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Abstract 
Exposure to particulate matter with an aerodynamic diameter of less than 2.5 
μm (PM2.5) may increase risk of lung cancer. The repetitive and broad-area 
coverage of satellites may allow atmospheric remote sensing to offer a unique 
opportunity to monitor air quality and help fill air pollution data gaps that 
hinder efforts to study air pollution and protect public health. This geograph-
ical study explores if there is an association between PM2.5 and lung cancer 
mortality rate in the conterminous USA. Lung cancer (ICD-10 codes C34- 
C34) death count and population at risk by county were extracted for the pe-
riod from 2001 to 2010 from the U.S. CDC WONDER online database. The 
2001-2010 Global Annual Average PM2.5 Grids from MODIS and MISR Aero-
sol Optical Depth dataset was used to calculate a 10 year average PM2.5 pollu-
tion. Exploratory spatial data analyses, spatial regression (a spatial lag and a 
spatial error model), and spatially extended Bayesian Monte Carlo Markov 
Chain simulation found that there is a significant positive association between 
lung cancer mortality rate and PM2.5. The association would justify the need of 
further toxicological investigation of the biological mechanism of the adverse 
effect of the PM2.5 pollution on lung cancer. The Global Annual Average PM2.5 
Grids from MODIS and MISR Aerosol Optical Depth dataset provides a con-
tinuous surface of concentrations of PM2.5 and is a useful data source for en-
vironmental health research. 
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1. Introduction 

Lung cancer is a leading cause of cancer mortality in the United States. Exposure 
to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) 
may increase risk of lung cancer [5]. The World Health Organization (WHO) 
guideline for PM2.5 average annual exposure is less than or equal to 10.0 μg/m3, 
and the US Environmental Protection Agency (EPA) sets an annual average 
PM2.5 standard of 12 μg/m3. Recently findings on air pollution and lung cancer 
incidence in 17 European cohorts show that long term exposure to particulate 
air pollution increases the risk of lung cancer, even at levels below the European 
Union limit value (25 μg/m3) (Raaschou-Nielsen et al. 2013).  

Air pollution (including PM2.5) epidemiological studies often rely on ground 
monitoring networks to provide metrics of exposure. Ground monitoring data 
often lacks spatially complete coverage. Public health concerns compel efforts to 
broaden spatial and temporal coverage. The repetitive and broad-area coverage 
of satellites may allow atmospheric remote sensing to offer a unique opportunity 
to monitor air quality at continental, national and regional scales. To provide a 
continuous surface of concentrations of PM2.5 for health and environmental re-
search, researchers at Battelle Memorial Institute in collaboration with the Cen-
ter for International Earth Science Information Network/Columbia University 
have developed Global Annual Average PM2.5 Grids from MODIS and MISR 
Aerosol Optical Depth (AOD) covering year 2001 to 2010 [3]. There are few stu-
dies using this dataset to assess PM2.5 effect on lung cancer.  

This study was to examine if there is an association between PM2.5 and lung 
cancer mortality rate in the conterminous USA using the Global Annual Average 
PM2.5 Grids. The study used a suite of geographical approach, including remote 
sensing, GIS, cartography (map visualization and comparison), exploratory spa-
tial data analysis (ESDA) and spatially extended statistical models.  

2. Methods 
2.1. PM2.5 Data 

The 2001-2010 Global Annual Average PM2.5 Grids from Moderate Resolution 
Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradi-
ometer (MISR) Aerosol Optical Depth (AOD) dataset [3] were used to calculate 
a global 10-year (2001-2010) average PM2.5 grid. This global grid was then 
clipped to the study area—the conterminous USA.  

