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Abstract 
In this work, we present four results for the Laplace inverse transform of 
functions that involve the nth root of a product of linear factors. In order to 
find the Laplace inverse transform, we considered a branch cut for the nth 
root and a region of suitable integration, to avoid the branching points. Due 
to that, the solution is in terms of integrals, we easily approach this solution 
for some specific parameters. 
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1. Introduction 

Modeling phenomena using partial differential equations are attractive to 
physicists, mathematicians, engineers, etc., this is due to many phenomena 
such as diffusion of particles, heat diffusion, fluid flow behavior on porous 
media, among others, are modeled with this type of differential equations (see 
[1]-[7]). However, when we use the Laplace transform to find the solution of 
these models, it is likely to find multivalued functions, so the Laplace inverse 
transform is commonly solved by numerical methods, for example, in [8] [9] 
studied models that predict the fluid flow on porous media, they used the 
Laplace transform and found multivalued functions of the type . , and to give 
the solution through Laplace inverse transform they used the Stehfest numerical 
method. The Stehfest numerical method has restrictions for functions that have 
discontinuities [10], so it is more advisable to find the exact solution. In some 
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cases, it is possible to give the exact solution [11], but to obtain the exact 
solution of these models, a deeper study of the Laplace inverse transform of the 
multivalued functions found is necessary. In this work, we study Laplace inverse 
transform for functions that involve the nth root of a product of linear factors. It 
is divided into two sections as follows: In the first section, we use the Laplace 
inverse transform defined as  

( ) ( )1 e d ,
2π

i st
i

f t F s s
i

δ

δ

+ ∞

− ∞
= ∫

                
(1) 

to find the function ( )f t . Here 0δ >  and ( )F s  involve to  

( )( )( ) ( )( )0 1 2 1 ,n
k ks a s a s a s a s a−+ + + + +  

where n is positive integer and 0 1 2 ka a a a< < < <  are real positive. The 
function ( )f t  is represented in terms of integrals that are easily approximated 
numerically. To find this function, we consider the branch cut and the integration 
contour of Figure 1.  

In section two, We give analytical examples and also numerically solve the 
function ( )f t  for some particular cases and compare versus the Stehfest  

 

 
Figure 1. Integration contour. 
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numerical method. We also show that the Stehfest numerical method does not 
approximate well to the exact solution near the discontinuities. 

2. Theorems 

In this section, we propose and prove four theorems associated with the Laplace 
inverse transform for multivalued functions that involve .n . It should be 
mentioned that in particular Theorem 4 can be used to find the solution of some 
differential equations that model the fluid flow on porous media, for example 
[11].  

Theorem 1. Suppose n +∈ , 0t > , 0 1 2 10 k ka a a a a += < < < < < = ∞  and  

( ) ( )( )( ) ( )( )0 1 2 1
1 ,n

k kF s s a s a s a s a s a
s −= + + + + +  

then the Laplace inverse transform of the function ( )F s  is given by  

( ) ( ) ( )1

0

1 π1 1sin e d ,
π

j

j

k a xt
ja

j

j
f t u x x

n x
+ −

=

+ 
=  

 
∑ ∫

          
(2) 

where  

( ) ( )( ) ( )( ) ( )( )0 1 1 1 .n
j j j k ku x x a x a x a x a x a x a+ −= − − − − + − + − +   

Proof. Using the Laplace inverse transform, we have  

( ) ( )1 e d .
2π

i sx
i

f t F s s
i

δ

δ

+ ∞

− ∞
= ∫  

As 0 1 2, , , , ka a a a− − −  are branch points of the function ( )F s , then we 
consider the region of the Figure 1 and the branch cut ( )π πArg s− < <  for the 
nth root. Using Cauchy Theorem is found  

( ) ( )

( )
( )

1 1 1 1 0

1 1 1 2

1 e d
2π

1
2π
1 .

