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Abstract 
Convolutional neural network (CNN) is an essential model to achieve high 
accuracy in various machine learning applications, such as image recognition 
and natural language processing. One of the important issues for CNN acce-
leration with high energy efficiency and processing performance is efficient 
data reuse by exploiting the inherent data locality. In this paper, we propose a 
novel CGRA (Coarse Grained Reconfigurable Array) architecture with time- 
domain multithreading for exploiting input data locality. The multithreading 
on each processing element enables the input data reusing through multiple 
computation periods. This paper presents the accelerator design performance 
analysis of the proposed architecture. We examine the structure of memory 
subsystems, as well as the architecture of the computing array, to supply re-
quired data with minimal performance overhead. We explore efficient archi-
tecture design alternatives based on the characteristics of modern CNN con-
figurations. The evaluation results show that the available bandwidth of the 
external memory can be utilized efficiently when the output plane is wider (in 
earlier layers of many CNNs) while the input data locality can be utilized 
maximally when the number of output channel is larger (in later layers). 
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1. Introduction 

Convolutional neural networks (CNNs) are attracting much attention by ac- 
hieving high accuracy in various applications such as image recognition, natural 
language processing, object detection. CNN is a type of neural networks which 
employs convolution operation as a feature extraction method, where the 
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weights of the convolution are also self-obtained through the training of the 
network. This “trainable” feature extraction algorithm is the key of high reco- 
gnition accuracy of the CNNs. 

CNNs are computationally intensive, many kinds of hardware acceleration 
such as GPGPU computation or ASIC/FPGA-based implementations [1] [2] have 
been utilized to process CNNs with an acceptable throughput and efficiency. 
GPGPU parallel computation [3] is used for server-side off-line CNN training. 
The high performance and it programmable feature allows for software-based 
development, but its large energy consumption is not suitable for mobile ap- 
plications. ASIC approach can be the most efficient solution with the optimal 
design for an application. However, the disadvantage of an ASIC solution is the 
difficulty with adapting to new methods of an ever-evolving deep learning 
algorithm. FPGA-based implementations are also used to balance the perfor- 
mance and availability with the optimized architectures for the demand, but its 
effective power efficiency is not so high. 

The difference of computational structures between convolutional and fully- 
connected layers prevents the accelerators to process the entire CNN efficiently. 
In addition, the convolutional layers in a single CNN may have quite different 
memory (data transfer) requirements. 

In this paper, we analyze the data access patterns of CNN layers and find out a 
reconfigurable architecture that has the ability of changing data access/operation 
patterns layer by layer in order to utilize the locality of the layers. We propose a 
novel CGRA (Coarse Grained Reconfigurable Array) accelerator with time- 
domain multithreading, which exploits the locality of the input data and con- 
ceals the latency of the external memory access. Finally, we evaluate the benefits 
of the multithreading by estimating the data reusability and the hardware re- 
quirements for our experimental architecture. As a result, the efficiency and 
usability of the multithreaded processing in CGRA are proven, and the practical 
and quantitative methods for building/using multithreaded CGRA neural net- 
work accelerators are shown. 

This paper is based on our previous work [4]. The followings are the main 
supplementary contribution of this paper: we considered some practical architec- 
tures with feasible SRAMs, analyzed the performance and complexity of these 
configurations, and also indicated the practical design points of the presented 
architecture based on the application requirements. 

The purpose of this paper is to propose a CNN accelerator architectue and 
design for embedded applications. This paper is organized as follows: in Section 
2, we analyze the computation pattern of CNNs. In Section 3, we discuss the 
localities of the CNN layers and propose an ideal multithreaded architecture to 
exploit them. In Section 4, we consider two feasible architectures with multith- 
readed accumulators. And then in Section 5 we evaluate the performances, 
arithmetic intensities, and hardware requirements of the architectures on several 
situations. In Section 6, we present some related studies. Then in Section 7, and 
we finally conclude this paper.  
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2. Computation Model of CNN Layers 

A CNN includes the layers operate 2-dimensional convolution between the 
inputs and the weights (kernels), called “convolutional” (CONV) layers, which 
behave as feature extraction that the pixels having the similar pattern to the 
weight pattern are amplified. The weights of the CNN are trained to have the 
reasonable patterns for the task, and this self-tuned feature extraction is the 
secret the CNNs succeed in the natural data recognition/classification. Typically 
a CNN might have the “fully-connected” (FC) layers after the CONV layers, and 
these layers operate vector transformation and work as classifier like the classical 
multi-layer perceptron. 