In the Global Annual Average PM2.5 Grids data archive, each annual average 
data file contains integer values for a global grid (0.5˚ × 0.5˚) of estimated PM2.5 
concentrations (in µg/m3) covering the world from 70˚N to 60˚S.The MODIS 
and MISR AOD retrievals were converted to ground-level concentrations based 
on a conversion factor developed by van Donkelaar et al. (2010). Level 3 global, 
monthly-mean MODIS and MISR AOD data for the years 2001-2010 were ac-
quired from NASA LAADS and NASA Langley ASDC respectively. The MODIS 
level 3 (L3) monthly data were disaggregated from 1˚ resolution to 0.5˚ resolu-
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tion to match the resolution of the MISR AOD data. AOD for both instruments 
that were anticipated to have a bias of greater than ±(0.1 uhuior 20%) as com-
pared to ground-based Aerosol Robotic Network (AERONET; Holben et al. 
1998) AOD due to high surface albedos or other persistent factors were removed 
from the analysis. The filtered MODIS and MISR data were then combined by 
taking the mean of each grid cell for each month of the year. Ground-level con-
centrations of dry 24 hour PM2.5 were estimated from the satellite observations 
of total-column AOD by applying a conversion factor that accounts for the spa-
tial and temporal relationship between the two. This conversion factor is a func-
tion of aerosol size, aerosol type, diurnal variation, relative humidity and the 
vertical structure of aerosol extinction, which were derived from a global 3-D 
chemical transport model (GEOS-Chem: http://acmg.seas.harvard.edu/geos/) 
and assumes a relative humidity of 50% (van Donkelaar et al. 2010). The satellite 
AOD data were multiplied by monthly-mean conversion factors (calculated as a 
climatological mean over 2001-2006) for each grid cell. Finally, an annual-aver- 
age estimated surface PM2.5 concentration was estimated by calculating the 
mean of the monthly estimates over each year. 

2.2. Lung Cancer Data 

Lung cancer (ICD-10 codes C34-C34: malignant neoplasms of trachea, bronchus 
and lung) death count and population at risk by county for the conterminous 
USA were extracted for the period from 2001 to 2010 from the National Center 
for Health Statistics Compressed Mortality File 1999-2010 in the CDC 
WONDER online database [4]. Age adjusted rate was calculated using direct 
standardization for each county. The year 2000 US decennial census data was 
used as a standard population to standardize rates. Expected count of lung can-
cer was also calculated which is the number of cases that would be expected in 
the study population if people in the study population contracted the disease at 
the same rate as people in the standard population. Age-adjusted death rates are 
weighted averages of the age-specific death rates, where the weights represent a 
fixed population by age. They are used to compare relative mortality risk among 
groups and over time. An age-adjusted rate represents the rate that would have 
existed had the age-specific rates of the particular year prevailed in a population 
whose age distribution was the same as that of the fixed population. Age adjust-
ment is a technique for removing the effects of age from crude rates, so as to al-
low meaningful comparisons across populations with different underlying age 
structures. Age-adjusted rates should be viewed as relative indexes rather than as 
direct or actual measures of mortality risk. According to Curtin and Klein [6], 
one of the problems with rate adjustment is that rates based on small numbers of 
deaths will exhibit a large amount of random variation. In the lung cancer mor-
tality count and population data set, crude death rates and age-adjusted death 
rates are marked as “unreliable” when the death count is less than 20. Lung 
death counts are “suppressed” when the data meets the criteria for confidential-
ity constraints. Sub-national data representing fewer than ten persons are sup-

http://acmg.seas.harvard.edu/geos/
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pressed. All counties with unreliable and suppressed data were not included in 
the following spatial analyses. After excluding counties that have unreliable or 
suppressed data, the number of data points (counties) for the analysis is 2,931.  

2.3. Exploratory Spatial Data Analysis  

To link lung cancer mortality rate with PM2.5, the 10-year (2001-2010) mean 
PM2.5 raster grid was first resampled so that each 0.5˚ × 0.5˚ grid cell was subdi-
vided into 20 by 20 smaller cells retaining the original PM2.5 values. The purpose 
of the resampling procedure was to split the grid cell on the county boundary 
into smaller cells for neighboring counties to achieve higher accuracy of county 
average PM2.5 calculation.  

The resampled PM2.5 grid was then overlaid with the map of lung cancer mor-
tality rates. A GIS zonal statistical function was used to calculate the average 
PM2.5 value for each county. The average value was calculated by averaging PM2.5 
values of all the cells formed after the resampling of the original grid whose cen-
troids are within the county.  

Exploratory spatial data analysis (ESDA) [1] methods were used to examine 
the spatial autocorrelation within the spatial data and explore the association 
between lung cancer mortality rate and PM2.5. The analysis involved calculation 
of univariate global Moran’s I statistic and local indicator of spatial association 
(LISA) [2]. Spatial contiguity was assessed as Queen’s contiguity which defines 
spatial neighbors as those areas with shared borders and vertexes. Univariate 
global Moran’s I examines the degree of spatial autocorrelation in the mortality 
rate and PM2.5 maps respectively. LISA provides information relating to the loca-
tion of spatial clusters and outliers and the types of spatial correlation. Local sta-
tistics are important because the magnitude of spatial autocorrelation is not 
necessarily uniform over the study area [1].  

