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Abstract 
 
The classification on the orbits of some Liénard perturbation system with several parameters, which is rela-
tion to the example in [1] or [2], is discussed. The conditions for the parameters in order that the system has a 
unique limit cycle, homoclinic orbits, canards or the unique equilibrium point is globally asymptotic stable 
are given. The methods in our previous papers are used for the proofs. 
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1. Introduction 
 
We shall consider the Liénard perturbation system   
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where a ,  ,   and k are positive real numbers. 
System (P1) has a unique equilibrium point at 3 3x a  
and the uniqueness of solutions of initial value problems 
for the system is guaranteed. In [1], it has been given that 
the unique equilibrium point of System (P1) for the case 
a = 0 and 1    is a global attractor but unstable. In 
[2], when 1   and a = 0, the result that System (P1) 
has the special orbit called “a Canard Homoclinic” has 
been announced by the method of non standard. Our aim 
is to classify the orbits of System (P1) completely by the 
values of the parameters. Thus, we improve the results of 
the papers [1,2]. 

Our main results are the following 
Theorem 1.1. System (P1) has homoclinic orbits lo-

cally if and only if (a = 0 and 8 k  ). 
Then the system has no limit cycles. 
Theorem 1.2. System (P1) has a unique limit cycle if 

and only if 0 1a  . 
Specially, if   and a  are sufficiently small, the 

orbit is called “a Canard Limit Cycle”.  
Theorem 1.3. The unique equilibrium point (0, 0) for 

System (P1) is globally asymptotic stable if and only if  

one of the following  

0a   or  0a   and 8 k   or 1a   

is satisfied.  
In Section 2, we shall see that System (P1) is trans-

formed to a usual Liénard system (see System (P3)) with 
the unique equilibrium point at the origin. In Section 3, 
the existence of the homoclinic orbit of the system will 
be discussed by using the method in [3]. In virtue of this 
result, the interesting fact that both the limit cycle and 
the homoclinic orbit of the system cannot coexist is giv-
en. If a > 0, a  and   are sufficiently small, it has 
been well-known by E. Benoît ([4]) that System (P3) has 
the orbit called “a Canard”. The orbit changes to the ho-
moclinic orbit for the system as a = 0. So the orbit has 
been called “a Canard Homoclinic” ([2]). In Section 4, 
the fact that the system has at most one limit cycle will 
be proved by using the method of [5]. When 0 1a  , 
a  and   are sufficiently small, the orbit‘Canard’ spi-

rals to a unique limit cycle of the system. We call the 
orbit “a Canard Limit Cycle”. In Section 5, it shall be 
seen from the facts of Section 3 and Section 4 that the 
unique equilibrium point for the system with the pa-
rameters in Theorem 1.3 is globally asymptotic stable. 
Finally, a phase portrait of System (P1) with respect to 
Theorem 1.1 will be presented in Section 6. 
 
2. Transformation to a Liénard System 
 
By using the transformation t t , x x   and 
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y y   for System (P1), the system is changed to the 
following 
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            (P2) 

Moreover, using the transformation x x    and 
  22y y     for    satisfying the equation 

3 0a   , System (P2) is transformed to the system 
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 (P3) 

System (P3) has a unique equilibrium point (0, 0) and the 
uniqueness of solutions of initial value problems is also 
guaranteed.  

We set 

    2( ) 2 3 2 1 6 1 ,
6

F x x x x
         

   2 2g 3 3x kx x x      

and  

   
0

d .
x

G x g     

From the value of  , the graph of the characteristic 
curve  y F x  is divided into four cases;  

 1 . . 1 ,i e a      1 0 . . 0 1 ,i e a      

 0 . . 0i e a    and  0 . . 0 .i e a    

We will note that the situation of the graph is deeply 
concerned in the qualitative property of the orbits. 
 
