix form can be writ-
ten as

z

s

1+ 0, +0'k2)Akh
12

(D+P)U+¢+T(h)=0

1)

where D =[-0,,1+0,,-1] and P = [suby, diag, sup]
are tri-diagonal matrices of order N and

k}hk(fk'ﬂ;) Wh (f/+1 )}

Let u:[ul,uz,---,uN]T =U which satisfies

(D+P)u+¢=0 (22)

Let e =u,—U, be the discretization error (in the
absence of round of errors) at the grid point ry and
E=u-U=[e,e,.e,] be the error vector.

Subtracting (21) from (22), we obtain the error equa-
tion

(D+P)E=T(h,) 23)

¢=|:¢1 +(SUb1 _0-1)70’¢zn"'a¢N—ln¢N +(SupN _1)7I:IT H
: ) Let |A|<G,, |A]|<G, |A]|<G;, [B|<H,
[UlaUz» --,U ], T(h)=[T.T,,---.,Ty] and |B”|< H,, where G,, G,, G;, H, H2 and H; are some
O—[O 0, 0] are vectors. positive constants. If p; j be the (i, j)™-element of P, then
h, , (1+ak+a,f)hk ) \
| P <5 (1+20,)G, +oih, (G, + H, ) +—————G/ [+O(h{ ),k =1(1)N -1, (24a)
l+o,+0o; )h

|| < "k6hk [(1+2UK)GI+hk(GZ+H1)+<G"+)kGf]+o(h§),k=2(1)N, (24b)

Thus for sufficiently small hy, the matrix (D + P) is ir-
reducible (see Varga [15] and Young [16]).

S, _o{n%((zﬂykm h A )+ h2[(2+3ak)8 +

h N h
S, =1—Ek((1+20k)/xk +o-k2hkA()+?k{0'k (3

Copyright © 2011 SciRes.

Let Sy be the sum of elements of the K"-row of (D+P),

then
@ 2H+O(hk3),k—1 (252)
+2ak)Bk+(1+Uk6+0“)/s§]o(hg),k=N, (25b)
AM



1248 R. K. MOHANTY ET AL

2

S, =0, (l+0'k)h7kBk +0(h¢).k=2(1)N-1. (25¢c)

Let G, = min |A1<|

1<k<N

—max|Ak| m1n|B|

1<k<N I<k<N

,then 0 <G+ <G < G and 0 < H« <

1<k<N
H < H/.
It is straightforward to show that for sufficiently small

h, (D + P) is Monotone (see Varga [15] and Young [16]).

Hence (D + P) ' exists and (D + P) ' > 0.
From error Equation (23), we have

Il <[Py [T ()] o

Thus for sufficiently small hy, it is easy to show that
2

S, >0k(2+30'k)h?kHl*,k:1, (27a)

h2
S, > o, (3+20'k)?kH1*,k:N , (27Db)

2

S, >0, (1+o-k)h7kHl*,k =2()N-1.  (27¢)

Since
(D+P), >0 and Z(D+P) . Se=1, i=1()N,
k=1
hence
(D+P);isl< 6 S k=1 (28a)
TS oy (2430, ) Hh
_ 1 6
D+P) <— ,k=N (28b
(D~ )"k Sk<0k(3+20'k)H1,,hk2 (28b)
Further,
N-1 1 2
D+P < ,
k:2( ) 2<IEI<1’{IIIS k(l+0'k)H1,.thk2 (29)
i=1(1)N

For any matrix M, we define ||M||—maxZ|mi,k| ,

I<i<N
where m,, is the (i, k)"-element of M and
"T (hk )" =max|T, |

1<i<N
With the help of (28a), (28b), (29), from (26), we ob-
tain

6 1 1 1 AW
"EMSHI* oy {2+30‘k+3(1+0k)+3+20'kJ o(hk)
=o(h)

(30)

This establishes the third order convergence of the

Copyright © 2011 SciRes.

method (20).
4, Numerical Results

In this section, we consider another new variable mesh
method for the solution of non-linear integro-differential
Equation (1) as

(U, —(1+0 U, +a U, )

_oh Mﬁ +(2+°_k),§
2 3 e+ 3 k> 1)
21 (1+2 2
Jrakhk (I ak)l ,+( +0k)| 1 +O(h|f),
2 3 K+ 3 k=
k=1(1)N
where

and

Lo=1(%)= | K(x.s)ds, k=1(1)N

s=0

The approximations associated with F , are already
k+=—

defined by (7a)-(7d). The order of accuracy of the method
(31) is of O(hk2 ) . For evaluating the integral associated
with (31), we replace the integral by the trapezoidal rule
(see Evans [14]).

