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Abstract 
Cyanobacterial harmful algal blooms are a major threat to freshwater ecosys-
tems globally. To deal with this threat, researches into the cyanobacteria 
bloom in fresh water lakes and rivers have been carried out all over the world. 
This review presents an overlook of studies on cyanobacteria blooms. Con-
ventional studies mainly focus on investigating the environmental factors in-
fluencing the blooms, with their limitation in lack of viewing the microbial 
community structures. Metagenomics study provides insight into the internal 
community structure of the cyanobacteria at the blooming, and there are re-
searchers reported that sequence data was a better predictor than environ-
mental factors. This further manifests the significance of the metagenomic 
study. However, large number of the latter appears to be confined only to 
present snapshoot of the microbial community diversity and structure. This 
type of investigation has been valuable and important, whilst an effort to inte-
grate and coordinate the conventional approaches that largely focus on the 
environmental factors control, and the Metagenomics approaches that reveals 
the microbial community structure and diversity, implemented through ma-
chine learning techniques, for a holistic and more comprehensive insight into 
the cause and control of Cyanobacteria blooms, appear to be a trend and 
challenge of the study of this field. 
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1. Introduction 

Cyanobacteria blooms are commonly associated with toxin production in 
drinking water supplies and have been a severe risk to human beings health [1] 

How to cite this paper: Huang, J.D., 
Zheng, H.R. (J.) and Wang, H.Y. (2017) 
Current Trend of Metagenomic Data Ana-
lytics for Cyanobacteria Blooms. Journal of 
Geoscience and Environment Protection, 5, 
198-213. 
https://doi.org/10.4236/gep.2017.56018  
 
Received: June 1, 2017 
Accepted: June 27, 2017 
Published: June 30, 2017 

http://www.scirp.org/journal/gep
https://doi.org/10.4236/gep.2017.56018
http://www.scirp.org
https://doi.org/10.4236/gep.2017.56018


J. D. Huang et al. 
 

199 

[2]. The blooms have become a major threat to freshwater ecosystems globally 
and a worldwide challenge [3] [4]. To deal with the threat and challenge, studies 
of the cyanobacteria blooms have been carried out on the fresh water systems in 
Asia [5]-[14], Europe [15]-[19], North America [20]-[26], Oceania [27] [28] and 
Africa [29] [30]. For decades, it has seen that the study appears to be characte-
rized mainly by investigating the nutrient control (such as Nitrogen and Phos-
phorus) and the influence of other environmental factors (temperature and pH, 
for example) on the blooms, and deploying hydrodynamic and microbial com-
bined models to predict the blooms, or introducing machine learning methods 
such as Artificial Neural Network (ANN), with environmental factors as their 
input variables, for gaining understanding of the cause and development of the 
microbial community’s explosive reproduction [8] [11] [31] [22] [33]. On the 
other hand, new generation high-throughput sequencing techniques, based on 
the system of 16S rRNA gene, makes it possible to quickly examine the composi-
tion of the microbial community comprehensively in different habitats, enabling 
insight into profiles of the community composition [34] [35] [36]. With the 
rapid development of next generation sequencing techniques, metagenomic data 
analysis has been applied to the Cyanobacteria bloom study. Applying Metage-
nomics to investigate the genetic and metabolic diversity of the mixed popula-
tions helps understand the interactions of different microbial populations and 
their functions in the blooming process. A recent research carried out by Tromas 
et al. [25] shows that sequence data was a better predictor than environmental 
factors. In this article, we present a review of recent study of harmful Cyanobac-
teria bloom, with more attention paid to the cases in China that has been suffer-
ing from severely and critically growing water quality problem [37]-[38]. 