3. Proof of Theorem 1.1 
 
In System (P3), a trajectory is said to be a homoclinic 
orbit if its  - and  - limit sets are the origin. If Sys-
tem (P3) has a homoclinic orbit,   0F x   (or   0F x  ) 
in the neighborhood of the origin is necessary. Thus we 
have the assumption  0 . . 0i e a    in this section. 

Consider a function  x  with the condition 

[C1]      1, 0 0 and 0C xF x x      for 0.x   

The following result has been given in [3]. 
Lemma 3.1. System (P3) with 0   has homoclinic 

orbits if and only if there exists a function  x  with 
[C1] such that  

[C2]     0F x x   and 

       0  x F x x g x        

for 0 .x    

As the supplement function in the above lemma, take 

  2x rx   with 8 k   and 24 8r k       .  
Then we have 

      2 2 3 1 2 0
6

F x x x x r
      

and  

       

   
3

2 3 1 2 3 0
3

x F x x g x

x
rx r r k

 

  

    

    
 

for  0 3 1 2 2.x r     
Thus, we see that the conditions [C1] and [C2] are satis-
fied. Hence System (P3) has (local) homoclinic orbits.  

Moreover, the following is known by the Corollary 3 
in [3]. 

Lemma 3.2. If the conditions [C1] and [C2] hold for 

1x x    and 1 0,x   then System (P3) with 0   
has homoclinic orbits locally, but no limit cycles. 

Taking 1x    in the proof of Lemma 3.1, we see 
that the above lemma holds. Therefore, the proof of 
Theorem 1.1 is completed now. 

When a > 0, a  and   are sufficiently small, it has 
been well-known from [4] that System (P3) has the orbit 
called “a Canard”. The orbit “Canard” changes to the 
mentioned homoclinic orbit above as a = 0. So the orbit 
has been called “a Canard Homoclinic” by [2]. Thus, we 
see that there exists a canard homoclinic in System (P1). 
 
4. Proof of Theorem 1.2 
 
We shall assume the condition 1 0    (i.e. 0 1a  ). 
Then we can easily check that System (P3) has at least 
one limit cycle. In facts, the unique equilibrium point  
(0, 0) is a unstable focus by (0) 0F    and the all orbits 
are uniformly ultimately bounded (for the details see [6]). 
Thus, by the well-known Poincaré-Bendixson theorem, 
the system has a limit cycle (for instance see [7]).  

The following is a useful method ([5]) in order to 
guarantee that a Liénard system has at most one limit 
cycle.  

Lemma 4.1. If there exists a constant 0m   such 
that         0F x G x mF x g x    for  0 ,x   System 
(P3) has at most one limit cycle. 

We have  

         2 ; , ,
12

k
F x G x mF x g x x x m

      

where 
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Let 1 2m   and 1 4    in  ; ,x m  . Then we 
have  

 
2

21 1 3 3
; , 0 0 .
2 4 4 8

x x x x
               

     
 

Thus, we see from Lemma 4.1 that System (P3) has at 
most one limit cycle. So we conclude that System (P3) 
has a unique limit cycle if –1 < α < 0. 

Conversely, suppose that System (P3) has a limit cycle. 
Then if System (P3) doesn’t satisfy the condition –1 < α 
< 0, this contradicts to the existence of the limit cycle by 
Theorem 1.1 and the proof of Theorem 1.3 (see Section 
5). 

Therefore, the proof of Theorem 1.2 is completed now.  
In virtue of E. Benoît ([4]), if a > 0, a  and   are 

sufficiently small, then System (P3) has the orbit called 
“a Canard”. Then the orbit “Canard” spirals to a unique 
limit cycle of System (P3). So we call the special limit 
cycle “a Canard Limit Cycle”. 
 
5. Proof of Theorem 1.3 
 
In this section, we shall assume the condition 1    or 

0   (i.e. 0a   or 1a  ). The following is a powerful 
method (see [8]) to prove the non-existence of non-trivial 
closed orbits of a Liénard system.  

Lemma 5.1. If the curve     ,F x G x  has no in-
tersecting points with itself, then System (P3) has no non- 
trivial closed orbits. 

