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Abstract 
 
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average 

discretization for the solution of , 0 < x < 1, 0 < s < 1 subject to natural boundary 

conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the 
integro-differential equation with singular coefficients. We need not require any special discretization to ob-
tain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion 
convection equation is briefly discussed. The presented variable mesh strategy is applicable when the inter-
nal grid points of the solution space are both even and odd in number as compared to the method discussed 
by authors in their previous work in which the internal grid points are strictly odd in number. The advantage 
of using this new variable mesh strategy is highlighted computationally. 
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1. Introduction 
 
We consider the non-linear differential equation with a 
source function in integral form: 

   
1

0

, , , d , 0 , 1u F x u u K x s s x s     .    (1) 

The two point boundary conditions associated with (1) 
are given by: 

   00 , 1u u 1                 (2) 

where 0 , 1  are finite constants. We assume that K(x, s) 
is a real valued function of both variables in the range  
0 ≤ x, s ≤ 1. 

Let  

   
1

0

, dI x K x s 

and  
    , , , , F x u u I x G x u u    

Then we may re-write (1) as 

 , , , 0 1u G x u u x              (3) 

Keller [1] has given the conditions under which the 
differential Equation (3) together with the boundary con-
ditions (2) has a unique solution. We assume that these 
conditions are satisfied in the problem that we are con-
sidering. In addition, we assume that    6 0,1u x C  
and    4, 0K x s C ,1 . 

Many physical problems from fluid mechanics, fluid 
dynamics, elasticity, magneto-hydrodynamics, plasma 
dynamics, oceanography, biological model, boundary 
layer theory, …etc are described mathematically by non- 
linear integro-differential equations. Davis and Rabi-
nowitz [2], Philips [3], Linz [4], Lakshmikantham and 
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Rao [5], Atkinson [6], and Agarwal and O’Regan [7] 
have discussed various techniques for numerical integra-
tion and methods for approximate solution of integro- 
differential equations and their applications to various 
physical models. Most of the nonlinear differential equa-
tions cannot be solved analytically. So it is required to 
obtain efficient numerical methods. Jain et al. [8] have 
discussed variable mesh methods for the solution of two 
point nonlinear boundary value problems; however, their 
methods are not applicable to differential equations with 
singular coefficients. In recent years, Mohanty et al. ([9- 
12]) have discussed a family of third order variable mesh 
methods for the solution of two point non-linear bound-
ary value problems and obtained convergent solution for 
singular problems. More recently, Mohanty and Dhall 
[13] have proposed a three-point third order variable 
mesh method for the solution of non-linear integro-dif- 
ferential Equation (1), which is applicable only when the 
internal grid points of the solution region are odd in 
number. In this paper, we propose an efficient third order 
variable mesh method based on arithmetic average dis-
cretization for the solution of non-linear integro-differ- 
ential Equation (1), which is applicable when the internal 
grid points of the solution region are both odd and even 
in number. In next section, we give mathematical details 
of the method. In Section 3, we discuss the application of 
the proposed method to an integro-differential equation 
with singular coefficients and study the convergence 
analysis. In Section 4, we give numerical results to jus-
tify the utility of the proposed new strategy. Final re-
marks are given in Section 5. 
 
2. Mathematical Details of the  

Discretization 
 
We discretize the solution region [0,1] with the non- 
uniform mesh such that 0 1 10 1Nx x x    

1N 

. Let 

1 1  be the variable mesh size in x-di- 
rection, where . Grid points are given by  

0k k kh x x   

i

 0 1k 

0
1

i k
k

x x h


  , . The mesh ratio is   1 1 1i N 

 1 0k k kh h   . When 1k  , then it reduces to the 
constant mesh case. The off-step points are defined by  

1

2 2
k k

k
k

h
x x




   and 1

2 2
k

k
k

h
x x


   etc. Let the exact  

solution of u(x) at the grid point kx  be denoted by 
 and u  be the approximate value of .   kU u x k k k

Let us construct a numerical method for evaluating the  
U

integral  
1

0

dx x , where  x  is a real-valued con-  

tinuous function in [0,1]. 

