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Abstract 
This paper proposes a novel four-dimensional approach to the structural 
study of protein complexes. In the approach, the surface of a protein molecule 
is to be described using the intersection of a pair of four-dimensional triangu-
lar cones (with multiple top vertexes). As a mathematical toy model of pro-
tein complexes, we consider complexes of closed trajectories of n-simplices 
( 2,3,4,n =  ), where the design problem of protein complexes corresponds 
to an extended version of the Hamiltonian cycle problem. The problem is to 
find “a set of” closed trajectories of n-simplices which fills the n -dimensional 
region defined by a given pair of 1n + -dimensional triangular cones. Here we 
give a solution to the extended Hamiltonian cycle problem in the case of 

2n =  using the discrete differential geometry of triangles (i.e., 2-simplices). 
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1. Introduction 

Proteins are called the workhorse molecules of life, playing a crucial role in es-
sentially every activity of living organisms. A protein molecule is made from one 
or more long chains of amino acids, which normally folds into a well-defined 
three-dimensional structure. It is the precise shape of the folded structure that 
determines the function of proteins in a cell. 

Most cellular processes are not carried out by random collisions between 
freely diffusing proteins. Proteins usually interact with other proteins and as-
semble into complexes to carry out their function [1] [2] [3]. It is therefore cru-
cial to understand and control the formation of protein complexes for under-
standing biological activity in the cell. In particular, structural characterization 
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of the components of complexes, such as shape complementarity at protein- 
protein interfaces, is the key to understanding the function of proteins. 

In the last two decade, huge number of protein structures is experimentally 
determined via high-throughput structural genomics pipelines. However expe-
rimental determination of their functions is lagged far behind the pace due to 
the labor-intensive and time-consuming nature of the process. Urgently needed 
are improved computational approaches to function prediction of the proteins 
with known structure [4]. 

It is however extremely difficult to describe the shape of proteins without vis-
ual inspection on a three-dimensional display. The fundamental question is how 
to describe the geometry of such a highly complicated shape as proteins. 

In most of previous studies, the surface of proteins is described using concepts 
developed in computational geometry and topology, such as the Voronoi dia-
gram, the Delaunay simplices, and the alpha shape representation [5] [6] [7]. As 
for protein complexes, the topological arrangement of their subunits is usually 
represented as a graph [8] [9]. 

The Hamiltonian cycle problem on a regular triangular mesh: a) A region in a 
regular triangular lattice. b) A Hamiltonian cycle through the region. 

An extended version of the Hamiltonian cycle problem on a regular triangular 
mesh: de nove design of complexes of closed trajectories of triangles. Shown are 
all the three sets of closed trajectories of triangles which cover the specified re-
gion. In this case, the region has no Hamiltonian cycle. 

In this paper, we propose a novel mathematical toy model which is intended 
for the structural study of protein complexes. While physics and mathematics 
have been inspired each other in their long relationship, the relationship be-
tween biology and mathematics is still to come. In our case, it is the relation be-
tween real protein complexes and the new mathematical toy model. That is, it is 
critical to justify why such new toy models are indeed relevant and practically 
useful. 

To justify the usefulness of mathematical tools in biology, I’d like to mention 
the case of the Estrada index introduced by Ernesto Estrada [10] in 2000. The 
Estrada index was originally proposed as a molecular structure descriptor, and 
the protein structure has been investigated by using the Estrada index and the 
normalized Laplacian Estrada index [11] extensively in mathematics in the past 
decade. The Estrada indices have also found a range of applications in chemistry 
and complex networks. These days, a dynamic version of the Estrada indices are 
proposed [12] to study large-scale time-evolving networks which arise naturally 
in a variety of areas from peer-to-peer telecommunication to online human so-
cial behavior to neuroscience. 

As for other mathematical approaches to protein structure analysis, most of 
them are application of known mathematical techniques to the structural study 
of proteins, such as, distance geometry [13], the knot theory [13], and persistent 
homology [14]. Differential geometric techniques are also applied to the analysis 
of the backbone structure of proteins [15]. 



N. Morikawa 
 

150 

In our model, instead of open chains of amino acids, we consider closed tra-
jectories of n-simplices using the discrete differential geometry of n-simplices 
( 2,3,n =  ) [16] [17]. Then, interaction of open chains of amino acids (i.e., 
proteins) is mimicked with “recombination”, such as fusion and fission, of 
closed chains of n-simplices. The advantage of our model lies in the correspon-
dence between the shape of a complex of closed trajectories of n-simplices and (a 
projection image of) the intersection of a pair of 1n + -dimensional cones. 

Using the mathematical toy model, we will consider the problem of designing 
protein complexes from scratch (de novo design of protein complexes [18] [19] 
[20]). That is, we will consider the problem of finding a set of closed trajectories 
of n-simplex that forms a specified n-dimensional shape: de nove design of 
complexes of closed trajectories of n-simplices. For simplicity, we consider the 
case of 2n =  only. 