2. Conventional Approach: Investigating the Relation  
between Environmental Factors and the Blooms 

The conventional approach is focused on impact of environmental factors to the 
bloom. Kong, F. and Fao, G. [39] noticed the environmental elements as control 
factors of the algae blooms. Temperature and dissolve oxygen on the sediment 
surface were observed, and they concluded that the hydrological and meteoro-
logical condition would cause the algae to float up to the water surface and then 
form the water bloom. Wilhelm et al. [40] investigated the relationships between 
nutrients, cyanobacterial toxins and the microbial community in Taihu, China. 
They provide an independent confirmation that both total nitrogen and total 
phosphorus concentrations are strongly related to cyanobacterial biomass in the 
system and demonstrated that both nitrogen and phosphorus inputs play a role 
in microbial community biomass production and structure. They also indicated 
that the toxicity of the community is not closely coupled to key factors leading to 
bloom formation. In a work by McCarthy et al. [41], nitrogen dynamics and mi-
crobial food web structure during a summer cyanobacterial bloom in Lake Taihu 
were studies, they found that N limits or colimits primary production in and 
near central Lake Taihu, contrary to the previous paradigm of exclusive P limita-
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tion, and saw this result an example to show the importance of characterizing N 
cycling in freshwater systems, where most studies have focused on P dynamics. 
They also stated the importance of water column N recycling relative to sedi-
ment processes. An example from North America is a study undertook by Gra-
ham et al. [20]. Physicochemical data were collected from 241 lakes in Missouri, 
Iowa, northeastern Kansas, and southern Minnesota U.S.A., to determine the 
environmental variables associated with high concentrations of the cyanobac-
terial hepatotoxin microcystin (MC), during May-September 2000-2001. Rela-
tionships between particulate MC values and environmental variables were de-
veloped using nonparametric Spearman–Rank correlation (a = 0.05). The fol-
lowing environmental factors were measured: Secchi transparency, surface tem-
perature, total phosphorus (TP), total nitrogen (TN), TN:TP ratio, and total 
suspended solids (TSS); chlorophyll (Chl), and Chl:TP ratio. They found that the 
presence and concentration of microcystin increase along a gradient of increas-
ing lake trophic status. Ma et al. [42] reported the influence of N, P and pH on 
Microcystis growth and colony formation in field simulation experiments in 
Lake Taihu (China). Krausfeldt et al. [43] examined the spatial and temporal va-
riability in the nitrogen cyclers of hypereutrophic Lake Taihu. These studies fo-
cused on the physical and chemical parameters to examine how the environ-
mental and biological variables were associated with the cyanobacteria blooms. 
Examining environmental parameters such as water temperature, solar radia-
tion, precipitation, water transparency, pH, DO, and nutritious elements e.g. 
TN, TP, DN, DP, PO4-P, NH4-N. NO3-N, etc (e.g. [11]), characterized the early 
studies of the cyanobacteria blooms. 

Hydrodynamics modelling, statistical methods and machine learning ap-
proaches have been facilitating the research [8] [31] [44] [45] [46]. Regression 
and multivariate analyses by principal component and classifying analysis were 
performed in the study of Wu et al. [31] on cyanobacterial toxin microcystin in 
30 subtropical shallow lakes in the middle and lower reaches of the Yangtze Riv-
er area in China; Li et al. [8] used a coupled hydrodynamic–algal biomass model 
for forecasting short-term cyanobacterial blooms in Lake Taihu; the model was 
applied to predict the occurrences of the algae blooms of the next 3 days in Lake 
Taihu during April to September in 2009 and 2010. They reported that inde-
pendent evaluations from remote sensing images and boat survey data showed 
that the accuracy of these bloom forecasts was more than 80%. Yabunaka et al. 
[11] applied machine learning techniques for modelling algal bloom dynamics. 
Artificial Neural Network models, through genetic programming, were used to 
model and predict the blooms in Tolo Harbour, Hong Kong. The input variables 
were 10 parameters, four nutrients (PO4-P, NH4-N. NO3-N, and Si), four phys-
ic-chemical conditions (water temperature. transparency, DO, and pH), plus two 
zooplankton species, and the output variables were the chlorophyll a concentra-
tion or the biomass of specific phytoplankton species. Vilán et al. used support 
vector machines and multilayer perceptron networks from cyanobacterial con-
centrations determined experimentally in the Trasona reservoir in Northern 
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Spain, to build a cyanotoxin diagnostic model [46]. They reported that the SVR 
(support vector regression) and MLP (multilayer perceptron) techniques predict 
the observed actual cyanobacteria blooms from 2006 to 2010 more effectively 
and accurately than traditional regression models. In this research, the output 
variable was cyanotoxins and the input variables were a number of biological 
and physical-chemical variables; the biological parameters included Microcystis 
aeruginosa, Woronichinia naegeliana, other cyanobacteria species, diatoms, 
chrysophytes, chlorophytes and other phytoplankton species; the physi-
cal-chemical variables were: water temperature, ambient temperature, secchi 
disk depth, turbidity, total phosphorus concentration, total nitrogen concentra-
tion, nitrate concentration, nitrite concentration, ammonium ion concentration, 
dissolved oxygen concentration, conductivity, alkalinity, calcium concentration, 
and pH. 