Using the derivation technique discussed in [13], we 
obtain a fourth order accurate integral formula based on  

Simpson’s 
1

3
rd rule (see Evans [14]). 

 
1

1
2

1
1d 4

6

0,1,2,

k

k

x
k
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x

h
x x

k N

  





,k     







      (4) 

where  k kx  , ,    1 1k k k kx x h      1

1
1 1

2 2 2
k

k
k k

h
x x   

 

            
, etc. 

Then on the variable mesh the value of the integral  
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h
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
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 

   



 x

 (5) 

can be found by the repeated application of (4). 
Now we discuss the third order numerical method based 

on arithmetic average discretization for the differential 
Equation (3). 

At the grid point kx , we denote  

 , ,k k k k kU G x U U G    (say), 

and 

,
k k

k k
x x

G G

u u
             

. 

Using Taylor expansion, from (3), we obtain 

  
   

1 1

2
5

1 1

2 2

1

1
,

3 2

1

k k k k k

kk k
k k

k k

k

U U U

h
G G G O

 






 

 

  

 
    

 


kh   (6) 

We need the following approximations: 

1 1

2

1

2 k k
k

U U U


   ,            (7a) 

1 1

2

1

2 k k
k

U U U


   ,            (7b) 

1 1

2

1
k k

k
k k

U U
h 


   U ,          (7c) 

1

2

1
k k

k
k

U U U
h 


   1 ,           (7d) 

Copyright © 2011 SciRes.                                                                                  AM 



R. K. MOHANTY  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

1245

   2 2
1 1

1
1

1k k k k
k k k

U U U
h

 
   

      
   

2 2
3

1 1

2 2

3 ,
24

1

k k
k k k k k

k k

k

h
G G U U O h


 



 
    



 (9a) k kU , (7e) 

and let 

   
2

3
1 1

2 2

3 ,
24

1

k
k k k k k

k k

k

h
G G U U O h 



 
    



  (9b) 1 1 1 1

2 2 2 2

, ,
k k k k

G G x U U
   

 
 

 
 .         (8) 

From (9a) and (9b), it follows that It is then easy to see that 
 

      
2

2 3
1 1

2 2

2 1 1 3 3 ,
2 24

IVk k
k k k k k k k k k k k

k k

h h
G G U U U U U O h   

 
             1          (10a) 

      
2

2 3
1 1

2 2

1 1 3 3
2 24

IVk k
k k k k k k k k k k

k k

h h
G G U U U U O h    

 
          , 1           (10b) 

 

 2 32 ,k k k k k kU U ah U O h Now, let 1    ,     (12a) 

2
1 1

2 2

k k k
k k

U U ah G G
 

 
  

 
 ,       (11a) 

   
2

33 1 ,
6

1

k
k k k k k k

k

h
U U b U O h 



        


 (12b) 

1 1

2 2

k k k
k k

U U bh G G
 

 
   

 
 ,       (11b) 

Further, we define  

 , ,k k k kG G x U U              (13) where “a” and “b” are parameters to be determined. 
With the help of (10a) and (10b), from (11a) and (11b), 

we obtain and with the help of (12a) and (12b), it follows that 
 

   
2

2 32 3 1
6
k

k k k k k k k k k k k

h
G G ah U b U O h              , 1                 (14) 

Then at each internal grid point xk, the differential Equation (3) is discretized by 

      
2

1 1 1 1

2 2

1
1 ,

3 2
kk k

k k k k k k k k
k k

h
U U U G G G T k


   

 

 
        

 
1 1 N          (15) 

 
where  5

k kT O h , provided 1k  . 
Now with the help of the approximations (9a), (9b) 

and (14), from (6) and (15), we obtain the local trunca-
tion error 

 

       
4

2 21 3 1 8 1 6 1 ,
72

k
k k k k k k k k k k k k k k

h
T a U b U         

               5 1O h       (16) 

 
The proposed numerical method (15) to be of  3

kO h , 
the coefficient of  in (16) must be zero and we obtain 
the values of parameters 

4
kh

tial equation 

       
12

2
0

, d ,

0 , 1

d u du
A r B r u f r K r s

drdr

r s

   

 

 s
 (17)    2 21 1

, ,
8 6(1

k k k k

k

a b
   



     
 

 )
 

where     2
,A r B r

r r

 
and the local truncation error given by (16) becomes 

 5
k kT O h , 1k  . 