2. Problem 

The problem we consider here is an extended version of the Hamiltonian cycle 
problem on a regular triangular mesh. A Hamiltonian cycle of triangles (i.e., 2- 
simplices) is a closed trajectory through a given triangular mesh which visits 
each triangle exactly once, where the trajectory passes triangles through a com- 
mon edge. As shown in Figure 1(a), meshes are given as a region in a two-di- 
mensional regular triangular lattice. In this case, a Hamiltonian cycle is obtained 
as shown in Figure 1(b). 

To study the formation of a complex of closed trajectory of triangles, we con-
sider not only a single but also multiple closed trajectories of triangles to cover 
the given region. In the case of Figure 2, two closed trajectories are required. 

In what follows, we will propose a novel method for finding all the sets of 
closed trajectories which cover a given region of triangles. 

3. Differential Structure on the Mesh 

To define a differential structure on a regular triangular mesh, we stack unit 
cubes diagonally in the three-dimensional Euclidean space 3E  (Figure 3(a)). 

By piling up unit cubes orderly in the direction of ( )1, 1, 1− − −  in 3E , a 
“mountain range-like shape object” consisting of multiple triangular cones is 
obtained as shown in the upper part of Figure 3(c). If we draw a thick straight 
 

 
(a)                                                   (b) 

Figure 1. The Hamiltonian cycle problem on a regular triangular mesh. (a) A region in a 
regular triangular lattice; (b) A Hamiltonian cycle through the region. 
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line diagonally on the three upper faces of each unit cube, we will obtain a 
“drawing” on the slope of the mountain range-like shape object (Figure 3(a) and 
Figure 3(d)). It is the drawing which specifies a flow of “slant” triangles (along 
the thick polygonal lines) on the slope. 

Then, we define a flow of “flat” triangles on a plane which is perpendicular to 
the direction of ( )1,1,1  in 3E  by projecting the flow of “slant” triangles on 
the plane (the lower part of Figure 3(c))). In the case of Figure 3(c), we obtain a 
closed trajectory of flat triangles of length 30 and others. In this section we give 
the precise definition of the differential structure on a regular triangular mesh. 

For space saving purposes, we use monomial in indeterminates 0 1,x x  and 

2x  to represent the coordinate of points in the three-dimensional Euclidean 
space. For example, point ( ) 3, ,p l m n= ∈  is identified with monomial  

0 1 2
l m nx x x , where   denotes the set of all integers. Then, points ( ), ,l k m n+ , 
( ), ,l m k n+  and ( ), ,l m n k+  are represented by monomials 0

kpx , 1
kpx  and 

2
kpx  respectively. (Note that i j j ix x x x=  for all pairs of i and j.) 

3.1. Triangle Tiles 

Shown in the upper part of Figure 3(a) is a unit cube with a thick straight line 
drawn diagonally on each of the upper three faces, which is located at the origin 
 

 
(a)                            (b)                         (c) 

Figure 2. An extended version of the Hamiltonian cycle problem on a regular triangular 
mesh: de nove design of complexes of closed trajectories of triangles. Shown are all the 
three sets of closed trajectories of triangles which cover the specified region. In this case, 
the region has no Hamiltonian cycle. 
 

 
(a)           (b)               (c)                             (d) 

Figure 3. Differential structure on a regular triangular mesh. (a) A unit cube and its 
projection on a plane perpendicular to the direction of ( )1,1,1  in 3E ; (b) The pro- 

jection of “slant triangles” onto a “flat triangle”; (c) A “mountain range-like shape object” 
obtained by piling up unit cubes orderly along the diagonal direction, whose peaks are 

( )0 1, 0, 0P = , ( )1 0, 0,1P = , ( )2 2, 2,1P = − , ( )3 0,3, 0P =  and ( )4 2, 2, 1P = − ; (d) A 

“drawing” on the slope of the mountain range-like shape object of (c). 
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O of a three-dimensional Cartesian coordinate system defined by three axes 0ϕ , 

1ϕ  and 2ϕ . Let 1aP = , 0bP x= , 0 1cP x x= , and 3
1dP x= ∈ . Then, the upper 

face a b c dP P P P  on the 0 1p p -plane is divided into two “slant triangles”, a b cP P P  
and a d cP P P , by the line segment a cP P . The other upper faces are also divided 
into two “slant triangles” similarly. 

Shown in the lower part of Figure 3(a) is the projected image of the unit cube 
on a plane which is perpendicular to the direction of ( )1,1,1  in 3E . The unit 
cube at O is projected onto a hexagon, which is divided into six “flat triangles” 
by the image of the three thick line segments on the cube. 

The schematic drawing of Figure 3(b) shows the projection of slant triangles 
onto a flat triangle. Using the projection, we will define a discrete differential 
structure on the set of flat triangles, i.e., a regular triangular mesh. 