Zhou et al. [12], in their study of the influence of turbulence on MCs concen-
trations in Lake Taihu during cyanobacterial bloom periods, investigated how 
toxic Microcystis and MCs production may be affected by wind-driven turbu-
lence, using a mesocosm experiment. The study aims to deliver deeper insights 
into the competition of toxic Microcystis and MCs regulation, and understand 
the coupling of MCs production and turbulence. In this study, a 6-day meso-
cosm experiment was carried out to evaluate the effects of wind wave turbulence 
on the competition of toxic Microcystis and MCs production in highly eutro-
phicated and turbulent Lake Taihu, China. Under turbulent conditions, MCs 
concentrations (both total and extracellular) significantly increased and reached 
a maximum level 3.4 times higher than in calm water. Specifically, short term 
(about 3 days) turbulence favored the growth of toxic Microcystis species, al-
lowing for the accumulation of biomass which also triggered the increase in MCs 
toxicity. Moreover, intense turbulence raises the shear stress and could cause cell 
mechanical damage or cellular lysis resulting in cell breakage and leakage of 
intracellular materials including the toxins. The results indicate that short term 
(about 3 days) turbulence is beneficial for MCs production and release, which 
increase the potential exposure of aquatic organisms and humans. This study 
suggests the importance of water turbulence in the competition of toxic Micro-
cystis and MCs production, and provides new perspectives for control of toxin 
in CyanoHABs-infested lakes. 

Although encouraging outcomes have obtained from the studies represented 
by aforementioned cases, localization of mainly examining the environmental 
parameter makes it still inadequate for a deep and holistic inspection of the 
bloom phenomenon to be gained, especially in terms of the diversity and com-
position or structure of the microbial community of the bloom forming cyano-
bacteria. Recent research has demonstrated that, in addition to the conventional 
methods, it is possible to use pre-bloom sequence data to predict the number of 
days until a bloom event occurs, with good accuracy; sequence data appears to 
be a strong predictor, similar or better than prediction with environmental va-
riables [25]. 
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3. Next Generation Sequencing Techniques Based on the 
System of 16S rRNA Gene for Microbial Community  
Profiling 

Application of Metagenomics [47] has been accompanied with high speed 
throughput Next-Generation Sequencing (NGS) that surpass traditional Sanger 
approach for DNA isolation and sequencing. Development of high-throughput 
DNA sequencing techniques brings about the progress in microbial community 
profiling using 16S rRNA [34]-[36], [48] for analysing population structure of 
cyanobacterial blooms. High-throughput DNA sequencing techniques speed up 
the analysis through bypassing the need of isolation or cultivation of microor-
ganisms [49]-[50], i.e., the cyanobacteria concerned. The next-generation se-
quencing technology shows advantages in its high flex, short test period, low cost 
and repeatability [51]-[52]. This culture-independent, molecular way of analys-
ing environmental samples of cohabiting microbial populations has opened up 
fresh perspectives on microbiology [53]. Figure 1 is a microbial community 
analysis pipe line diagram: 
 

 
Figure 1. Microbial community analysis pipeline  
(https://sites.google.com/site/knightslabwiki/qiime-workflow). 

https://sites.google.com/site/knightslabwiki/qiime-workflow
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Table 1. Some environmental parameters seen in Cyanobacteria bloom study. 