Univariate LISA resulted in a cluster map for each of the two variables. Biva-
riate LISA results were presented as a Moran scatter plot and a cluster map. Bi-
variate Moran’s I value determines the strength and direction of the relationship 
between mortality rate and PM2.5 in each county and measures the overall clus-
tering. The Bivariate Moran’s I statistic is represented as the values of mortality 
rate averaged across all neighboring counties and plotted against PM2.5 in each 
county. If the slope on the scatter plot is significantly different to zero then there 
is association between mortality rate and PM2.5. Significance was tested by com-
parison to a reference distribution obtained by random permutations [1]. A 
random permutation procedure recalculates a statistic many times by reshuffling 
the data values among the map units to generate a reference distribution. The 
obtained statistic calculated based on the observed spatial pattern is then com-
pared to this reference distribution and a pseudo significance level is computed. 
This analysis used 500 permutations to determine differences between spatial 
units.  

2.4. Spatial Regression 

Two regression models were fitted to examine the relationship between lung 
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cancer mortality rate and PM2.5: Spatial lag, and spatial error. The two spatial re-
gression models could alleviate the problem of spatial autocorrelation that might 
exist within the data. Spatial autocorrelation is the propensity for data values 
closer to each other in space to be more similar. If spatial autocorrelation exists, 
the assumption of independent observations and errors of classical statistical 
models may be violated. Spatial regression methods capture spatial dependency 
in regression analysis, avoiding statistical problems such as unstable parameters 
and unreliable significance tests, as well as providing information on spatial rela-
tionships among the variables involved. The spatial lag model (also called Spatial 
Auto-Regressive model, or SAR) takes the form:  

y Wy Xρ β ε= + +                   (1) 

and the spatial error model takes the form: 

,y X Wβ µ µ λ µ ε= + = +                   (2) 

where y  is an ( 1)N ×  vector of observations on the dependent variable taken 
at each of N  locations, X  is an ( )N k×  matrix of exogenous variables, β  
is an ( 1)k ×  vector of parameters, and ε  is an ( 1)N ×  vector of distur-
bances, ρ  is a scalar factor for the spatial lag term, λ  is a scalar error para-
meter, µ  is a spatially auto-correlated disturbance vector, and W  is spatial 
weight. The spatial weight calculation for this study was based on the first-order 
Queen’s contiguity rule. If two counties share boundary or node, the weight is 
equal to 1, otherwise it is zero. The spatial weight matrix was then row standar-
dized so that all columns sum to 1. 

2.5. Lung Cancer Data Spatial Bayesian Monte Carte Markov Chain 
Simulation Model 

The association between lung cancer mortality rate and PM2.5 was also explored 
using a more sophisticated spatially extended Bayesian Monte Carlo Markov 
Chain (MCMC) simulation model. Simulation-based algorithms for Bayesian 
inference allow us to fit very complicated hierarchical models, including those 
with spatially correlated random effects. In this geographical study, there could 
exist spatial autocorrelation within values of the lung cancer mortality rate and 
PM2.5. The following model was fitted allowing a convolution prior for the ran-
dom effects: 

( )i iO Poisson µ                       (3) 

0 1 2.5log logi i i iE PM b hµ β β= + + + +               (4) 

where i is the index for a county, O is observed lung cancer death count, E is ex-
pected death count reflecting age-standardized values. For model specification, 
an improper (flat) prior for the intercept parameter β0 and a uniform prior dis-
tribution for the fixed-effect parameters (β1) were assumed. Fixed effect means 
that it applies equally to all the counties. Two sets of county-specific random ef-
fects were included in the model. The first set bi is spatially structured random 
effects assigned an intrinsic Gaussian conditional auto-regression (CAR) prior 
distribution (Suwa et al. 2002). The second set of random effects hi is assigned an 
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exchangeable (non-spatial) normal prior. The random effect for each county is 
thus the sum of a spatially structured component bi and an unstructured com-
ponent hi. This is termed a convolution prior (Suwa et al. 2002; Best 1999). The 
model is more flexible than assuming only CAR random effects, since it allows 
the data to decide how much of the residual disease risk is due to spatially struc-
tured variation, and how much is unstructured over-dispersion. To complete the 
model specification, conjugate inverse-gamma prior distributions were assigned 
to the variance parameters associated with the exchangeable and/or CAR priors.  