In this section, we discuss the difference and the similarity of the com- 
putational structures and the data paths of the two types of layers. 

First, we take a look at the computation of the CONV layer with single 
input/output channel. 

An output pixel of the CONV layer is calculated using the weights shaped 
H H×  and the input partial area which has the same shape, as shown in Figure 
1(a). While the partial input area (sometimes called “window”) slides over the 
entire input plane with stride, the weight values are common among all output 
elements. When we denote this 2-d convolution into the classical neural net style, 
each output neuron has a few connections to the input neurons of the particular 
location and all the output neurons has the same synapse weight values (Figure 
1(b)). 

The computation of the CONV layer consists of the same number of the 
multiplication and summation. Since all the output elements share the weights, 
each element of the output uses all of the weights. Then, the corresponding input 
partial area is uniquely determined by the location of the output element and the 
size of the weight matrix(H). Input pixels used by each output element are 
determined when we pick one weight element. Therefore, the convolution can be  

 

 
Figure 1. The structure of the convolutional layer (a) (b) and the data de- 
pendency (c). 
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computed by selecting a weight element one by one and multiplying the 
corresponding input area for all output elements. This one operation requires 
only one weight value and as many the input pixels as the output elements, as 
shown Figure 1(c). 

From another view, as shown as black solid lines in Figure 2, an input 
element has inference to elements of all output channels. And, like broken lines 
in the figure, a weight element is shared among all output/input elements. In a 
CONV layer, both input and weight elements have forms of the data reusability. 

The computation of an FC layer is denoted as the multiplication of the input 
vector and the weight matrix. The name “fully-connected” layer comes from that 
an output element is calculated using all of the input elements via the weights 
(Figure 3(b)). The value of an output element is the dot product of a row of the 
weight and the input vector, as Figure 3(a). 

 

 
Figure 2. Data reusability of convolutional layers. 
 

 
Figure 3. The structure of the fully-connected layer (a) (b) and the data dependency 
(c). 
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Similar to the CONV layers, the dominant operation of the FC layers is the 
multiplication and the addition. An output element is connected to all of the 
input element via their weight, as we discussed above, therefore an input ele- 
ment has the influence to all output elements. The computation of the FC layer 
can be done by picking an input element and the weights corresponding to the 
input and all output elements. One input element and as many weight values as 
output elements are needed in one operation cycle (Figure 3(c)). 

Here, we look at the data reusability of an FC layer (Figure 4). An input 
element FC layer is used by all output elements, however, in contrast to CONV 
layers, weight elements have no chance to be reused. This means that, generally, 
the data size of the weights of an FC layer is larger than that of the inputs. 

3. Multithreaded CGRA Architecture for Input Value Reuse 

The discussion of the previous section shows that the dominant operation of the 
CONV and FC computation is commonly the multiply-add operation but data 
sizes of the operand are reversed. In this section, we propose the basic idea of the 
flexible architecture which does not need any difference of the hardware str- 
ucture through the entire CNN computation. 

3.1. Base Architecture 

For the multiply-add (MULADD) operation, the main calculation of the CONV 
and FC layers, we construct simple multiply-accumulator-based array processor. 
This is an output-parallel system where a processor engine (PE) handles an 
output element. According to the above discussion, we need to distribute a 
common value to all PEs and individual data to each of PEs per one clock cycle. 

In the CONV processing, we feed multiple input elements and a shared weight 
value into the PE array (Figure 5(a)). When the output plane is mapped to the 
array, the input partial area connected to the outputs through a weight is the 
same shape as the output plane. 

The basic processing flow of the single-channel convolution is shown in 
Figure 6. Typically, the input and output have multiple channel (e.g. RGB color  
 

 
Figure 4. Data reusability of fully-connected layers. 
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Figure 5. Data delivery of the convolutional (a) and fully-connected layers (b). 