Water temperature (WT) 

Ambient temperature 

Secchi disk depth(SD) 

Transparency 

Turbidity 

Solar radiation 

Total phosphorus (TP) 

Total nitrogen (TN) 

NH4-N 

NO3-N 

Ammonium ion concentration 

Dissolved oxygen concentration (DO) 

Conductivity 

Alkalinity 

Calcium concentration 

Total suspended solids (TSS) 

Si 

pH 

Salinity 

Chlorophyll a 

4. Applying Metagenomics to Characterize the Structure and 
Function of Microbial Community in Fresh Water  
Ecosystem 

Some examples are inspected in this section, with special attention paid to lakes 
in China and North America for their significant influence on the large number 
of populations. 

4.1. Microbial Community Structures 

Through a metagenomic approach, Xie et al. investigated the relationship be-
tween Microcystis and the associated bacteria [10]. They analyzed cyanobacte-
ria-dominated bloom communities from Lake Taihu, China, applying a visuali-
zation-enhanced binning method they developed. By analyzing the metabolic 
pathways of the microbial community, cooperative interactions among the com-
plex species were indicated. The study revealed that while all heterotrophic bac-
teria were dependent upon Microcystis for carbon and energy, Vitamin B12 
biosynthesis, which is required for growth by Microcystis, was accomplished in a 
cooperative fashion among the bacteria. The analysis also suggests that individu-
al bacteria in the colony community contributed a complete pathway for degra-
dation of benzoate, which is inhibitory to the cyanobacterial growth. Next-gen-  
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Table 2. Summary of the lakes examined in this section. 

Name Location 

Taihu East China 

Poyanghu South east China 

Lakes in Nanjing City East China 

Lakes in Yunnan plateau South west China 

Lake Erie North America 

Grand Lakes North America 

Lake Champlain North east USA, across the Canada-USA border 

Lough Corrib and Ballyquirke Lough Ireland 

 
eration sequencing was applied in the study by Huang et al. for the microbial 
diversity in lake-river ecotone of Poyang Lake, China as well [9]. They aimed to 
identify the micro diversity in different lake-river ecotone, and to explore the 
evolution and adaptation of the microbial population to changing environmental 
conditions. The results showed the major Poyang Lake had the largest microbial 
population, followed by Yao Lake, Ganjiang River and Raohe River. Based on 
the Shannon and Simpson Index, major Poyang Lake had the largest biodiversity 
of microbial communities, followed by Ganjiang River, Yao Lake, and Raohe 
River. Microbial characteristics vary with the TN and TP concentration, for in-
stance, the nitrifying bacteria were relatively rich in Yao Lake and Ganjiang Riv-
er ecotone, and the polyphosphate-accumulating organisms (PAO) in Raohe 
River were richer than those in Ganjiang River. In a study carried out by Zhao et 
al., high-throughput sequencing was employed to investigate the seasonal varia-
tions in the composition of bacterioplankton communities in six eutrophic ur-
ban lakes of Nanjing City, China [54]. The results showed that temperature, pH 
and NO3−-N were the most important factors influencing the composition of the 
bacterioplankton community. The length and direction of temperature arrow 
suggested strong impact to the summer community. Temperature was ortho-
gonal with the other two arrows (pH and NO3−-N), suggesting temperature ex-
plains variation not explained by pH and NO3−-N. The results demonstrated that 
co- occurrence in freshwater bacterioplankton communities within six urban 
lakes varied in different seasons. Moreover, Cyanobacteria played different roles 
in the ecological network of each season. In summer, Cyanobacteria were domi-
nant which may result from the strong co-occurrence pattern, suitable tempera-
ture and eutrophication. The bacterial community within a module maintained 
similar ecological niches. The analysis of the relationships between the module 
eigengenes and environmental variables provided a highly simplified version of 
the complex effects of environmental variables on the bacterial communities. 
Module eigengene analysis indicated that temperature only affected some Cya-
nobacteria members, while others were mainly affected by the nitrogen asso-
ciated factors. Overall, this study applied network analysis for better under-
standing the associations of bacterioplankton communities in freshwater lakes. 
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In a comparative study, Steffen et al. highlighted the utility of Metagenomics 
as a tool for exploration of microbial communities, provided microbial snap-
shots of three separate toxic cyanobacterial blooms, Lake Erie (North America), 
Lake Tai (Taihu, China), and Grand Lakes, St. Marys (OH, USA), using com-
parative Metagenomics [21]. They concluded that despite being single samples, 
these metagenomes provided a unique snapshot of the microbial community 
associated with toxic cyanobacterial blooms. They noticed that sequences of the 
Microcystis phage Ma-LMM01 were detected at all three lakes. This was espe-
cially worth noting due to the importance of phage in bloom dynamics and ter-
mination. Their findings included the presence of the mlrC gene in both Taihu 
and Erie. This gene is involved in microbial degradation of microcystin, and its 
presence warrants further inquiry into the presence of potential important mi-
crocystin degraders in these lakes. Within their observations key functional 
genes, such as those involved in nitrogen assimilation, appeared to be more in-
formative than standard 16S rDNA gene analysis and demonstrated that within 
two similar biological events (blooms in Lake Erie and Taihu) the analogous 
processes were likely carried out by different members of the community. With 
this approach, they were able to identify potentially divergent pathways of assi-
milated nitrogen through the microbial communities of three different blooms. 
The genomic contribution of heterotrophic bacteria to nitrogen assimilation in 
Taihu represented a potentially critical contribution of heterotrophic bacteria in 
driving toxic freshwater blooms. 