The MCMC simulation computation technique and Gibbs sampling algorithm 
were used to fit the Bayesian model. Having specified the model as a full joint 
distribution on all quantities, whether parameters or observables, we wish to 
sample values of the unknown parameters from their conditional (posterior) 
distribution given those stochastic nodes that have been observed. MCMC me-
thods perform Monte Carlo simulations generating parameter values from 
Markov chains having stationary distributions identical to the joint posterior 
distribution of interest. After these Markov chains converge to a stationary dis-
tribution, the simulated parameter values represent a correlated sample of ob-
servations from the posterior distribution. The basic idea behind the Gibbs sam-
pling algorithm is to successively sample from the conditional distribution of 
each node given all the others. Under broad conditions this process eventually 
provides samples from the joint posterior distribution of the unknown quanti-
ties. Summaries of the post-convergence MCMC samples provide posterior in-
ference for model parameters. The result of such analysis is the posterior distri-
bution of a density function with covariate effects.  

 The model was fitted using the WinBUGS software–an interactive Windows 
version of the BUGS (Bayesian inference Using Gibbs Sampling) program for 
Bayesian analysis of complex statistical models using MCMC techniques [10]. A 
queen’s case spatial adjacency matrix (wij = 1 when county i and j share a boun-
dary or a vertice, wij = 0 otherwise) that is required as input for the conditional 
autoregressive distribution was created using the Adjacency for WinBUGS Tool 
developed by Upper Midwest Environmental Sciences Center of the US Geolog-
ical Survey (USGS). Two Markov chains were simulated in the present study. 
The MCMC samplers were given initial values for each stochastic node. A total 
of 20,000 simulation iterations were run.  

3. Results 

Before you begin to format your paper, first write and save the content as a sep-
arate text file. Keep your text and graphic files separate until after the text has 
been formatted and styled. Do not use hard tabs, and limit use of hard returns to 
only one return at the end of a paragraph. Do not add any kind of pagination 
anywhere in the paper. Do not number text heads—the template will do that for 
you. 

Finally, complete content and organizational editing before formatting. Please 
take note of the following items when proofreading spelling and grammar: 
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3.1. Maps of PM2.5 and Lung Cancer Mortality Rate 

Figure 1 shows maps of PM2.5 and age adjusted lung cancer mortality rate. The 
PM2.5 exhibits more clustered pattern with higher values in the east. The average 
PM2.5 for all counties in the conterminous USA is 8.43 μg/m3. The eastern part 
has an average value around the EPA standard limit of 12 μg/m3.The mortality 
map shows some chessboard pattern but overall the east part of USA has higher 
mortality rate than west, same as PM2.5. Visual comparison of the two maps re-
veals an overall positive association between PM2.5 and lung cancer mortality 
rate.  

3.2. ESDA 

The univariate Moran’s I scatter plots for lung cancer mortality rate and PM2.5 
are shown in Figure 2 and Figure 3 respectively. PM2.5 has extremely high posi-
tive spatial autocorrelation with a Moran’s I value of 0.9472 (close to 1). There 
are significant (p = 0.05) clusters of counties in the east which have high PM2.5 
values both themselves and in the neighbours (“high-high”) and clusters of 
“low-low” in part of mid and west USA (Figure 4). There are few PM2.5 outliers 
(“high-low” or “low-high”). The lung cancer mortality rates are also positively 
spatial auto-correlated (Moran’s I = 0.6249, p = 0.05), but the autocorrelation is 
not so strong as PM2.5. The spatial autocorrelation is also revealed in the lung 
cancer mortality rate LISA cluster map (Figure 5). There are “high-high” clus-
ters in the middle of the east and “low-low” clusters in the west. Special attention 
should be paid to the several “high-low” outliers in the west, where a county has 
high mortality rate but its neighbors have low average rate.  
 

 

Figure 1. Maps of PM2.5 (μg/m3)and age adjusted lung cancer mortality rates by USA 
county. 
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Figure 2. PM2.5 Moran’s I scatter plot. 

 

 
Figure 3. Age adjusted lung cancer mortality rate (AGEADJRATE) Moran’s I scatter plot. 
 

The bivariate LISA cluster map is shown in Figure 6 (permutations = 500, p = 
0.05). Note that this shows local patterns of spatial correlation at a county be-
tween lung cancer mortality rate and the average PM2.5 for its neighbors. Coun-
ties with significant spatial correlation are color-coded by type of spatial auto-
correlation. There are clusters of ‘high-high” (high PM2.5 in a county and high  
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Figure 4. PM2.5 LISA cluster map. 
 

 

Figure 5. Age adjusted lung cancer mortality rate LISA cluster map. 
 