 

 
Figure 6. Basic procedure of a convolutional layer. 
 
space for the input image or features for the hidden layers), convolution be- 
comes multi-channel (that is, although the CONV layers have 2-d topology in 
the plane the channels of the input and the output are “fully-connected” so as to 
express the combination of the features), but let us think about the case the input 
and the output have only one channel here. Let the parallelism of the array 

x yP P× , the size of the weight plane H H× , the stride of the convolution s (in 
this example, 4,x yP P= =  3,H =  1s = .) The operation for one clock cycle is 
feeding one weight value into the shared input, cropping x yP P×  partial area 
from the input and feeding it through the individual input. After H H×  cycles 
(one operation per one weight), then the convolution is done. In this example, 
the processor array covers whole the output plane, but in the case the number of 
PEs is not sufficient the output plane divided into blocks and the array executes 
the time-division processing. 

On the other hand, in the FC layer an input, not a weight, is used by multiple 
elements. An input element of the FC layer and the weight values for each PE are 
provided at one time (Figure 5(b)). The weight values to each output are one 
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row of the weight matrix when an input neuron is picked, we distribute weights 
to all PEs very similarly to the CONV processing. 

The basic computation for the FC layer is shown in Figure 7. The number of 
weights is i oN N× , where iN  and oN  is the number of input and output 
elements, respectively. One PE calculates one output element. We feed an input 
element into the array via the common input in a clock cycle, while the weights 
for the input are fed through the individual input. The computation of the FC 
layer completes iN  cycles. 

3.2. Multithreaded Accumulator for Data Reusing 

Lower data transfer per operation is the better in point of the computational 
time and efficiency. There are two opportunities for reducing the data accesses. 

First is the sequential locality of the input partial area of CONV layers. A pixel 
in an input channel is referenced H H×  times, the operations of the H weights 
in each row are consecutive. As shown in Figure 8, partial inputs referenced by 
the next weight are the same except the last one column. In the same weight row, 
the input elements required by the PEs are the input values the adjoining PE 
loaded in the previous cycle. If these already-loaded elements are reused, the 
data requests decrease to at most 1 H  (in the case there is no padding opera- 
tions). Figure 8 indicates this idea, where the grayed input area is the pixels to 
be reused. 

 

 
Figure 7. Basic procedure of a fully-connected layer. 

 

 
Figure 8. Sequential locality of the convolutional layer processing. The 
light-grayed elements can be reused. 
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Moreover, the temporal locality of the input of the multiple channel con- 
volution is also observed. Let the number of input channels iC , the number of 
the output channels oC . One partial input area is used oC  times because all 
output channels (features) are computed from the combination of the all input 
channels. According to this, once the input elements are fetched for the com- 
putation of the first output channel, we can skip loading the same inputs for 
following output channels, as shown in Figure 9. When we utilize a T-word 
register file as accumulator in a PE, this data reusing enables the PE array to 
reduce data accesses at most 1 T . 

4. Row-Wise Data Feeding 

We have explained the computation procedure of CONV and FC layers using an 
ideal processor array with individual and shared inputs, and the data reusability 
of CNNs on the array system. In this section, we build a feasible arrayed 
architecture with the multithreaded accumulator and the row-wise data delivery 
feature to exploit the locality the layers originally have. 

4.1. Shift-Based Data Supply 

Although a square partial input area is needed in every clock cycle in the CONV 
processing, the square area is not memory-friendly because it requires dis- 
continuous memory access. In the ideal architecture we indicated in the previous  
 

 
Figure 9. Temporal locality of the multi-channel convolution. 
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section, we assumed that the input partial area is fetched within a cycle to the PE 
array. This requires a very wide-band internal buffer. For a practical imple- 
mentation, we propose a shift-based row-wise memory system, aiming simpler 
access pattern and a compact architecture design. 

Since memory address of the CONV operations with output-parallel spatial 
array is continuous in the weight row, row-buffers where each buffer retains an 
input row can be appropriate (Figure 10). With admitting the latency to fill PEs, 
this idea is light-weighted since only the PEs on the most left column must have 
the “individual inputs” and the other PEs acquire the input data from their 
left-side PEs via the “forwarding bus”. Note that the overhead of filling all PEs 
sequentially through the forwarding bus will be discussed later in Section 4.2. 

The row-wise buffers are not sufficient because the CONV operations require 
H input rows per PE and ( )1yP H+ −  rows in the entire PE array ( yP  rows 
(colored input values in Figure 10) are used for the first weight row, and the 
additional 1H −  rows (white input cells in Figure 10) are loaded for the re- 
maining weight rows). Therefore we need a mechanism for selecting which row 
buffer should be connected to the left column. There are two solutions to this, 
using multi-port or multi-bank memories. 