2π

k k

k k k k

i sx
i

f t F s s
i

i

i

δ

δ

γ

γ γ γ γ γ γ

+ +

+ +

+ ∞

− ∞

′ ′Γ Γ Γ Γ

′ ′

=

= − + + + + +

− + + + + + +

∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫





         

(3) 

It is easy to prove that 
0

0
γ
=∫  when 0→ . In addition also 0

jγ
→∫  to  

1,2, ,j k=   when 0→ , this is because if ei
js a θ= − +   with 0 πθ< <  

then  
( )

( ) ( ) ( ) ( )π
00

e d ,
j

j

a t

n
j j j j k

j

a a a a a a
aγ

θ
− +

< − + + − + + − + +
− +∫ ∫  



   


 

thus 0
jγ
→∫  when 0→ . Analogously if ei

js a θ= − +   with π 0θ− < <  we 

prove that 0
jγ ′
→∫  when 0→ . 

For 
1kγ +

∫ , we obtain  

( ) ( ) ( ) ( )
1

cos
0 1e d ,

k

R t n
kR a R a R a

π θ

γ α
θ

+
< + + +∫ ∫   
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as 0t >  and cosθ  is negative in ( )π 2,π , then ( )cose 0Rt θ →  when R →∞ , 

thus 
1

0
kγ +
→∫  it is for δ  small enough. Similarly for 

2kγ +
∫ .  

For integrals over 1j+Γ  and over 1j+′Γ  with 0,1,2, ,j k=   we analyze as 
follows: If πeis x x= = −  with ( )1,j jx a a +∈  we obtain  

( ) ( )

( )

π
1

1

0
1

e for 0,1, , ,

e for 1, 2, , .

i
nn

n k
k i

nn
k

x a k j
s a

x a k j j k


− =

+ = 
 − + = + +



        

(4) 

Using Equation (4) we find  

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

1 0 1 1

1 1 11 1
1 1

π π π 0 0
1 1 111

1 1

1 π

e e e e e

e ,

n
j j k

n n nn n
j j k

i i i i i
n n nnnn n n n n

j j k

j i
n

j

u x s a s a s a s a s a

s s a s a s a s a

x x a x a x a x a

u x

+

+

+

+

= + + + + +

= + + + +

= − − − + − +

=

 

 

 

 

then  

( ) ( )1

1 1
1 1

1 1e d e d .j j

j j j

a axt xt
a a

u x x u x x
x x

+

+ +

− −

Γ
= = −∫ ∫ ∫

          
(5) 

On the other hand, if πe is x x−= = −  con ( )1,j jx a a +∈  we obtain  

( ) ( )( ) ( )( ) ( )
( )

( )
1 π

2 0 1 1 e ,
j i
nn

j j k ju x s a s a s a s a s a u x
− +

+= + + + + + =   

then  

( )1

1
2

1 e d .j

j j

a xt
a

u x x
x

+

+

−
′Γ
=∫ ∫

                 
(6) 

Thus, for Equation (5) and Equation (6) we find  

( ) ( )1

1 1

1 π 12 sin e d .j

j j j

a xt
ja

j
i u x x

n x
+

+ +

−
′Γ Γ

+ 
+ = −  

 
∫ ∫ ∫  

Finally, adding all integrals and replacing in Equation (3), we obtain  

( ) ( ) ( )1

0

1 π1 1sin e d .
π

j

j

k a xt
ja

j

j
f t u x x

n x
+ −

=

+ 
=  

 
∑ ∫  

 

Theorem 2. Suppose n +∈ , 0t > , 0 1 2 10 k ka a a a a += < < < < < = ∞  and  

( )
( )( )( ) ( )( )0 1 2 1

1 ,
n

k k

F s
s a s a s a s a s a−

=
+ + + + +

 

then the Laplace inverse transform of the function ( )F s  is given by  

( ) ( ) ( )1

0

1 π1 sin e d ,
π

j

j

k a xt
ja

j

j
f t u x x

n
+ −

=

+ 
=  

 
∑ ∫

           
(7) 

where  
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( )
( )( ) ( )( ) ( )( )0 1 1 1

1 .j
n

j j k k

u x
x a x a x a x a x a x a+ −

=
− − − − + − + − + 

 

Proof. Again we use the region Figure 1. In analogy with the proof of the  
previous Theorem we have 

0
0

γ
→∫ , 0

jγ
→∫  and 0

jγ ′
→∫  when 0→  for 

1,2, ,j k=   and also 
1

0
kγ +
→∫  and 

2
0

kγ +
→∫  when R →∞ . 