 . For   = 1 or 2, the  

 equation above represents cylindrical or spherical prob-
lem, respectively. Replacing the variable x by r and ap-
plying the formula (15) to the integro-differential equa-

3. Application to Singular Problems 
 
Consider the linear second order model integro-different-  tion (17), we obtain 
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 
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k
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U U U A U B U f I

A U B U f I A U B U f I T k


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

 
     

     

  
               

                       

 

N

        (18) 

where  

       , , ,k k k k k k k kU u r A A r B B r f f r     ,

     
11 2

0 1

1

0

, d , d
N

N

rr r

k k k k
r r r

I I r K r s s K r s s
        

  
    , 
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1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

1

8

k k k

k k
k k k k k k k k k k k k

h
U U A U B U f I A U B U f I

 
           

   
          

 
, 

 
 

2

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

1

6 1

k k k

k k
k k k k k k k k k k k k

k

h
U U A U B U f I A U B U f I

 

            

   
              

, 

 
nd 

eme (18) is directly applicable to sin-
gu

he scheme (18), we use the fol-
lo

a  5
k kT O h . 

te that the schNo
lar problem (17) and do not require any fictitious 

points outside the solution region to compute the scheme. 
The scheme is also applicable when the internal grid 
points of the solution region are both even and odd in 
number as compared to the scheme discussed by Mo-
hanty and Dhall [13] in which the internal grid points are 
strictly odd in number. 

For convergence of t
wing approximations: 

 
2 2

3
1

2 2 8
k k k k

k k k
k

h h
kI I I I O

 


     h ,   (19a) 

 
2

3
1

2 2 8
k k

k k k
k

h h
kI I I I O h


     ,     (19b) 

 
2 2

3
1

2 2 8
k k k k

k k k
k

h h
kA A A A O

 


     h ,  (19c) 
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2

3
1

2 2 8
k k
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k

h h
kA A A A O h


     .   (19d) 

Similarly, we can define the approximations for 1

2
k

B


 

and 1

2
k

f


, where  

   
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, , , e

k k k k
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d d
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dr dr
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  

  



 

tc

and 
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Using the approximations (19) in (18), neglecting high 
order terms and simplifying we get the modified scheme 
in compact form 

   
 

1

1

1

1 0

k k k k k

k k k k

ksub U diag U

sup U T

 






    

     
    (20) 

where 

 
 

  
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2
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2 3

6 3 2 8
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1
2
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,

48

k k k k k k
k k k k k

k k k
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k k k k k
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sub A A A A
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B B

A h
A h A B

A B h



  

   

 
     

 
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    
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h Bh h h h B
diag h A A A B

A h B hB h
A A

       

     
  k k kB h

        
        
    

      
        

 

 

 
 

  

2 2 2 2

2 2 2 3

6 3 2 8 6 2

1 1
2 ,

72 48

k k k k k k k k k k k
k k k k k k k

k k k k k k k k k k

k k k k k

h h h h h h
sup A A A A B B

1A h A
A A B h

    

    


               

    
     

 
B h

   
 

 
 

 
 

2 22

2 2

2

11
3

6 4

1 1
1 ,

12 4

k k k kk k k
k k k

k k k k k k

k k k k

B hh
f I

A h
h f I h f I

  


   


      
 
 

    
k k k

          
 

  