Figure 11(a) and Figure 12 show a system using the Py-W Py-R multi-port 
SRAMs, where the inputs can be read from any row. Compared to the basic idea 
(Figure 5), the “individual” input and output buses moved from PEs to row 
buffers. This is the solution with the most few internal memory accesses that 
each input row is loaded to buffer only once and is read by all PE rows using 
them (at most H rows) (Figure 13(a)), however the multi-port SRAMs cost 

( )2
yO P  area. 

Figure 11(a) and Figure 12 indicate a solution with the ( )1yP H+ −  rows of 
the 1W2R multi-bank SRAMs and the looped-back forwarding bus connected to 
the next row SRAMs. The input of the row buffers are connected to the external 
memory and to the forwarding output of the right column of the adjoining row 
(Figure 13(b)). This costs only ( )yO P  resource and remains the minimal ex- 
ternal memory access, but the internal buffer write accesses increase compared 
to the multi-port solution, since the same data as the adjoining row used are  
 

 
Figure 10. Inpout data mapping on the shift-based array. 
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Figure 11. Shift-based architectures with (a) “multi-port” and (b) “multi-bank”' row buffers. 

 

 
Figure 12. A PE for shift-based array (Figure 11(a) and Figure 
11(b)). 

 
written to the row buffers again from the forwarding output of the most right 
column. 

4.2. Deep-Multithreaded Accumulator with SRAM 

When we employ the row-wise buffers and the shift-based data delivery instead 
of the ideal fully-parallel memory system, the overhead for filling all PE columns 
occurs prior to the multiplication of the first element of the weight row. To 
overcome this, the time-domain multithreaded partial sum accumulation could 
be effective. Generally, many CNN implementations contain many-channel and  
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Figure 13. Data mapping and row selecting on (a) the “multi-port” and (b) the “multi-bank” systems. 

 
small-plane CONV layers in deeper part of them, the overhead for sequential 
transfer will be relatively small, because an input connected to more output 
channels could be used more times and the data load is reduced by multith- 
reading. 

Now, we try to extend the multi-channel accumulator from a register to an 
SRAM buffer. An SRAM can have more channels than a register array; this helps 
us to gain the number of operations per row (i.e. arithmetic intensity). Though 
SRAM accumulators require more area, it is feasible because the most layers of a 
CNN have smaller plane and more channels, so the number of PEs and threads 
(accumulators) could be actually less and more respectively.  

5. Evaluation 
5.1. Setup 

We evaluate the performance, the arithmetic intensity of the proposed arch- 
itecture. Then the complexity of SRAM types for row selection is discussed. 

In this section, the input plane size is ix iy iN N C× × , the output plane is 

ox oy oN N C× × , the kernel size is H H×  ( 2
i oH C C  elements for all input/out- 

put channel), the number of PEs is x yP P× , and the number of thread is T. The 
system operates at clock frequency f and the data bit precision is b. 

5.2. Performance 

We evaluated the processing time and data rate of the architecture (Table 1). 
In the CONV processing, we pick all weights from all input/output channels  
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Table 1. Processing time [cycles] and data rate [bps] of the architecture. Bit precision b, 
clock frequency f, array ( )x yP P× -parallel, accumulator threads T, weight size H H× . 

 CONV FC 

Pre-requirements Out ox oy oN N C , In ix iy iN N C  Out oN , In iN  

Processing Time ( )1 oyox
x o i

x y

NN
P H HC C

P P
  

+ −   
    

 o
i x

x y

N
N P

P P
 
 
  

 

Input Rate 
( )

( )

1

1

o
y ix

ox
x o

x

C
P H N

Tbf
N

P H HC
P

 + −   
 

+ −  
 

 ( )1 x y

x

P P
bf

P
+

 

Output Rate ( )1

ox oy

oyox
x i

x y

N N
bf

NN
P H HC

P P
  

+ −   
    

 
y ibfP N  

 
one by one with each PE processing an output element ( ( )1x o iP H HC C+ −  
cycles; it takes xP  cycles per row for filling the array and ( )1H −  cycles for 
loading all the weight columns). Time-division processing is taken if the output  

size exceeds the number of PEs ( oyox

x y

NN
P P

  
  