4.2. Environmental Variables and the Microbial Community 
Structures 

Cao et al. conducted a study in 21 freshwater lakes in Yunnan Province, China 
[14]. In their study, two hypothesized structural equation models were used to 
explore the bacterial community structure dynamics responding to environ-
mental variables in the investigated plateau lakes. The models highlighted the 
role of the physical environment, land use, lake morphology and nutrients in-
fluencing the bacterial community structure in the ecological processes. Water 
transparency was demonstrated to be a major driving force in determining the 
taxon composition of the bacterial community. In contrast with what had been 
presented in the response of the cyanobacteria community to lake morphology, a 
relatively weak relationship between the bacterioplankton community and lake 
morphology was observed, especially lake depth. In addition, the models also 
showed that TN was more significant than TP for determining the bacteriop-
lankton community structure. The threshold analyses for nonlinear responses 
suggested substantial changes of the bacterioplankton community structure were 
strikingly observed at 7.36 for pH and at 25.6% for the percentage of the agri-
cultural area, while the distinct change point of the cyanobacteria community 
structure responding to pH was at 7.74. Finally, following analyses indicated that 
there was an apparent shift in dominance from Proteobacteria to Cyanobacteria 
with increasing nutrient loads. Actinobacteria and Bacteroidetes were induced a 
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sharp decrease and increase crossing the change point along the gradient of the 
agricultural area. 

A study undertook by Touzet et al. investigated the dynamics in summer di-
versity of planktonic cyanobacterial communities and microcystin toxin con-
centrations in two inter-connected lakes from the west of Ireland, Lough Corrib 
and Ballyquirke Lough [19]. Phytoplankton biomass was estimated through 
chlorophyll-a analysis, and Cyanobacteria community fingerprinting was ex-
amined by 16S rDNA DGGE analysis. Analyzed quantitative variables included 
temperature, Secchi depth, chlorophyll-a concentration, dissolved inorganic ni-
trogen and phosphorus, microcystin concentrations and DGGE-based estimate 
of cyanobacterial abundance. They observed community change throughout the 
summer, and identified cyanobacterial genotypes both unique and shared to 
both lakes. Microcystin concentrations were greater in August than in July and 
June in both lakes. They indicated that this was concomitant to the increased 
occurrence of Microcystis as evidenced by DGGE band excision and subsequent 
sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes 
clustered together the August samples of both lakes, highlighting a potential 
change in microcystin producers across the two lakes. The multiple factor analy-
sis of the combined environmental data set for the two lakes highlighted the ex-
pected pattern opposing greater water temperature and chlorophyll concentra-
tion against macronutrient concentrations, but also indicated a negative rela-
tionship between microcystin concentration and cyanobacterial diversity, possi-
bly underlining allelopathic interactions. Despite some element of connectivity, 
the dissimilarity in the composition of the cyanobacterial assemblages and the 
timing of community change in the two lakes likely were a reflexion of niche 
differences determined by meteorologically-forced variation in physico-chemical 
parameters in the two water bodies. 