On the other hand we have  

( )( ) ( )1

1 1
1 1d e d ,j j

j j j

a axt xt
a a

e u x x u x x+

+ +

− −

Γ
= − =∫ ∫ ∫  

( )1

1
2e d ,j

j j

a xt
a

u x x+

+

−
′Γ
= −∫ ∫  

where  

( )
( )

( ) ( )
( )

( )
1 π 1 π

1 2e and e ,
j i j i
n n

j ju x u x u x u x
− + +

= =  

then  

( ) ( )1

1 1

1 π
2 sin e d .j

j j j

a xt
ja

j
i u x x

n
+

+ +

−
′Γ Γ

+ 
+ = −  

 
∫ ∫ ∫  

Therefore, we add all the integrals so we find the result. 
Theorem 3. Suppose ,n m +∈ , 0t > , 0 1 2 10 k ka a a a a += < < < < < = ∞  

and  

( )
( )( )( ) ( )( )
( )( )( ) ( )( )

0 2 4 3 1

1 3 5 2

1 ,
n

k k

m
k k

s a s a s a s a s a
F s

s s a s a s a s a s a
− −

−

+ + + + +
=

+ + + + +





 

then the Laplace inverse transform of the function ( )F s  is given by  

( ) ( ) ( )

( ) ( ) ( )

2 1

2

2 2

2 1

2

2
0

2

2 1
0

1 π1 π 1sin e d
π

1 π 1 π1 1sin e d ,
π

j

j

j

j

k
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ja

j

k
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j
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n m x

+
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−

=

 
  

−
+

=
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∑ ∫

∑ ∫
     

(8) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 11 1 11

0 1 1 1 .n mn n mmj j j k ku x x a x a x a x a x a x a
− −−

+ −= − − − − + − + − +   

Note that ( ) ( )1 1
1

n m
j jx a x a

−

+− − +  can change by ( ) ( )1 1
1

m n
j jx a x a

−

+− − +  
when k is even or odd.  

Proof. The proof is analogous to the previous theorems.  
Theorem 4. Suppose 0t > , 0r > , 0 1 2 10 k ka a a a a += < < < < < = ∞  and  

( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

0 0 1 2 1

0 0 1 2 1

1 ,
k k

k k

K r s a s a s a s a s a
F s

s K s a s a s a s a s a

−

−

+ + + + +
=

+ + + + +





 

where 0K  is the modified Bessel function of order 0 then the Laplace inverse 
transform of the function ( )F s  is given by  
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( ) ( ) ( )2 1 2

2 2 2 1

1
2

2 2 2 1
1 1

1 1 11 e , d e , d
π

j j

j j

k
La axt xt

j ja a
j j

f t r x x r x x
x x

−

− −

 +  
− −

− −
= =

= + Ψ + Ψ∑ ∑∫ ∫
  

(9) 

where  

for even,
2

1 for odd,
2

k k
L

k k

 
  = 

  +    

 

( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

0 0 0 0
2 22

0 0

0 0 0 0
2 2

0 0

for 2 1,
π

,

for 2 2,

l l l l

l l
l

l l l l

l l

I u x K u x r K u x I u x r
l j

K u x I u x
r x

Y u x J u x r J u x Y u x r
l j

J u x Y u x

 −
= −

+Ψ = 
− = −
+

 

0 0 0, ,I Y J  are the corresponding Bessel functions of order 0 and  

( ) ( )( ) ( )( ) ( )( )0 1 1 1 .j j j k ku x x a x a x a x a x a x a+ −= − − − − + − + − +   

Proof. For the proof, we used the following properties of the Bessel functions 
(see [12] [13] [14])  

( ) ( )
π 1π12 2π 1e e , π arg π ,

2 2
i i

K z i H z z
ν

ν ν

   = − < ≤                
(10) 

( ) ( )
π 1π22 2π 1e e , π arg π ,

2 2
i i

K z i H z z
ν

ν ν

− −

−

   = − − < ≤              
(11) 