 

 
and 

In e boundary values 
 5 .k kT O h  

corporating th 0 0U  , 1 1NU   , 
 can be writ-the difference Equation (20) in ma

ten as 

         (21) 

where 

trix form

   kh    0D P U T  

 ,1 , 1k k    D
are tri-diagonal matrices of order 

 and P = [subk, diagk, supk] 
N and 

   1 1 0 2 1 1, , , , 1
T

N N Nsub sup              , 

 T1 2, , , NU U U , 1 2, ,kh T T
 0,0, ,0

T0   are vectors.  
U    ,

T
T T

 1 2, , ,
T

Nu u u u U  which satisfies 

N  and  

Let 

    0D P u                 (22) 

Let kk ke u U 
nce of 

1 2, ,e  U
btracting (21) f

 be the discretization error (in the 
abse round of errors) at the grid point rk and 

be the error vector. 
), we obtain the error equa-

tion 

 ,
T

NeE u  
Su rom (22

e

   kh D P E T              (23) 

Let 1kA G , 2kA G  , 3kA G  , 1kB H , 2kB H  , 

3kB 3, H1, H2 and HH , where G1, G2, G 3 are some 
positive constants. If pi, j be the (i, j)th-element of P, then 

 

   
     2 3 , 1 1 1,

k k kh
G O h k N

 
            (24a) 

2

, 1 1 1

1
1 2

6 6
k

k k k k

h
p G

  
  
  

2
2 1k kh G H  

   
     

2

2 3
, 1 1 2 1 1

1 
1 2 , 2 1

6 6

k k k

k k k k k

h
p G h G H G O h k





       
  

 
Thus for suffic , the matrix (D r-

educible (see V oung [16]). 

,N          (24b) k kh 

iently small hk

arga [15] and Y
+ P) is i

r
 

Let Sk be the sum of elements of the kth-row of (D + P), 
then 

    
   

22
2 3

1
1 2 2 3 ,

6 6 6

k kk k
k k k k k k k k k k

h h
S A h A B A O

 
  

   
          
  

  
1h k          (25a) 

    
   

22
2 2

1
1 1 2 3 2 ,3

6 6 6

k kk k
k k k k k k k k k k k

h h
S A h A B A O h k N

 
   

  
        
 
   

,         (25b) 
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     31 , 2 1 1.
2
k

k k k k k

h
S B O h k N        (25c) 

2

Let 1*
1
min k

k N
G A

 
 , 1

1
max k

k N
G A

 
 , 1*

1
min k

k N
H B

 
 , 

1
1
max k

k N
H B

 
 , then 0 < G1* ≤ G1 ≤  and 0 < H1* ≤ 

H1 ≤ 

1G

1H  .  

It is straightforward to show that for sufficiently small 
hk, (D + P) is Monotone (see Varga [15] and Young [16]). 
Hence (D + P)–1 exists and (D + P)–1 ≥ 0. 

From error Equation (23), we have 

   1

kh
  E D P T       

 for sufficiently small hk, it is easy to show that 

   (26) 

Thus

 
2

1*2 3 , 1
6
k

k k

h
H k   ,       (27a) kS 

 
2

1*3 2 ,
6
k

k k kS H k N    ,      (27b) 

 

h

 
2

1 , 2 1kh
S H k N   1*2k k k 1 .    (27c) 

Since 

  1 
,

0
i k

D P  and   ,
1

i k
k

 D P . 1kS  , 
1

N
  1 1i N ,  

hence 

 
 

1

2,
1*

1 6
, 1

2 3i k
k k k k

k
S H h 

   


D P   (28a) 

   
1

2,
1*

1 6
,

3 2i k
k k k k

k N
S H h 

   


D P

Further, 

  (28b) 

   
 

1N
1

2
2 1*

1 2
,

min 1

1 1

k k k kk N
S,

2 1

i k
k H h

i N

 



  

  




 D P
 (29

For any matrix M, we define 



) 

,
1

i k
k

m

 ,  

1
max

N

i N 
M

where  is the (i, k)th-element of M and  ,i km

 
1
maxk i

i N
h T

 
T . 