Let 3Sym  be the symmetric group on a finite set of three symbols. For 
3a∈  and 3Symρ ∈ , let ( ) ( )( 0 1a x xρ ρ

 
   denote the convex hull of three points 

a , ( )0axρ  and ( ) ( )
3

0 1ax xρ ρ ∈ , i.e., 

( ) ( ) ( )( ) ( ) ( )( )1 2
0

0 1 20 1 0 0 1

3
0 1 2 0 1 2

: | , , ,

, , 0, 1 ,

a x x a ax ax x
λ λλ

ρ ρ ρ ρ ρ λ λ λ

λ λ λ λ λ λ

  = ∈  
≥ + + = ⊂





 

where   denotes the set of all real numbers. 
For example, the “slant triangle” a d cP P P  defined above is denoted by  

[ ] ( ) ( )1 0 0 1x x a x xρ ρ
 =   , where 0 0 0

0 1 2 1a x x x= =  and ( )0,1ρ = . 
Definition 3.1 We define the set 2S  of all slant (triangle) tiles by 

( ) ( ){ }3
2 30 1: | , .S a x x a Symρ ρ ρ = ∈ ∈    

The set 2B  of all flat (triangle) tiles is defined as the quotient of 2S  by “shift 
operator” σ , i.e., 

2 2: ,B S σ=  

where ( ) ( )( ) ( ) ( ) ( )0 1 0 1 2:a x x ax x xρ ρ ρ ρ ρσ    =    . 

We identify 2B  with the projection image of “slant triangles” on a plane 
perpendicular to vector ( )1,1,1  mentioned above. Then, the schematic drawing 
of Figure 3(b) shows the equivalence class of a slant tile 2s S∈  and the corres-
ponding flat tile 2mods Bσ ∈ . 

3.2. Tangent Space at a Flat Triangle Tile 

A tangent bundle-like local structure 2TB  is defined on 2B  by 
Definition 3.2 2 2 ,TB B π→  

( )
3

2 2

3
2 2

: ,

: , mod mod .

TB S

TB B s s

σ

π π σ σ

 =


→ =
 

Let 2s S∈ . Then, we obtain 

( ) ( ) ( ){ }1 3 3 2 3mod mod , mod , mod .s s s sπ σ σ σ σ σ σ− =  
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Definition 3.3 (Tangent space) For 2s S∈ , we call ( )1 modsπ σ−  the tan-
gent space of 2B  at mods σ . 

Definition 3.4 For ( ) ( ) 20 1s a x x Sρ ρ
 = ∈  , the gradient Ds  of s  is defined by 

( ) ( ) ( ) ( )( )0 1 1 0: .Ds x x x xρ ρ ρ ρ= =  

Then, we can identify 2TB  with 

{ }2 0 1 1 2 0 2, ,B x x x x x x×  

via the one-to-one correspondence 

( )3mod ~ mod , .s s Dsσ σ  

Note that the monomial Ds  of 2s S∈  corresponds to the direction of the 
thick line on the “slant triangle” s  which is described in subsection 3.1 above 
(Figure 3). 

3.3. Vector Field on B2 

Having defined a tangent-bundle like structure ( )2 2, ,TM B π  on a set of trian-
gles, now we consider the inverse of the projection map π . 

Definition 3.5 A section γ  of ( )2 2, ,TB B π  is a map 2 2B TB→  such that 

( )( ) 2for all .t t t Bπ γ = ∈  

For a section γ  of ( )2 2, ,TB B π , the value of γ  on 2t B∈  is given by 

( ) 3
2modt s TBγ σ= ∈  

for some ( ) ( ) 20 1s a x x Sρ ρ
 = ∈  . Let Ds  and Us  be two adjacent slant tiles of 

s  in 2S  defined by 

( ) ( )

( ) ( )

(1) 20 0

20 2

: ,

: .

D

U

s ax x x S

s a x x S

ρρ ρ

ρ ρ

  = ∈  


 = ∈  

 

 
(a)             (b)                   (c)                     (d) 

Figure 4. Local trajectory. (a) The local trajectory specified by [ ]1 0 2s x x S= ∈ .  

[ ]1 0 1Ds x x x=  and [ ]1 2Us x x= ; (b) The smoothness condition on a section γ . Colored 

gray is [ ]( )1 0 modx xγ σ  and colored white is [ ]( )1 2 modx xγ σ . Shown above are the 

gradient of the white tile. The gradient of the gray tile is 0 1x x ; (c) Smooth sections of 

( )2 2, ,TB B π  on a hexagonal region composed of six flat tiles; (d) Sections of  

( )2 2, ,TB B π  which dose not satisfy the smoothness condition. The corresponding sin- 

gular flat tiles are colored gray in the lower part. 
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Then, the set of three slant tiles, { }, ,D Us s s , makes up a “continuous moun-
tain path” along the thick polygonal line (i.e., along the gradient Ds ) at s  in 

2S  (Figure 4(a)). By projecting these slant tiles on 2B , we obtain a trajectory 
of flat tiles of length three at mods σ . 