Using weekly data from western Lake Erie in 2014, Berry et al. investigated 
how the cyanobacterial community varied over space and time, and whether the 
bloom affected non-cyanobacterial (nc-bacterial) diversity and composition 
[24]. In the study, extracted DNA was amplified using primer set 515f/806r, 
which targets the V4 hypervariable regions of the 16S rRNA gene. Both microbi-
al community parameters and environmental parameters were examined in the 
study. They found that bacterial community exhibited changes in diversity and 
composition during the bloom season, the evenness of Alphaproteobacteria and 
Betaproteobacteria showed differential responses to algal pigment levels, sug-
gesting that the bloom affected niche diversity for these phylogenetic groups. 
Their observations supported a link between CHABs and disturbances to bac-
terial community diversity and composition. They concluded that changes in 
community composition could be represented in three coordinates, with the first 
coordinate associated most strongly with bloom measures, the second coordi-
nate associated with temperature, and the third coordinate associated with 
physical water mass movements. These results supported work by others de-
monstrating that bacterial communities are impacted by CHABs, and identifies 
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the acI clade as a particularly affected group. The short recovery of many taxa 
after the bloom indicates that bacterial communities may exhibit resilience to 
CHABs. 

Tromas et al. used a deep 16S amplicon sequencing approach to profile the 32 
bacterial communities in eutrophic Lake Champlain over time, to characterize 
the composition and repeatability of cyanobacterial blooms, and to determine 
the potential for blooms to be predicted based on time-course sequence data 
[25]. The analysis, based on 143 samples between 2006 and 2013, spans multiple 
bloom events. They found that the microbial community varied substantially 
over months and seasons, while remaining stable from year to year. Bloom 
events significantly altered the bacterial community but did not reduce overall 
diversity, suggesting that a distinct microbial community—including noncya-
no-bacteria—prospers during the bloom. Blooms tended to be dominated by one 
or two genera of cyanobacteria: Microcystis or Dolichospermum. Blooms were 
thus relatively repeatable at the genus level, but more unpredictable at finer tax-
onomic scales. They classified their samples into bloom or non-bloom bins, 
achieving up to 92% accuracy. They confirmed that cyanobacterial blooms re-
spond significantly to total phosphorus and total nitrogen as previously de-
scribed. Temperature was also an important factor shaping the lake microbial 
community, as previously documented. However, in this study, they observed 
that these predictors explained only a part of the variation between bloom and 
no-bloom samples. Other predictors might include water column stability and 
mixing, and the interactions of predictors, especially nutrients and temperature. 
In addition to environmental factors, they showed that biological factors, in the 
form of bacterial OTUs or genera, could also help to characterize the bloom. 
They indicated that Cyanobacterial blooms alter the local environment, likely 
altering the surrounding microbial community. As a result, these assemblages 
likely included bacteria that were reliant on cyanobacterial metabolites and bio-
mass. Using symbolic regression, they were able to predict the start date of a 
bloom with 78-91% explained variance over tested data (depending on the data 
used for model training). They stated that sequence data appeared to be a strong 
predictor, similar or better than prediction with environmental variables. This 
showed that, although blooms in Lake Champlain (and other temperate lakes) 
were clearly correlated with seasonality (i.e. blooms occur mainly during sum-
mer, at warmer temperatures), the state of the microbial community may con-
tain more information than environmental factors alone about the likelihood of 
an impending bloom. This could be because one microbial taxon contains in-
formation about numerous environmental parameters, resulting in parsimo-
nious predictive models based on a small number of taxonomic biomarkers. 