j¢(x)dx= jl¢(x)dx+f¢(x)dx+--.+ T]gzﬁ(x)dx
0 x(’)\‘ h X XN (32)
2+ i ]

In this section, we have solved two benchmark prob-
lems using the proposed method described by equation
(15) and compared our results with those obtained by
using the variable mesh method discussed by Mohanty
and Dhall [13] only for the cases when internal grid
points are odd in number. We have also computed our
results using uniform mesh (when o, =1) for all values
of N. The boundary conditions may be obtained using the
exact solution as a test procedure. The linear difference
equation has been solved using a tri-diagonal solver,
whereas non-linear difference equations have been solved
using the Newton-Raphson method (see Kelly [17] and

AM
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Evans [18]). While using the Newton-Raphson method,
the iterations were stopped when absolute error tolerance
<107 was achieved.

The unit interval [0,1] in the space-direction is divided
into (N + 1) points with

0=X, <X <Xy <Xyy =L

where
he =X =%y
and
o = (N /B ) >0,k =1,2,-,N.

We may write

L= Xy =% :(XN+1_XN)+(XN _XN—1)+”'+(X1_XO)

=hy,, +hy+--+h =(1+0,+0,0, +-+0,0,--0y )h.

For simplicity, we consider o, =c (a constant), k =
1,2, ---, N, then from (33) we have

l1-o
N+1°

h =

e (34)

By prescribing the total number of mesh points to be

ar’  rdr

(33)

(N + 2), we can compute the value of h; from (34). This
is the first mesh spacing on the left of the boundary and
the remaining mesh is determined by h,,, =coh,, k=1,
2, ---, N. For variable mesh, we choose the values of
o =1.2. All computations were carried out using dou-
ble precision arithmetic.

—Is

2 ;r 1 >
Example 4.1 gd_u-l,-a du —%u =a+2¢+ r[r—i—4«/zje*/; —ng f re‘/;ds,0<r<1,
r & o

N

‘\/_ s=0

(Linear equation in polar coordinates) (35)

-r

The exact solution is given by u(r):rze*/;. The

2
Example 4.2 ¢ d_121+gd_u_%
dr rdr r

3 -2r

maximum absolute errors are tabulated in Table 1 for
various values of N.

-r

du r -
ul= ua+(2+a)g+g—2[r—(4+a)g}e &

1 —IS

+r—(r—25)eT -(2+a) J re7d5,0< r<l,
£

$=0

(Model Burger’s equation in polar coordinates) (36)

-r

The exact solution is given by u(r) =re ¢ . The maxi-

mum absolute errors are tabulated in Table 2 for various
values of N.

5. Final Remarks

Using three variable mesh points, we have discussed a
new numerical methods of accuracy of O (hs ) based on
arithmetic average discretizations for the solution of the
non-linear integro-differential Equation (1). Mohanty
and Dhall [13] have developed a third order variable
mesh method based on Numerov type discretization,
which is only applicable to the solution space having odd
number of grid points. Although the proposed variable
mesh method involve more algebra, but applicable to the
solution space having both odd and even number of in-
ternal grid points. In addition, the proposed methods are
directly applicable to singular problems and we do not

Copyright © 2011 SciRes.

require any fictitious points near the boundaries to in-
corporate the singular point. The numerical results indi-
cate that the proposed method is computationally nearly
equal to the method discussed in [13] and applicable to
the solution space with all internal grid points. We have
tabulated maximum absolute errors for different mesh
sizes. Our mesh sizes are either in increasing or in de-
creasing order. So it is not possible to estimate the order
of convergence of the proposed method. Order of con-
vergence can be estimated for uniform mesh using the

formula log(ehl /e, ) /log(hl /h,), where e, and e, are
the maximum absolute errors for two grid mesh widths

h, and h,, respectively. For ex: in Table 2, let us con-

sider the case =1, £=0.01, N =30 and N = 60, i.e.
1 1

h=—=h (say) and h=—=h, (say) and the corre-
30 M (say) o (say)