To consider the “smoothness” of the section γ , we firstly define a local tra-
jectory passing through 2t B∈  as follows. 

Definition 3.6 Let 2s S∈ . The local trajectory specified by s  is the set 

{ } 2mod , mod , mod ,D Us s s Bσ σ σ ⊂  

of three consecutive flat tiles passing though mods σ . 
Let γ  be a section on 2B . Then, ( )tγ  ( 2t B∈ ) can assume one of the three 

values of the corresponding tangent space ( )1 tπ − . For example, ( )modUsγ σ  
can assume one of the three values of 

( ) [ ] [ ] [ ]{ }1 1 3 3 3
0 0 1 1 2 1 2 0mod mod , mod , mod ,Us x x x x x x x xπ σ σ σ σ− −=  

where [ ]1 0 2s x x S= ∈  and [ ]1 2Us x x= . 
However some of the slant tiles are not connected smoothly to ( )modsγ σ  

in 2TB . In this case, 

[ ] ( )3
1 2 0 0 2mod ~ mod ,Ux x x s x xσ σ  

is not connected smoothly to ( ) 3mod mods sγ σ σ=  as shown in Figure 4(b). 
To obtain a “smooth” trajectory, we will impose a condition on sections of 

( )2 2, ,TB B π . 
Definition 3.7 (Smoothness condition) Let γ  be a section of ( )2 2, ,TB B π  

and 2t B∈ . Let ( ) 3modt sγ σ= , where ( ) ( ) 20 1s a x x Sρ ρ
 = ∈  . The smoothness 

condition on γ  at t  is defined by 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

0 1 0 2

0 1 1 2

mod or ,

mod or .
U

D

D s x x x x

D s x x x x
ρ ρ ρ ρ

ρ ρ ρ ρ

γ σ

γ σ

 =


=
 

In what follows, we will only consider the sections of ( )2 2, ,TB B π  which sa-
tisfies the smoothness condition at every flat tiles of 2B . 

Remark ( )0xρ  corresponds to (the direction of) the contact edge between s  
and Us . ( )1xρ  corresponds to (the direction of) the contact edge between s  
and Ds . 

Definition 3.8 (Vector field) A vector filed on 2B  is a section of  
( )2 2, ,TB B π  which satisfies the smoothness condition at every flat tiles of 2B . 

Shown in Figure 4(c) are all the six types of “local” smooth sections of 
( )2 2, ,TB B π  on a hexagonal region composed of six flat tiles of 2B . By patching 
these “local” sections together, we will obtain a “global” section of ( )2 2, ,TB B π . 

Note that some of the “global” sections do not satisfy the smoothness condi-
tion as shown in Figure 4(d). The singular flat tile of a section γ  of  
( )2 2, ,TB B π  is the flat tile where γ  dose not satisfy the smoothness condition. 
A singular flat tile is assigned either no gradient (i.e., without thick edge), two 
gradients (i.e., two thick edges), or three gradients. 

Let [ ]{ } 2|t i i I Bµ = ∈ ⊂  be a trajectory of a vector field V, where I is a sub-
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set of the set   of natural numbers. Then, we can define the second derivative 
of the trajectory as follows. 

Definition 3.9 The second derivative [ ]( )2D V t i  of V along µ  is a bi-
nary-valued (U or D) function defined by 

[ ]( ) [ ]( ) [ ]( ) [ ]( )
[ ]( )

2
2

2

, if 1
1 :

, otherwise

D V t i DV t i DV t i
D V t i

D V t i

 + =+ = 
−

 

where :D U− =  and :U D− = . 
In [16], the conformation of a protein backbone structure is encoded into a 

16-valued sequence using the second derivative of trajectories of tetrahedrons 
(i.e., 3-simplices). 

3.4. Vector Fields Induced by Tangent Cones 

In the beginning of this section, we constructed a “mountain range-like shape 
object” by piling up unit cubes diagonally. (Using the terminology defined 
above, it is a section of ( )2 2, ,TB B π .) 

Unit cubes are piled up to form a union of triangular cones, which can be 
identified by its top vertexes. For example, the object shown in the upper part of 
Figure 3(c) is identified by five peaks 0P , 1P , 2P , 3P , and 4P . 