 
Figure 6. Bivariate LISA cluster map. 
 
average mortality rate in it is neighbors) in the mid of the east and south, and 
“low-low” in the mid and west. A few clusters of “low-high” are in the mid, and 
“high-low” in the mid, west and north east. These spatial outlier locations, espe-
cially areas with low PM2.5 but high mortality rates, warrant further investigation 
to see if other factors dominate in effects on mortality. These four categories of 
clusters correspond to the four quadrants in the Moran scatter plot as shown in 
Figure 7, which is a box plot showing the distribution of the local Moran statis-
tics across observations. The axes have been standardized such that the units 
correspond to standard deviations. The scatter plot figure has also been centered  
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Figure 7. Bivariate Moran’ I scatter plot: weighted age adjusted lung cancer mortality rate 
(W_AGEADJRATE) vs. PM2.5. 
 
on the mean with the axes drawn such that the four quadrants are clearly shown. 
The high-high and low-low locations (positive local spatial correlation) 
represent spatial clusters, while the high-low and low-high locations (negative 
local spatial correlation) represent spatial outliers. The positive local Moran’s I 
value of 0.3851 (p = 0.05) indicates an overall positive spatial association and 
neighborhood effect between lung cancer mortality rate and PM2.5. It should be 
noted that the so-called spatial clusters shown on the LISA cluster map only re-
fer to the core of the cluster [2]. The cluster is classified as such when the value 
at a location (either high or low) is more similar to its neighbors (as summarized 
by averaging the neighboring values, the spatial lag) than would be the case un-
der spatial randomness. Any location for which this is the case is labeled on the 
cluster map. However, the cluster itself likely extends to the neighbors of this lo-
cation as well.  

3.3. Spatial Regression 

Table 1 shows the spatial lag model result. Lung cancer mortality rate is posi-
tively significantly related to PM2.5 (β = 0.5319, p < 0.001). The coefficient para-
meter (ρ) of the spatial lag term of lung cancer mortality rate (W_LUNG) has a 
positive effect and is highly significant (ρ = 0.7261, p = 0.000), reflecting the spa-
tial dependence inherent in the lung cancer mortality rate data - lung cancer 
mortality rate in a county is similar to the average of its neighbors. The low 
probability in the Breusch-Pagan test suggests that heteroskedasticity still exists  
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Table 1. Spatial lag regression model. 

Model description 

 
Y No. of variables No. of observations Degrees of freedom 

LUNG 3 2931 2929 

Model fit 

 
R2 Log likelihood  AIC 

0.5650 −10819.3  21644.6 

Model estimation 

 

Variable Coefficient Std. Error Z-Value p 

ρ 0.7261 0.0156 46.423 0.0000 

CONSTANT 11.1278 0.8629 12.895 0.0000 

PM25 0.5319 0.0691 7.701 0.0004 

Diagnostic tests 

 Tests DF Value p 

Heteroskedasticity Breusch-Pagan 1 3.888 0.0486 

Spatial dependence Likelihood Ratio 1 1603.998 0.0000 

 

after introducing the spatial lag term. In the likelihood ratio test of the spatial lag 
dependence, the result is significant. Introducing the spatial lag term did not 
completely remove the spatial effects. 

In the spatial error model (Table 2), the coefficient on the spatially correlated 
errors (λ) has a positive effect and is highly significant (λ = 0.7318, p = 0.0000). 
Like the lag model, the effect of PM2.5 remains positive and significant (β = 
1.1852, p = 0.0000). The heteroskedasticity test remains significant (p < 0.05), 
indicating existence of heteroskedasticity. The likelihood ratio test of spatial er-
ror dependence has a significant result. Allowing the error term to be spatially 
correlated not only improved the model fit, but also made part of the spatial ef-
fects go away. The spatial lag model is slightly better than the spatial error model 
in terms of R2 and log likelihood values (0.5650 vs. 0.5620). In both models, 
PM2.5 explains over 56% of variation in the lung cancer mortality rate.  

3.4. Bayessin MCMC Simulation Model 

The Markov chains begin to converge after about 7,500 simulation runs and pa-
rameter value updates. After convergence, each simulation generates values 
fluctuating around within a consistent range of values representing the posterior 
distribution of each model parameter. Inferences were made about the parame-
ters of the model using the simulated values on iterations 7500 to 20,000. Table 
3 provides the estimated posterior mean, median, and associated 95% credible 
set for each of the fixed effects. A 95% credible set defines an interval having a 
0.95 posterior probability of containing the parameter of interest which is as-
sumed to be a random variable in Bayesian statistics. The 2.5%, 50% (median) 
and 97.5% quantiles and posterior mean were calculated via an approximate al 
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Table 2. Spatial error regression model. 