( ) ( ) ( ) ( ) ( ) ( )π πe e π sin π csc π , ,im imK z K z i m I z mν
ν ν νν ν−= − ∈     (12) 

where ( ) ( )1H zν  and ( ) ( )2H zν−  are the Hankel’s functions of the order ν . 
Consider the case when k is odd (for k even the proof is analogous). Also  

consider the region of Figure 1 then ( )f t  is like Equation (3). Then 0
jγ
→∫ , 

0
jγ ′
→∫  for 1,2, ,j k=   when 0→ , also 

0
2πi

γ
= −∫  when 0→ . For  

the integrals on jΓ  and on j′Γ  with 1, , 1j k= +  we obtain the following: if 
j  is of the form 2 1j − , we used Equation (10) and Equation (11), then  

( )2 1

2 1 2 1 2 2
2 2

12 e , d ,j

j j j

a xt
ja

i r x x
x

−

− − −

−
−′Γ Γ

+ = − Ψ∫ ∫ ∫
          

(13) 

where  

( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
0 2 2 0 2 2 0 2 2 0 2 2

2 2 2 2
0 2 2 0 2 2

, .j j j j
j

j j

Y u x J u x r J u x Y u x r
r x

J u x Y u x

− − − −
−

− −

−
Ψ =

+
 

On the other hand, if j  is of the form 2 j , we used Equation (12) then  

( )2

2 2 2 1
2 1

12π e , d ,j

j j j

a xt
ja

i r x x
x−

−
−′Γ Γ

+ = − Ψ∫ ∫ ∫
           

(14) 

where  

( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
0 2 1 0 2 1 0 2 1 0 2 1

2 1 2 22
0 2 1 0 2 1

, .
π

j j j j
j

j j

I u x K u x r K u x I u x r
r x

K u x I u x

− − − −
−

− −

−
Ψ =

+
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Note that ( )ju x  is found using Equation (4) with 2n = . As k is odd then 

there are 1
2
k  +  

 integrals of the form Equation (13) and there are 1
2
k  +  

 of 

the form Equation (14). Thus  

( ) ( )

0 1 1 1 1

2 1 2

2 2 2 1

1 1
2 2

2 2 2 1
1 1

1 12π 2 e , d 2π e , d .

k k

j j

j j

k k

a axt xt
j ja a

j j
i i r x x i r x x

x x

γ + +

−

− −

′ ′Γ Γ Γ Γ

   + +      
− −

− −
= =

+ + + + +

= − − Ψ − Ψ

∫ ∫ ∫ ∫ ∫

∑ ∑∫ ∫



 

(15) 

On the other hand, for 
1kγ +

∫ , we have that  

( )
1

1 11 2
0

π cos

1 11 2
0
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e d ,
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k

k k k

Rt
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θ

γ α
θ

+

+ −

+ −

       + + + +              <
       + + + +              

∫ ∫




 

(16) 

so, 
1kγ +

∫  is 0 when R →∞  for δ  sufficiently small. Similarly to 
2kγ +

∫ . Thus, 
using 

0
2πi

γ
= −∫ , Equation (15) and Equation (16), we arrive to  

( ) ( )

( )
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2 2

2

2 1

1
2

2 2
1

1
2

2 1
1

1 11 e , d
π
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j

j

k

a xt
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j

k
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x

r x x
x

−

−
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 +  
−

−
=

 +  
−

−
=

= + Ψ

+ Ψ

∑ ∫

∑ ∫

 

 

3. Analytical Examples and Numerical Approximation 

In this section, we give some analytical examples corresponding to the exact 
solutions of the previous theorems and solve the integrals numerically for some 
particular cases.  

Example 1.  We consider that 1k = , 2n = , 0 1 20 a a a= < < = ∞  and  

( ) ( )1
1F s s s a
s

= + , then using (2)  

( ) ( ) ( )

( ) ( )
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1

1

1
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1
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1 1 e d .
π
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a
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x
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x
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−
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−

+ 
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+ 

+ − 
 

= − +

∫

∫

∫

 

Furthermore, since  

( )
1

1 1 1 12
1 0 10

1 e d e π ,
2 2 2

a t
a xt a a t a tx x a x I I

x
−−     − + = +    

    
∫  

with Iα  is the modified Bessel function of order α , then  

( )
1

1 1 12
0 1e .