    

 cycles). The processing time is:  

( ) [ ]1 Cyclesoyox
x o i

x y

NNP H HC C
P P

  
+ −   

    
              (1) 

The data transfer is buffered so as to fetch all pixels required by a row-wise 
processing block ( )( )1y ixP H N+ − , the input data size is:  

( ) [ ]1 Dataoy o
y ix i

y

N CP H N C
P T

   + −       
                (2) 

The input data rate is denoted as:  

( )

( )
[ ]

1
bps

1

o
y ix

ox
x o

x

CP H N
Tbf
NP H HC
P

 + −   
 

+ −  
 

                  (3) 

The output data size and rates are: 

[ ]Dataox oy oN N C                          (4) 

( )
[ ]bps

1

ox oy

oyox
x i

x y

N N
bf

NNP H HC
P P

  
+ −   

    

               (5) 

In the FC processing, it takes  

[ ]Cycleso
i x

x y

NN P
P P
 
 
  

                        (6) 
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(It takes xP  cycles per an input element for weight preloading, and o

x y

N
P P
 
 
  

  

is the number of time-division processing blocks), requiring  

( ) [ ]1 Datao
i x y

x y

NN P P
P P
 

+  
  

                   (7) 

inputs (while ( )x yP P  weights are needed for each of iN  input elements) and  

[ ]Datao
x y

x y

NP P
P P
 
 
  

 

outputs. The input and output data rates are: 

( ) [ ]
1

bpsx y

x

P P
bf

P
+

                      (8) 

[ ]bpsy ibfP N                         (9) 

We evaluated the theoretical processing time and data rates of the proposed 
(“multi-port” and “multi-bank”) architecture with AlexNet [5], as shown in 
Table 2. The number of PEs is 256 ( 16x yP P= = ), the bitwidth is 16b = . The 
table shows that this system can process AlexNet in 380 msec (2.6 fps) in 

200 MHzf = . 
According to these results, the required data rate in CONV layers is 16 MB/s 

at most. For the embedded systems this is an acceptable result. 
“Util.” means “PE Utilization”, the ratio of the averaged number of operating 

PEs to the number of PEs through the layer processing. Total PE utilization is 
calculated as:  

( ) ( )Space Ratio Time Ratio

oy ooy oy oxox ox ox

x yx y x x yx y x y x y

x y x y x yoy oyox ox

x y x y

N NN N NN N N
P PP P P P PP P R P R R

P P P P P PN NN N
P P P P

×

             
− −                                  = + +

      
      
         

y oy

y y

oyox

x y

N
P P

NN
P P

    
−            

  
  
    

 (10) 

 
Table 2. Evaluation of the proposed architecture using AlexNet [5]. 

# Type Weight Shape Output Shape Cycles 
Rate 

[GB/s] 
Util. [%] 

1 CONV ( )211 3 48 2× × ×  ( )224 224 48 2× × ×  16,144,128 0.013 100.0 

2 CONV ( )25 48 128 2× × ×  ( )27 27 128 2× × ×  19,660,800 0.009 73.9 

3 CONV ( ) ( )23 128 2 192 2× × × ×  ( )13 13 192 2× × ×  21,233,664 0.005 71.2 

4 CONV ( )23 192 192 2× × ×  ( )13 13 192 2× × ×  3,981,312 0.010 66.0 

5 CONV ( )23 192 128 2× × ×  ( )13 13 128 2× × ×  2,654,208 0.016 66.0 

6 FC 43264 4096×  4096 11,075,584 6.425 100.0 

7 FC 4096 4096×  4096 1,048,576 6.425 100.0 

8 FC 4096 1000×  1000 262,144 6.425 97.7 

Total   76,060,416   
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where the remainder pixels of the time-division blocks are  

x ox x ox xR N P N P= −     and y oy y oy yR N P N P = −   , as illustrated in Figure 14. 
If the width/height of the output plane can be divided by the width/height of the 
PE array, all the PEs are utilized through all processing time of the layer, the 
utilization ratio is 100%. Therefore, if we design a CNN to run on the CGRA, we 
should set the number of output elements to a multiple of that of PEs in order to 
maximize the computational efficiency. 