Definition 3.10 For 3A⊂  , a tangent cone 3ConeA⊂   is defined by 

{ }0 1 2
0 1 2 0 1 2: | and , , 0 .l l lConeA px x x p A l l l= ∈ ≥  

We denote the set of all the “top vertexes” of ConeA  by ( )p ConeA . 
Then, the mountain range-like shape object of Figure 3(c) is given by 

{ }2 2 3 2 2 1
0 2 0 1 2 1 0 1 2, , , , .Cone x x x x x x x x x− −  

For a tangent cone c, let dc  be the set of all the slant tiles on the surfaces of 
c, i.e., 

( ) ( ) ( ) ( ) ( ){ }20 1 0 0 1: | , and are on the surfaces of .dc a x x S a ax ax x cρ ρ ρ ρ ρ
 = ∈   

For 3z∈  and c ConeA=  ( 3A⊂  ), set 

( ) { }{ }0 1 2
0 1 2 0 1 2: max min , , | .l l l

c p c
l z l l l z x x x p

∈
= =  

Then, dc  is given as follows. 
Lemma 3.11 For c ConeA=  ( 3A⊂  ), 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }20 1 0 0 1| 0c c cdc a x x S l a l ax l ax xρ ρ ρ ρ ρ
 = ∈ = = =   

Proof. Let 3,z p∈ . Then, 0 1 2
0 1 2
l l lz x x x p=  for some ( ) 3

0 1 2, ,l l l ∈ . ( )0 1 2, ,l l l  
is the coordinate of z with respect to “origin” p. In particular, 

{ }
{ }( ) { }

0 1 2

0 1 2

, , 0,

min , , 0.

z Cone p l l l

z d Cone p l l l

∈ ⇔ ≥

∈ ⇔ =
 

The result follows immediately. 
The surfaces of a tangent cone c induce a vector field of ( )2 2, ,TB B π  as fol-

lows. 
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Definition 3.12 For c ConeA=  ( 3A⊂  ), a vector field cV  induced by c is 
defined by 

( ) ( )3
2: mod ,cV t s t Bσ= ∈  

where s dc∈  such that modt s σ= . The value ( )cV t  is uniquely determined 
at every flat tile of 2B . 

For example, in Figure 3(c), the thick polygonal lines on the surfaces of the 
tangent cone { }2 2 3 2 2 1

0 2 0 1 2 1 0 1 2, , , ,Cone x x x x x x x x x− −  shows the vector field induced 
by the tangent cone. 

Note that all the smooth sections shown in Figure 4(c) are induced by a tan-
gent cone as indicated in the figure. 

Proposition 3.13 For any vector field V, there exists a tangent cone c such 
that cV V= . 

Proof. Let V be a vector filed on 2B  and let { }|iE U i= ∈  be a decompo-
sition of 2B  into hexagonal regions of six flat tiles: 

{ }2 | .iB U i= ∈


  

For iU E∈ , we let 
iUV  denote the restriction of V on the hexagon iU . 

Because of the smoothness condition, V is locally induced by a tangent cone 
as shown in Figure 3(c). That is, there exists a tangent cone ic  for each  

iU E∈  such that 
ii i

cU U
V V= , i.e., 

( ) ( ) for .
ic iV t V t t U= ∀ ∈  

Moreover, by considering all combinations, we can assume 

j kj k j k
c cU U U U

V V ∪∪ ∪
=                      (1) 

for any pair of adjacent hexagons jU  and kU , where j kc c∪  denote the un-
ion of two tangent cones jc  and kc , i.e., ( ) ( )j kCone p c p c∪ . 

Suppose that cV V≠  for ii
c c

∈
=





. Then, 

such that .
a aa

a c c UU
U E V V∃ ∈ ≠  

In particular, b∃ ∈  such that 

( ) ( )0 0 0such that .
ba c ct U V t V t∃ ∈ =  

In other words, tangent cone ac  is (partially) covered by tangent cone bc  
on aU . 

Then, there exists a circular loop Θ  of hexagons of E  around bU  such 
that 

such that and for ,
e e b i i be e i i

e c c c c c c iU U U U
U V V V V U∪ ∪∃ ∈Θ ≠ = ∀ ∈Ω  

where Ω  is the set of all the hexagons of E  contained in the circular region 
surrounded by Θ . Because of the shape of the tangent cones, fU∃ ∈Ω  such 
that fU  is adjacent to eU  and ec  is (partially) covered by fc  on eU , i.e., 

( ) ( ) ( )1 1 1 1such that .
f ee c c ct U V t V t V t∃ ∈ = ≠  

In particular, 
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,
e e fe e

c c cU U
V V ∪≠  

which is in contradiction to Equation (1). 

4. The Boundary of a Closed Trajectory 

Now let’s go back to our problem described in section 2. Using the terminology 
given in section 3, the problem is stated as follows. 

Problem 4.1. (De nove design of complexes of closed trajectories of triangles) 
Given a region in 2B , find all the vector fields on 2B  which give a decomposi-
tion of the region into closed trajectories. 

If there exists such a vector field, we can describe the boundary of the region 
using a pair of three-dimensional cones as explained in this section. 

The cones are defined in another lattice which is associated with 3 . Recall 
that the three-dimensional lattice 3  is generated by 0x , 1x  and 2x . The 
associated lattice is defined as follows. 

Definition 4.2. The conjugate lattice 3  is the lattice which is generated by 

0 1x x , 1 2x x  and 0 2x x . 
Note that the gradient of a slant tile corresponds to one of the three coordi-

nate axes of the conjugate lattice 3 . In particular, a trajectory of slant tiles cor-
responds to a zig-zag walk (with gaps) on the grid of 3 . 