From the situation of the graph   ,y F x  we shall 
prove the theorem by dividing into four cases; 

i) 0 1 2,   
ii) 1 2 ,  
iii) 3 2 1,     
iv) 3 2.    
First, we shall discuss the case i). The discussion is 

similar to the method shown in [9].  
Let    1,2ip i   be the solutions of the equation 
  0F x   and    1 2 0.p p    Now we consider 

the equation 

   F x F   for  1 1.p        

This equation has two roots other than .x   Let  
 1 1u u   and  2 2u u   denote these roots. Then 

we have  1 21 u p      and 20 1 2 .u      
From a property of the curve     ,F x G x , we shall 

show that, if    1 2F u F u  for  1 1,p        
then    2 1 0.G u G u   

From    1 2F u F u  we have  

      2 2
1 1 2 2 1 22 3 2 1 6 1 0.u u u u u u           

Thus we get 

       
   

2 2
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2 2 2
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Since 1u  and 2u  are solutions of the equation  
    ,F x F   we have 

 
1 2

3 2 1

2
u u

 
    and  1 2 3 1 .u u     

Thus we get  

2 2 2
1 2

9
3 3 .

4
u u       

By substituting 1 2u u  and 2 2
1 2u u  to    2 1G u G u , 

we have 

       2 1 2 1 ,
4

k
G u G u u u L

     

where      3 23 3 2 9 4 27 8.L          
Then we have   0L    for all   and  0L   

27 8 0  . Thus we get   0L    for 0.   
From these facts and 2 1 0u u  , if 0  , we conclude 

that      2 1G u G u G    for  1 1p       . 
Namely, the curve     ,F x G x  has no intersecting 
points with itself. This means that System (P3) with 
0 1 2   has no non-trivial closed orbits. 

Similarly we can check that   0L    for 1 2   and 
  0L    for 1.    Thus we have    2 1 0G u G u   

for 1 2   or 1.    Therefore, we conclude that 
System (P3) also has no non-trivial closed orbits for the 
another cases ii), iii) and iv).  

We say that the equilibrium point  0,0E  is globally 
asymptotically stable if E is stable and every orbit of 
System (P3) tends to E. We will see the global asymp-
totic stability of E from the following conditions: 

[i] all orbits of System (P3) are bounded in the future, 
[ii] System (P3) has no non-trivial closed orbits, 
[iii] System (P3) has no homoclinic orbits, 
[iv] E is asymptotic stable.  
The condition [i], [ii] or [iii] has been checked in Sec-

tion 3, Section 4 or the mentioned fact above. So we 
shall check the condition [iv].  

Suppose that E is not stable. Then, by checking the 
direction of the vector     ,y F x g x   for System 
(P3), we have that every positive semi-trajectories of 
System (P3) starting in the neighborhood of E keep on 
rotating around E and go away from E. Hence, by the  
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Figure 1. a = 0, λ = 1 and ε = k = 1/100. 
 
fact [i] and the Poincaré-Bendixson theorem, the system 
has a closed orbit. This contradicts to the fact [ii]. It fol-
lows from the direction of the vector field that E is as-
ymptotically stable.  

Conversely, suppose that E is globally asymptotic sta-
ble. Then we see from Theorem 1.1 and 1.2 that System 
(P3) must satisfy the condition in Theorem 1.3. 

Therefore, the proof of Theorem 1.3 is completed 
now. 

Remark. In the case of ( 0   and 8 0)k    or 
1   , E is a non-hyperbolic equilibrium point. We see 

from the fact    2 1 0G u G u   and [10] that E is a 
stable focus. Thus, a unique equilibrium point of System 
(P1) cannot be “Center”. 
 
6. A Numerical Example 
 
We shall present a phase portrait of System (P1). We 

consider the example of the case 0,a   1   and  
1 100.k    Then we have 8 .k   Thus we shall 

see that the system has a homoclinic orbit, but no limit 
cycles as is shown in the Figure 1. 
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