With the help of (28a), (28b), (29), from (26), we ob-
tain 

   

 

5
2

1*

3

6 1 1 1

2 3 3 1 3 2 k
 k k kk k

k

O h
H h

O h

  
 

        



E

(30

This establishes the third order convergence of the 

method (20). 
 

merical Results 
 
In this section, we consider another ne
method for the solution of non-linear in
Equation (1) as 

) 

4. Nu

w variable mesh 
tegro-differential 

  
   

     
 

1 1

2

1 1

2 22 3 3k k

2
4

1 1

1

1 2 2

1 2 2
,

1 1

k k k k k

k kk k

kk k
k

U U U

h
F F

h

2 22 3 3k k

k I I O h

N

 

 



   

  
  

 
  

   

 (31) 

where  

k

  


 

 

1 1 1

2 2 2 2

, ,
k k k k

F F x U U
   

 
   

 
, 1

1 1 1 1, ,F F x U U
 

    , 
2 2 2 2

k k k k    

and 
1

     , d , 1 1 .k k k
0s

I I x K x s s k N    


The approximations associated with 1

2
k

F


 

defined by (7a)-(7d). The order of accuracy of the method 
(31) is of 

 are already 

 2
kO h

we replace the i
. For evaluating the integral associated 

with (31), ntegral by the trapezoidal rule 
(see Evans [14]). 

       

 

11 2

0 1

1

0

1
1

0

d d d

2

N

N

xx x

x x x

N
k

k k
k

dx x x x x x x

h

   

 








   

 

   



 x

(32) 

In this section, we have solved two benchmark prob-
lems using the proposed method described by equation 
(15) and compared our results with those obtained by 
using the variable mesh method discussed by Mohanty 
and Dhall [13] only for the cases whe internal grid 
points are odd in number. We have also puted our 

ts using uniform mesh (when 

n 
com

resul 1k 
y be ob

) for all values 
e boundary conditions ma tained using the 

exact solution as a test procedure. The linear difference 
equation has been solved using a tri-diagon lver, 
whereas non-linear difference equations have been solved 
using the Newton-Raphson method (see Kelly [17] and 

of N. Th

al so
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Ev aph
the iterations were stopped when absolute error tolerance 

1,

ans [18]). While using the Newton-R son method, 

≤10–12 was achieved.  
The unit interval [0,1] in the space-direction is divided 

into (N + 1) points with 

0  0 1 1N Nx x x x      

where  

1k k kh x x    

and 

 1 0, 1, 2, , .k k kh h k N      

We may write 
 

     
 

1 0 1 1 1 0

1 1 1 1 2 1 2

1 N N N N N

N N N

x x x x x x x x

h h h h    
  



       

      







 
 

11 .
                      (33) 

 
For simplicity, we consider 



k   (a constant), k = 
1,

(N + 2), we can compute the value of h1 from (34). This 
is the first mesh spacing on the left of the boundary and 
the remaining mesh is determined by 

 2, , N, then from (33) we have  

1 1

1
.

1 N
h


 





              (34) 

By prescribing the total number of mesh points to be  

1k kh h  , 
oose the va

k = 1, 
2, N. For variable mesh, we ch lues of , 

1.2.   All computations were carr g dou-
ble precision arithmetic.  

ied out usin

 

Example 4.1 
12

2 2

d d
2

dd

u u
u r r

r rr r

    
0

2
4 e e d , 0 1,

s

r rs

r s r  


  




  


  

 polar coordinates)                              (35) 


      



(Linear equation in
 

The exact solution is given by   2

r

u r r e 


 . The 

 

 
maximum absolute errors are tabulated in Table 1 for 
various values of N.  