Two types of cones are defined in 3 : 
Definition 4.3. For 3A⊂  , a cotangent cone * 3Cone A⊂   is defined by 

( ) ( ) ( ){ }1 20*
1 2 0 2 0 1 0 1 2: | and , , 0 .l llCone A p x x x x x x p A l l l= ∈ ≥  

For 3A⊂  , a cotangent roof * 3Roof A⊂   is defined by 

( ) ( ) ( ){ }* 3 *
1 2 0 2 0 1: | 0 such that , , .N NNRoof A p N p x x p x x p x x Cone A= ∈ ∃ > ∈  

In other words, *Roof A  is obtained by putting as many unit cubes as possi-
ble on *Cone A . 

For example, shown in Figure 5(c) is 
 

 
(a)                            (b)                           (c) 

Figure 5. Cotangent roofs associated with a closed trajectory on 2B . (a) The boundary of 
the closed trajectory of Figure 3(c); (b) The cotangent roof of the region, where  

1
0 2Q x−= , 1

1 0Q x−=  and 2
2 0 1Q x x−= ; (c) The inverted cotangent roof of the region, where 

3 3
3 0 1 2Q x x x=  and 2 4 3

4 0 1 2Q x x x= . 
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{ } { }( )* 2 2 3 2 2 1 * 1 1 2
0 2 0 1 2 1 0 1 2 2 0 0 1, , , , , , .Roof x x x x x x x x x Cone x x x x− − − − −=  

Inverted cones are also defined similarly: 
Definition 4.4. For 3A⊂  , an inverted cotangent cone * 3ICone A⊂   is 

defined by 

( ) ( ) ( ){ }1 20*
1 2 0 2 0 1 0 1 2: | and , , 0 .l llICone A p x x x x x x p A l l l= ∈ ≤  

For 3A⊂  , an inverted cotangent roof * 3IRoof A⊂   is defined by 

( ) ( ) ( ){ }* 3 *
1 2 0 2 0 1: | 0 such that , , .N NNIRoof A p N p x x p x x p x x ICone A= ∈ ∃ < ∈  

For example, shown in Figure 5(c) is 

{ } { }( )* 2 2 3 2 2 1 * 3 3 2 4 3
0 2 0 1 2 1 0 1 2 0 1 2 0 1 2, , , , , .IRoof x x x x x x x x x ICone x x x x x x− − =  

Then, the boundary of a closed trajectory of a vector field on 2B  can be de-
scribed using a pair of a cotangent roof and an inverted cotangent roof as shown 
below. 

Let w be a cotangent cone. We denote by ( )w∂  the set of all the lattice 
points of 3  which resides on the surface of the cone w. ( )w∂  is called the 
boundary lattice points of w. The boundary lattice points of an inverted cotan-
gent cone is also defined in the same manner. 

Proposition 4.5. Let cV  be a vector field of ( )2 2, ,TB B π  induced by a tan-
gent cone c whose top vertexes ( )p c  are in 3 . Let [ ]{ }|t i i Iµ = ∈  ( I ⊂  ) 
be a closed trajectory of cV . Let Rµ  be the region swept by the trajectory µ . 

Then, there exist a cotangent cone w and an inverted cotangent cone iv  such 
that the boundary of Rµ  is uniquely specified by the intersection of ( )w∂  and 
( )iv∂ . 
The pair ( ),w iv  is called a boundary pair (of the region Rµ ) and the speci-

fied region is denoted by ( ),w ivR , i.e. ( ),w ivR Rµ= . 
Proof. Let [ ]{ }|s i i IΛ = ∈  be a subset of 2S  such that  

[ ]( ) [ ] 3modcV t i s i σ=  ( i I∈ ). 
Because of the smoothness condition, we may assume slant tiles of Λ  are 

connected “smoothly” in 2S  without any gap. Let A be the set of all vertexes of 
the slant tiles of Λ . Define cones w and iv by 

*

*

,

.

w Roof A
iv IRoof A

 =


=
 

Then, the boundary of Rµ  is obtained by connecting the points of 
( ) ( )( )w ivπ ∂ ∩∂  on 2B , where π  denotes the projection of the lattice points 

of 3  on the corresponding vertexes of flat tiles of 2B . 
Remark ( )*Roof p c  is not defined if ( ) 3p c ∉ . 
For example, in the case of the closed trajectory given in Figure 3(d), the 

boundary of Rµ  is uniquely specified by 

{ }
{ }

*
0 1 2

*
3 4

, , ,

,

w Cone Q Q Q

iv ICone Q Q

 =


=
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as shown in Figure 5. 
Corollary 4.6. Let R be a region in 2B . Then, R has a closed-trajectory de-

composition if and only if there exists a pair of a cotangent cone w and an in-
verted cotangent cone iv such that ( ),w ivR R= . The pair ( ),w iv  is also called a 
boundary pair (of R). 