4.3. Microcystis Appears in Most of the Studies Lakes 

Microcystins (MCs) are the most common and potent cyanotoxins in freshwater 
systems worldwide. The most of the lakes examined in this section 4 were asso-
ciated with this genus. Lake Taihu has experienced Microcystis bloom events for 
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decade, Xie et al. [10] and Steffen et al. [21] focused their studies on this lake; 
Cao et al. [14] reported that analysis at the genus level of Cyanobacteria identi-
fied that Microcystis was among the most abundant genus in the 21 plateau lakes 
in Yunnan, China; Steffen et al. [21] stated that Microcystis-dominated blooms 
had been observed in the western basin of Lake Erie annually since the 1990s; the 
study by Berry et al. [24] in western Lake Erie also showed that Cyanobacterial 
community composition fluctuated dynamically during the bloom, but was 
dominated by Microcystis and Synechococcus OTUs; Tromas et al. [25] reported 
that blooms in their study site (Lake Champlain, North America) tended to be 
dominated by one or two genera of cyanobacteria: Microcystis or Dolichosper-
mum; in the study of Touzet [19] et al. Microcystins were extracted from the 
samples of Lough Corrib and Ballyquirke Lough. Microcystins (MCs) are pre-
dominantly produced by Microcystis spp. which is considered a serious health 
hazard due to its potent liver toxicity and carcinogenic potential, and has been 
seriously concerned. 

5. Machine Learning (ML) Approaches Possess Dual  
Significance in the Metagenomics and Cyanobacteria 
Blooming Study 

Metagenomic data analyses aims at identifying the taxonomic composition of 
microbes and their relative counts and annotating the functional roles as en-
coded by micro biomes and finding association of microbes with their functional 
metadata phenotypes [55] [56]. Differentiate between microbial communities or 
associated functional conditions can be realized through analysing relative OTU 
abundance across metagenomic samples and their relationships. Machine learn-
ing (ML) techniques are used as a powerful tool in the metagenomic data ana-
lyses [57] [58], as it depends on computational tools for analysing sheer data 
sets, gaining information from the microbial community. This is reflected in the 
afore-mentioned case studies. Whilst in the early studies focusing on the envi-
ronmental parameters, machine learning was applied to establish relationships 
between physical-chemical factors and the blooming occurrence. Therefore, 
machine learning (ML) has dual implications in the cyanobacteria blooming 
study. Researchers wish to improve the methodology used both in the metage-
nomic analysis and in physical-chemical oriented ML modeling approaches as 
well. 

6. Summary Remarks 

Cyanobacteria blooms studies have been undertaken for decades, concerning the 
harmfulness of the blooming to environment and human beings. Conventional 
studies mainly focus on investigating the environmental factors influencing the 
blooms, possessing their limitation in lack of viewing the microbial population 
of the blooming. Metagenomics study provides insight into the internal com-
munity structure of the cyanobacteria at the blooming, and there researchers 
reported that sequence data was a better predictor than environmental factors. This 
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Figure 2. A diagram of machine learning 
(https://www.google.co.uk/search?q=machine+learning+diagram&tbm=isch&tbo=u&sou
rce=univ&sa=X&sqi=2&ved=0ahUKEwiZgsrvu6bUAhXMYVAKHYepAuMQsAQIQA&
biw=1366&bih=634). 
 
further manifests the significance of the metagenomic study. However, large 
number of the latter appears to be confined only to present snapshoot of the mi-
crobial community diversity and structure. This type of investigation has been 
valuable and important, whilst an effort to integrate and coordinate the conven-
tional approaches that largely focus on the environmental factors control, and 
the metagenomic approaches that reveals the microbial community structure 
and diversity, implemented through machine learning techniques, for a holistic 
and more comprehensive insight into the cause and control of Cyanobacteria 
blooms, appear to be a trend and challenge of the study of this field. 
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