sponding maximum absolute errors are 0.3116 (-8) and

0.1978 (-9), respectively. Using the above formula the

AM



1250 R. K. MOHANTY ET AL.
Table 1. The maximum absolute errors for Example 4.1.
O(hj) -proposed method (20) O(h;) -proposed method (31)
N a=1 a=2 a=1 a=2
¢=0.1 ¢=0.01 £=0.1 £=0.01 ¢=0.1 ¢=0.01 ¢=0.1 ¢=0.01
20 0.2062E+4 0.3334E4 0.2528E+4 0.2800E-3 0.1906E-3 0.4772E-3 0.2040E-3 0.2240E-2
0.1519E+4 0.2511E4 0.1810E+4 0.9455E+4
25 YOIAL6EA  *0240SE4  *01T3EA  *09376E4  O166SE3 0.209E-3  0.1783E-3  0.8935E-3
30 0.1149E+4 0.1216E4 0.1491E+4 0.4234E4 0.1507E-3 0.2864E—4 0.1614E-3 0.3438E-3
0.1082E+4 0.9128E-5 0.1348E+4 0.1661E+4
33 *0.1022E-4  *0.9075E-5  *0.1289E 4  *0.1618E-4 ~ O1402E=3  0.2224E~4 - 0.IS02E-3 - 0.8741E~4
40 0.1030E4 0.8811E-5 0.1199E-4 0.1116E—4 0.1299E-3 0.1599E4 0.1391E-3 0.5240E4
0.8989E-5 0.7612E-5 0.9217E-5 0.7880E-5
45 #0.89]10F_5 #0.7588F_5 #0.9148F_5 #0.7823F5 0.1238E-3 0.1522E4 0.1322E-3 0.3338E4
50 0.8599E-5 0.6423E-5 0.8875E-5 0.6345E-5 0.1161E-3 0.1451E4 0.1243E-3 0.1448E—4
0.8110E-5 0.5666E-5 0.8420E-5 0.4529E-5
55 $08066E-5  *0.5612E-5  *0.8366E_S5  *044s8p.s  O-1112E-3 0.1384E4 0.1188E-3 0.1360E—4
60 0.7501E-5 0.4892E-5 0.7977E-5 0.2828E-5 0.1059E-3 0.1325E4 0.1135E-3 0.1284E-4
0.7123E-5 0.4088E-5 0.7362E-5 0.2524E-5
65 fOT00E S  *OA0ME S  *07316ES  *0o4g7ps  O-1022E-3  0.0278E4  0.1092E-3  0.1252E-4
70 0.6699E-5 0.3236E-5 0.6886E-5 0.2228E-5 0.9812E+4 0.1227E+4 0.1051E-3 0.1216E4
0.6128E-5 0.2422E-5 0.6332E-5 0.1907E-5
75 ¥0.60S4E-5  *02302E-5  *0.6304E_S5  *018s8p.s  O-9512E4 0.1190E4 0.9926E4 0.1182E4
80 0.5511E-5 0.1772E-5 0.5834E-5 0.1664E-5 0.9179E+4 0.1148E+4 0.9831E4 0.1143E4

*: Results obtained by using the method discussed in [13].

Table 2. The maximum absolute errors for Example 4.2.

O(h}) -proposed method (15)

o(hf) -proposed method (15) [for uniform mesh o, =1]

N a=1 a=2 a=1 a=2
£=0.1 £=0.01 ¢=0.1 £=0.01 e=0.1 £=0.01 £=0.1 £=0.01

10 03582E-5  02318E-6  04054E-5  02022E-6  03318E-6  02421E-7  03844E-6  0.2100E-7
04972E-6  08959E-7  0.1422E-6  0.8889E-7

15 R T 05756E-7  0.6250E-8  07224E7  08ISIES

20 0.1104E-6  0.5934E-7  0.1951E-6  03283E-7  0.1929E-7  0.1412E-8  0.1616E-7  0.1012E-8
0.1525E-7  02785E-7  0.5790E-7  0.6503E-8

2 *0.1488E-7  *02740E-7  *0.5720E-7 *0.6472E-g  O7/S2E-8  09215E-9 08I69E-8 - 0.5440E-9

30 04865E-8  0.987E-8  0.I354E-7  02173E-8  03116E-8  03812E-9  03880E-8  0.4004E-9
04133E-8  04344E-9  08218E-8  0.7437E-9

35 e ST 08868E-9 0S3BIE-0 01GI4E-8  0.78ISE-10

40 03373E-8  05659E-10  0.6534E-8  02147E-9  08617E-9  0.5733E-11  09210E-9  0.1817E-10
03008E-8  04234E-10  0.6166E-8  0.8872E-10

45 e O e |0 05417E-9  03230E-11 07106E9  0.7117E-11

50 02743E-8  02606E-10  0.5657E-8  0.597IE-10  04413E-9  0.1006E-11  04818E-9  04343E-11
02174E-8  0.191SE-10  0.4828E-8  0.4815E-10

33 *02170E-8  *0.1911E-10 *0.4810E-8 *04804E-10 O2830E9  O&TI6E-12 0.3636E-9  O.1IS6E-I1

60 0.1676E-8  0.1210E-10  04138E-8  04104E-10  0.1978E-9  07677E-12  02442E-9  08821E-12

*: Results obtained by using the method discussed in [13].

Copyright © 2011 SciRes.
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order of the convergence of method can be estimated as
3.97 which is nearly equal to 4.0. Similarly in other cases,
we found that the order of the convergence of the method
for uniform mesh case is nearly equal to four.
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