Proof. (→ ) Let { }|i i Iµ ∈  ( I ⊂  ) be a closed-trajectory decomposition of 
R and let ( ){ }, |i iw iv i I∈  be their boundary pairs. Set 

,

.
ii I

ii I

w w

iv iv
∈

∈

 =


=





 

Then, ( ),i i iw ivi I i I
R R Rµ∈ ∈
= =
 

. 

(← ) A closed-trajectory decomposition of R is induced by  
( ) ( )Cone w iv∂ ∩∂ . 

Remark Let   be the set of all tangent cones. Let   be the set of all cotan-
gent cones. Let   be the set of all the regions in 2B  which are defined by 
boundary pairs. Then, an  -valued function is defined on ×   by  

*,ConeA Cone B  := “the region in 2B  which is specified by the intersection of 
ConeA  and *Cone B  “. In particular, 

( ) ( ) ( ),, ,w ivCone w iv w R∂ ∩∂ =  

for a boundary pair ( ),w iv . 

5. Extended Hamiltonian Cycle Problem on B2 
5.1. Problem 

By Corollary 4.6, we can paraphrase Problem 4.1 as follows. 
Problem 5.1. (De nove design of complexes of closed trajectories of trian-

gles) Given a boundary pair ( ),w iv , find all the tangent cones which induce 
such a vector field that gives a decomposition of the region ( ),w ivR  into closed 
trajectories (Figure 6). 
 

 
(a)                                                       (b) 

Figure 6. The extended Hamiltonian cycle problem on 2B  (See also Figure 1). (a) A 
pair of a cotangent cone and an inverted cotangent cone which specifies the boundary of 
a region: *Roof A  and *IRoof B , where 3,A B ⊂  ; (b) A tangent cone which induces 
such a vector field whose trajectories don’t traverse the specified boundary: Cone C , 

where ( ) ( )* *C Roof A IRoof B= ∂ ∩ ∂ . 



N. Morikawa 
 

160 

One of the solutions to the problem is obtained immediately, i.e.,  
( ) ( )Cone w iv∂ ∩∂  (Figure 6(b)). In this section, we consider how to find all 

solutions to the problem. 

5.2. Closed-Trajectory Decomposition 

Definition 5.2. For 3A⊂  , a tangent roof 3RoofA⊂   is defined by 
( ) ( ) ( ){ }3

0 1 2: | 0 such that , , .N N NRoof A p N p x p x p x Cone A= ∈ ∃ > ∈  In 
other words, RoofA  is obtained by putting as many unit cubes as possible on 
ConeA . 

Definition 5.3. For 3A⊂  , a (tangent) ceiling 3CeilA⊂   is defined by 

: ,Ceil A Cone C=  

where 

{ }* * * * 3| and .C B Roof B Roof A IRoof B IRoof A= = = ⊂


  

For 3A⊂  , a (tangent) floor 3FloorA⊂   is defined by 
: ,Floor A Cone C=  

where 

{ }* * * * 3| and .C B Roof B Roof A IRoof B IRoof A= = = ⊂


  

It follows immediately that 

( )
( )

,
,

,

Floor A Ceil A
Roof p Floor A Roof A

Roof p Ceil A Roof A

 ⊂


=
 =

 

where ( )p c  denotes the set of all the “top vertexes” of a cone c. 
For a boundary pair ( ),w iv , let ( ),w ivW  be the set of all the tangent cones c 

such that 

,Floor C c Ceil C⊂ ⊂  

where ( ) ( )C w iv= ∂ ∩∂ . 
Now all solutions to Problem 5.1 are obtained as follows: 
Proposition 5.4. ( ),w ivW  induces all decompositions of ( ),w ivR  into closed 

trajectories. 
Proof. (→ ) Let VF  be the set of all the vector fields whose trajectories don’t 

traverse the boundary of ( ),w ivR . Then, 

( ),for anyc w ivV VF c W∈ ∈  

because ( ) ( )( ) ( )* *, ,Roof p c IRoof p c w iv= . In particular, cV  induces a de-
compositions of ( ),w ivR  into closed trajectories. 

(← ) Given a decomposition of ( ),w ivR  into closed trajectories. Then, it can 
be extended to a vector field V on 2B . For example, a flow of triangles on  

( )2 ,\ w ivB R  is induced by 

( ) ( ) .Cone w ivV ∂ ∩∂  

Then, ∃  a tangent cone c such that cV V=  by proposition 3.13. Then 
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( ) ( )( ) ( )* *, ,Roof p c IRoof p c w iv=  

because trajectories of cV  don’t traverse the boundary of ( ),w ivR . 
For example, Figure 7 shows all solutions to the problem for the boundary 

pair of Figure 5. 

5.3. Fusion and Fission of Closed Trajectories 

For a vector field V on 2B  and a region R of 2B , let ( ),Dec V R  be the set of 
all closed trajectories of V in R. ( ),Dec V R  gives a closed-trajectory decompo-
sition of R if it exists. The number of the closed trajectories of ( ),Dec V R  is 
denoted by ( )# ,Dec V R . 