Model description 

 
Y No. of variables No. of observations Degrees of freedom 

LUNG 2 2931 2929 

Model fit 

 
R2 Log likelihood  AIC 

0.5620 −10833.3  21670.6 

Model estimation 

 

Variable Coefficient Std. Error Z-Value p 

CONSTANT 47.0179 1.7097 27.500 0.0000 

PM25 1.1852 0.1885 6.289 0.0000 

λ 0.7318 0.0155 47.136 0.0000 

Diagnostic tests 

 Tests DF Value p 

Heteroskedasticity Breusch-Pagan 1 4.019 0.0450 

Spatial dependence Likelihood Ratio 1 1575.931 0.0000 

 
Table 3. Bayesian Monte Carlo Markov Chain simulation modeling. 

Fixed Posterior Posterior Standard MC 95% Credible 

effects mean median deviation error set 

β0 0.037 0.029 0.058 0.002 (−0.068, 0.184) 

β1 1.308 1.316 0.245 0.011 (0.892, 1.731) 

* Posterior means, medians, and 95% credible sets are based on post-convergence iterations (from iteration 
7500 to 20,000). Dependent variable: lung cancer mortality rate. Fixed effects are: β0-intercept, β1–effect of 
PM2.5. 

 
gorithm [11]. Summaries of the post-convergence MCMC samples provide 
posterior inference for model parameters. For example, the sample mean of the 
post-convergence sampled values for a particular model parameter provides an 
estimate of the marginal posterior mean and a point estimate of the parameter 
itself. The interval defined by the 2.5th and 97.5th quantiles of the post-conver- 
gence sampled values for a model parameter provides a 95% interval estimate of 
the parameter. Standard deviations and Monte Carlo (MC) errors were calcu-
lated to assess the accuracy of the simulation. The MC error is an estimate of the 
difference between the mean of the sampled values and the true posterior mean. 
As a rule of thumb, the simulation should be run until the Monte Carlo error for 
each parameter of interest is less than about 5% of the sample standard devia-
tion. The MC errors calculated from the iterations 7500 to 20,000 for both the 
parameters are less than 5% of the corresponding standard deviations, suggest-
ing an accurate posterior estimate for each parameter. In addition, Figure 8 
shows the posterior parameter densities. The horizontal axis represents simu-
lated parameter values. The vertical axis represents the density of each parameter  
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     Figure 8. Bayesian MCMC simulation parameter posterior density curves. 
 
value. The PM2.5 parameter value density curve and Table 3 show a positive as-
sociation between PM2.5 pollution and lung cancer mortality rate. The 95% cred-
ible set covers positive values: 

2.5PMβ  = 1.308, CI = (0.892, 1.731). The positive 

2.5PMβ  and boundary values of the CI indicate that in general, higher values of 
PM2.5, higher rates of lung cancer mortality. 

4. Discussions and Conclusions 

Significant positive association was found between lung cancer mortality rate 
and PM2.5. There is an excess risk of lung cancer mortality in areas with high 
PM2.5 levels. This study used a geographical/ecological approach. Ecological stu-
dies are more useful for generating and testing hypothesis (Rytkönen 2003). The 
statistically significant association between lung cancer mortality and PM2.5 can 
be taken as indicative of a potential air pollution effect. The association would 
justify the need of further toxicological approach for investigating the biological 
mechanism of the adverse effect of the PM2.5 pollution. Although the mechanism 
underlying the correlation between PM2.5 exposure and lung cancer has not fully 
elucidated, PM2.5-induced oxidative stress has been considered as an important 
molecular mechanism of PM2.5-mediated toxicity [7]. Harrison et al. (2004) [8] 
found it plausible that known chemical carcinogens are responsible for the lung 
cancers attributed to PM2.5 exposure but the possibility should not be ruled out 
that particulate matter is capable of causing lung cancer independent of the 
presence of known carcinogens. 
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Remote sensing could help fill pervasive data gaps that hinder efforts to study 
air pollution and protect public health. The Global Annual Average PM2.5 Grids 
from MODIS) and MISR Aerosol Optical Depth dataset provides a continuous 
surface of concentrations of PM2.5 and is a useful data source for health and en-
vironmental research. 
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