Example 4.2    
2

2 2

d d d
2

d

u u u
u u

r 2
4 e

d d

r
r

r
r r rr

     



 

      


   


 

   
13

0

2

2 e 2 e d , 0 1,
s

r rs
r

r r s  
 

r
 

        

(Model Burger’s equation in polar coordinates) 
 

 

                       (36) 

The exact solution is given by   2e
r

u r r 


 . The maxi- 

mum absolute errors are tabulated in Table 2 for various 
values f N.  

 

 o
 
5. Final Remarks 
 

s
umerical methods of accuracy of  based on 

ar e discretizations for t lution of the 
non-linear integro-differential Equation (1). Mohanty 
and Dhall [13] have developed a thi

esh method based on Numerov type 
ich is only applicable to the solution space having odd 

nu oposed va
e but applicable to the
lution space having both odd and even number of in-

ternal grid points. In addition, the proposed methods are 
directly applicable to singular problems and we do not 

require any fictitious points near the boundaries to in-

 and appli

tabulate
 either in increasing or in de-

creasing order. So it is not possible to estimate the order 
of convergence of the proposed method. Order of con-
vergence can be estimated for unifo m mesh using the  

formula 

U
new n

ing three variable mesh points, we have discussed a 
 3

kO h
he soithmetic averag r

rd order variable 
discretization, m

wh
mber of grid points. Although the pr riable 
sh method involve more algebra,  m

so

corporate the singular point. The numerical results indi-
cate that the proposed method is computationally nearly 
equal to the method discussed in [13] cable to 
the solution space with all internal grid points. We have 

d maximum absolute errors for different mesh 
sizes. Our mesh sizes are

   
1 2 1 2h h 1h 2h

the maximum absolute errors for two grid mesh widths 

log loge e h h , where  and  are  e e

1h  and 2h , respectively. For ex: in Table 2, let us con-
sider the case 1  , 0.01  , N = 30 and N = 60, i.e.  

1

1

30
h h   (say) and 2

1

60
h h   (say) and the corre-  

sponding maximum absolute errors are 0.3116 (–8) and 
0.1978 (–9), respectively. Using the above formula the    
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Table 1. The maximum absolute errors for Example 4.1. 

 3

kO h -proposed method (20)  2

kO h -proposed method (31) 