For a boundary pair ( ),w iv , let 0c  and 1c  ( 0 1c c≠ ) be two tangent cones 
of ( ),w ivW . Then, vector fields 0cV  and 1cV  induce two different decomposi-
tions of ( ),w ivR : ( )( )0 ,,c w ivDec V R  and ( )( )1 ,,c w ivDec V R . The correspondence 

( )( ) ( )( )0 1, ,, ,c cw iv w ivDec V R Dec V R↔  

gives a “recombination” of closed trajectories from one to the other. In particu-
lar, it gives a “fusion” and “fission” of closed trajectories on ( ),w ivR  if 

( )( ) ( )( )0 1, ,# , 1 and # , 1.c cw iv w ivDec V R Dec V R> =  

In the case of Figure 7, the region ( ),w ivR  has three decompositions but no 
Hamiltonian cycle: 

( )( )

{ } ( )

{ } ( )( )
2
1

1

,

,

,

# , 2 (a)

# , 2 (b)

# , 2 (c)

Cone C w iv

w ivCone C x

Cone C x w iv

Dec V R

Dec V R

Dec V R

∪

∪

 =

   =  

 
 =

 

Moreover, it is not difficult to show the following proposition (in the case of 
closed trajectories of triangles): 
 

 
(a)                            (b)                           (c) 

Figure 7. All solutions to the extended Hamiltonian cycle problem for a boundary pair 

( ),w iv , where ( ) ( ) { }2 2 3 2 2 1 3 1
0 2 0 1 2 1 0 1 2 0 1 2, , , , ,w iv x x x x x x x x x x x x− − −∂ ∩ ∂ =  (See also Figure 2). 

Set ( ) ( )C w iv= ∂ ∩ ∂ . (a) The vector field induced by Floor C ; (b) The vector field 

induce by { }2
1Cone C x∪  which is obtained by putting a cube (with top vertex 2

1x ) on 

Floor C ; (c) The vector field induced by { }1Ceil C Cone C x= ∪ , which is obtained by 

putting a cube (with top vertex 1x ) on the vector field of (b). 
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Proposition 5.5. When a closed trajectory is merged with a closed trajectory 
of length 6 (which occupies a hexagonal region), they don’t fuse together to form 
a single closed trajectory. 

In other words, closed trajectories always split when they interact with a hex-
agon. 

See Tabel 1 for the distribution of the length of closed trajectories of n-sim- 
plices ( 2,3,4n = ). 

The distribution of the length of closed trajectories of n-simplices ( 2,3,4n = ). 
Two closed trajectories are identified if and only if their sequences of the second 
derivative coincide with each other by rotational shift, inversion, or reversion. 

6. Conclusions 

We have considered an extended version of a two-dimensional Hamiltonian 
cycle problem in a three-dimensional setting, where the boundary of a two-di- 
mensional region is uniquely specified by a pair of three-dimensional cones, i.e., 
a boundary pair. Using the discrete differential geometry of triangles, all de-
compositions of the region into closed trajectories of triangles are obtained im-
mediately from the intersection of the boundary pair. 

In the structural study of protein complexes, it is essential to characterize sur-
face features such as bumps (convexity) and dents (concavity) of protein mole-
cules. However mathematical surface characterization has not produced any sa-
tisfactory results so far, where the surface of protein molecules is usually studied 
in a three-dimensional setting. 

This paper proposes a novel mathematical approach to the structural study of 
protein complexes, i.e., an approach from a four-dimensional setting, where the 
surface of protein molecules is to be described by a pair of four-dimensional 
cones (with multiple top vertexes) as in the case of complexes of closed trajecto-
ries of triangles. 

In our approach, protein molecules are to be represented as closed trajectories 
of tetrahedrons, where shape complementarity is expressed inherently. In par-
ticular, we could define fusion and fission of molecules (i.e., closed trajectories) 
naturally. 

As a future research subject, we are considering whether there exist any (alge-
braic) equations a given boundary pair satisfies. If there exists a set of such equa-
tions that specifies the given boundary pair, it is possible to represent the shape 

 
Table 1. The distribution of the length of closed trajectories of n-simplices ( 2,3, 4n = ). 
Two closed trajectories are identified if and only if their sequences of the second 
derivative coincide with each other by rotational shift, inversion, or reversion. 

Length 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

2-simplices 0 0 1 0 1 0 2 0 5 0 11 0 27 0 78 0 234 0 

3-simplices 0 0 1 0 0 3 0 0 6 0 0 17 0 0 42 0 0 118 

4-simplices 0 0 1 0 0 2 1 1 3 4 3 4 5 13 10 10 12 41 
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of a protein molecule as a solution for a system of equations. In particular, we 
would obtain another protein molecule of the same function if a given set of eq-
uations has more than one solution. 
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