2 2 2

a ta a t a tf t I I
−     = +    
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Example 2. We consider that 2k = , 2n = , 0 1 2 30 a a a a= < < < = ∞  and 

( )
( )( )1 2

1F s
s s a s a

=
+ +

, then using (7)  
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Example 3. We consider that 1k = , 3n = , 2m = , 0 1 20 πa a a= < = < = ∞  

and ( )
( )

3

2
1

1 sF s
s s a

=
+

, then using (8)  
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2 1
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2
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so  

( )
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3π

0

3
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1 π 1sin e d
π 3 π

1 π 1sin e d
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x x

s x
x x

t
F t

−

∞ −
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Γ

= −

∫

∫  

where 1 1F  is the hypergeometric function.  

Example 4. We consider that 0r > , 1k = , 1
1a =


 and  

( )
( )( )
( )( )

0

0

11

1

k r s s
F s

s k s s

+
=

+




 then using (9)  
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10 10
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π

xt xtf t r x x r x x
x x

∞− −= + Ψ + Ψ∫ ∫



 

where  
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0 2 2
0 0 0 0
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Ψ =
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( )
( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
0 1 0 1 0 1 0 1

1 2 22
0 1 0 1

, ,
I u x K u x r K u x I u x r

r x
K u x I u xπ

−
Ψ =

+
 

( ) ( ) ( ) ( )0 11 and 1 .u x x x u x x x= − + = −   

On the other hand, we solve the integrals numerically corresponding to the 
exact solutions of Theorems 1, 2, 3 and 4 then we compare versus Stehfest 
numerical method. This method consist in numerically finding the Laplace 
inverse transform of the ( )F s  using:  

( ) ( ) ( ) ( )1

1

log 2 log 2n

i
f t g i F i

t t=

 
=  

 
∑  

where  

( ) ( ) ( )

( ) ( ) ( )

11

1
min ,

22
2

1 1
2

2 !
1 .

! ! 1 ! ! 2 !
2

nni
n i

ik

k k
g i

n k k k i k k i

 
 
 +

+ =  

= −
 − − − − 
 

∑  

In Figure 2(a) and Figure 2(b) we observed in red color Equations ((2) and  
 

 

Figure 2. Comparison of the exact solution (2), (7), (8), (9) with parameters 2n = , 5k = , 1 1a = , 

2 πa = , 3 5a = , 2
4 ea = , 5 10a = , 2r = , 2m =  and the Stehfest numerical method with 1 14n = . 
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Figure 3. Comparison of the exact solution (2) with paramteters 2n = , 5k = , 1 1a = , 

2 πa = , 3 5a = , 2
4 ea = , 5 10a =  and Stehfest numerical method for different 1n , this 

is for t small.  
 

(7)) respectively with parameters 2n = , 5k = , 1 1a = , 2 πa = , 3 5a = , 
2

4 ea =  and 5 10a = . In Figure 2(c) we observed Equation (8) in red color 
with the same previous parameters in conjunction with 2m = . In Figure 2(d) 
we observed Equation (9) in red color with the same previous parameters in 
conjunction with 2r = . On the other hand, in all plots of Figure 2 Stehfest 
numerical method is shown in black color with 1 14n =  and functions ( )F s  
corresponding to the aforetmentioned parameters for each cases. As expected in 
all cases the exact solution of the theorems proposed here coincide with Stehfest 
numerical method for large t values, however the stephens method does not 
approach well near the discontinuities of the function, for example in Figure 3 
we see in red color the same exact solution of Figure 2(a) for small t values, and 
in black color the Stehfest numerical method for different 1n . In this figure is 
shown that if 1n  increase then Stehfest numerical method approximates better 
to exact solution near zero but still the approximation is bad, this is because 
Stehfest numerical method does not give a good approximation near points 
where the functions are discontinuous (see [10]).  

4. Conclusion 

In this work, we solved the inverse Laplace transform for multivalued functions 
that involving the nth root of a product of linear factors, we show that results are 
correct and also give analytical and numerical examples. The numerical examples 
were compared with Stehfest numerical method, concluding that the curves 
coincide for values far from the discontinuities of the solution, while for values 
close to the discontinuity the Stehfest numerical method does not have good 
approximation. 
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