1   2   1   2   N 

0.1   0.01   0.1   0.01   0.1   0.01   0.1   0.01   

20 0.2062E–4 0.3334E–4 0.2528E–4 0.2800E–3 0.1906E–3 0.4772E–3 0.2040E–3 0.2240E–2 

25 
0.1519E–4 0.2511E–4 

5E–4 
0.1810E–4 
*0.1

0.9455E–4 
6E

34E

*0.1022E–4 *0.9075E–5 *0.1289E–4 *0.1618E

4 0.8811E–5 0.1199E–4 0.1116E

0.8989E–5 0.7612E–5 0.9217E–5 0.7880E
23E

0.887 45E

29E
88E

112E–3 0.1384E–4 E

28E

24E
7E

78E–4 

28E–5 0.981 E–4 0.1

888E

64E–5 0.9179E–4 0.1148E–4 0.9831E–4 0.1143E–4 

*0.1416E–4 *0.240 723E–4 *0.937 –4
0.1665E–3 0.1209E–3 0.1783E–3 0.8935E–3 

–4 0.1507E–3 0.2864E–4 0.1614E–3 0.3438E–3 

–4 
–4

0.1402E–3 0.2224E–4 0.1502E–3 0.8741E–4 

–4 0.1299E–3 0.1599E–4 0.1391E–3 0.5240E–4 

45 
*0.8910E–5 *0.7588E–5 *0.9148E–5

–5 
*0.78 –5

0.1238E–3 0.1522E–4 0.1322E–3 0.3338E–4 

50 0.8599E–5 0.6423E–5 5E–5 0.63 –5 0.1161E–3 0.1451E–4 0.1243E–3 0.1448E–4 

55 
0.8110E–5 
*0.8066E–5 

0.5666E–5 
*0.5612E–5 

0.8420E–5 
*0.8366E–5

0.45
*0.44

60 0.7501E–5 0.4892E–5 0.7977E–5 0.28

65 
0.7123E–5 
*0.7070E–5 

0.4088E–5 
*0.4024E–5 

0.7362E–5 
*0.7316E–5

0.25
*0.248

70 0.6699E–5 0.3236E–5 0.6886E–5 0.22

75 
0.6128E–5 
*0.6084E–5 

0.2422E–5 
*0.2392E–5 

0.6332E–5 
*0.6304E–5

0.1907E
*0.1

80 0.5511E–5 0.1772E–5 0.5834E–5 0.16

30 0.1149E–4 0.1216E–4 0.1491E–4 0.42

35 
0.1082E–4 0.9128E–5 0.1348E–4 0.1661E

40 0.1030E–

–5 
–5

0.1 0.1188E–3 0.1360 –4 

–5 0.1059E–3 0.1325E–4 0.1135E–3 0.1284E–4 

–5 
–5

0.1022E–3 0.12 0.1092E–3 0.1252E–4 

2E–4 0.1227 051E–3 0.1216E–4 

–5 
–5

0.9512E–4 0.1190E–4 0.9926E–4 0.1182E–4 

 

*: Results obtained by using the method discussed in [13]. 

 
m absolute errors for Example 4.2Table 2. The maximu . 

 3

kh -O  2

kO h -proposed method (15) proposed method (15) [for uniform mesh 1k  ] 

1   2   1   2   N 

0.1   0.01   0.1   0.01   0.1   0.01   0.1   0.01   

10 0.3582E–5 0.2318E–6 0.4054E–5 0.2022E–6 0.3318E–6 0.2421E–7 0.3844E–6 0.2100E–7 

15 
0.4972E–6 
*0.4818E–6 

0.8959E–7 
*0.8872E–7 

 

 

 

 

 

 

 

0.1422E–6
*0.1366E–6

0.8889E–7 
*0.8801E–7 

0.5756E–7 0.6250E–8 0.7224E–7 0.8181E–8 

20 0.1104E–6 0.5934E–7 0.1951E–6 0.3283E–7 0.1929E–7 0.1412E–8 0.1616E–7 0.1012E–8 

25 
0.1525E–7 
*0.1488E–7 

0.2785E–7 
*0.2740E–7

0.5790E–7
*0.5720E–7

0.6503E–8 
*0.6472E–8 

0.7782E–8 0.9215E–9 0.8269E–8 0.5440E–9 

30 0.4865E–8 0.1987E–8 0.1354E–7 0.2173E–8 0.3116E–8 0.3812E–9 0.3880E–8 0.4004E–9 

35 
0.4133E–8 
*0.4096E–8 

0.4344E–9 
*0.4312E–9

0.8218E–8
*0.8176E–8

0.7437E–9 
*0.7414E–9 

0.8868E–9 0.5381E–10 0.1614E–8 0.7818E–10

40 0.3373E–8 0.5659E–10 0.6534E–8 0.2147E–9 0.8617E–9 0.5733E–11 0.9210E–9 0.1817E–10

45 
0.3008E–8 
*0.3001E–8 

0.4234E–10 
*0.4228E–10

0.6166E–8
*0.6122E–8

0.8872E–10 
*0.8845E–10

0.5417E–9 0.3230E–11 0.7106E–9 0.7117E–11

50 0.2743E–8 0.2606E–10 0.5657E–8 0.5971E–10 0.4413E–9 0.1006E–11 0.4818E–9 0.4343E–11

55 
0.2174E–8 
*0.2170E–8 

0.1918E–10 
*0.1911E–10

0.4828E–8
*0.4810E–8

0.4815E–10 
*0.4804E–10

0.2830E–9 0.8716E–12 0.3636E–9 0.1156E–11

60 0.1676E–8 0.1210E–10 0.4138E–8 0.4104E–10 0.1978E–9 0.7677E–12 0.2442E–9 0.8821E–12

*: Results obtained by ethod 13]    using the m  discussed in [ . 
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