Figure 15 and Figure 16 show the relation between the problem size and 
processing time/resource, where the number of processors is 16x yP P= = . The 
processing time is in proportion to the number of output channels and to the 
output plane size, while required data rate is almost independent from the 
problem size. When the problem becomes larger the processing time increases  
 

 
Figure 14. Example of dividing the output plane into the 
processing blocks. In the case of 10ox oyN N= =  and 

4x yP P= = , the remainder pixels are 2x yR R= = , the 

number of fully utilized blocks is ox x oy yN P N P      , 

total blocks are ox x oy yN P N P      . 

 

 
Figure 15. Processing time and output bitrate over number of output 
channels. ( 256, 128i ox oyC N N= = = ). 
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but required resources such as data rate are independent, the availability is 
retained over the problem size. 

Figure 17 shows the processing time versus the size of the input in CONV 
processing. There is no difference between the processing times of the “multi- 
port” and the “multi-bank” row-wise SRAM systems because the processing 
method that the row SRAMs feed the input data into each row sequentially is 
common among these two ideas. Compared to the “ideal” system (all data used 
in the PE array are provided at once, we described in Section 3), row-buffer 
system take more processing time, however the arithmetic intensities of these 
systems are the same because the required numbers of operations and input/ 
weight data are not different (Figure 18). And more, as Figure 19, the required 
data input rate for row-wise system is lower than the base idea and is constant 
for the output size (if the output size becomes larger, both the processing time 
and required data increases, it results in the almost same data rate). 

5.3. Arithmetic Intensity 

Arithmetic intensities of some situations are indicated in Figure 20. The broken  
 

 
Figure 16. Processing time and output bitrate over numbers of 
output rows and columns ( 256, 384i oC C= = ). 

 

 
Figure 17. Output size and processing time.  

3, 512, 512, 16, 512i o x yH C C P P T= = = = = = . 
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Figure 18. Output size and arithmetic intensity.  

3, 512, 512, 16, 512i o x yH C C P P T= = = = = = . 

 

 
Figure 19. Output size and input data rate.  

3, 512, 512, 16, 512i o x yH C C P P T= = = = = = . 

 

 
Figure 20. Output size and arithmetic intensity in some situations. 

16, 3x yP P H= = = . 

 
line is for 1-thread (i.e. non-multithreaded register) accumulator, the dotted line 
for 8-thread, and the solid lines are for 512-thread memory. The red line is in 

512i oC C= =  case, assuming the deeper layer of a CNN, while the black ones 
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are 3, 32i oC C= =  assuming the input layer. This tells us that, highly-multith- 
readed system works better especially in the layers with more output channels 
(i.e. the deeper layers) of CNNs, since the multithreaded computation reduces 
the data load from the external RAMs by exploiting the input data reusability 
among the output channels. If the problem size is bigger than the spatial array 
size, the time-divided processing is needed, but the arithmetic intensity is 
saturated since the required computation and data transfer per output element 
do not dramatically vary. 

5.4. Complexity 

We introduced two types of the row-wise SRAM buffers with “multi-port” and 
“multi-bank” data selection in Sections 4.1, and estimated the performance of 
the row-wise shift architectures in Section 5.3. Let us discuss the complexity of 
the ways of data selecting, “multi-port” and “multi-bank” SRAMs. 

As described in Section 4.1, a PE row requires H input rows. To select which 
row buffer to connected to a PE row, two types of the buffer system have been 
proposed; “multi-port” SRAM that any PE row can have connection to any row 
buffer, and “multi-bank” one that row selection can be done by moving data 
internally. 

For “multi-port” SRAM, we utilize a ( )1yP H+ − -read/write SRAM as the 
row buffer. The input data for an input row are stored only once and are read by 
at most H PE rows (i.e. H output rows), so the number of buffer write accesses is 
minimized (once per input element). However, an n-read SRAM costs hardware 
resource by ( )2O n , generally. For row buffers, the capacity (costs linearly) and 
the number of ports (quadratically) are both in ( )yO P , so this costs ( )3

yO P  
area. 

In the “multi-bank” system, on the other hand, we use a ( )P H+  sets (or 
“banks”) of simple 1-write 1-read SRAM. This costs ( )yO P  resource for ( )yO P  
rows. After finishing loading input data for a CONV process, every clock cycle 
the data are fed into each row via the read port of SRAM, while the write port of 
SRAM acquires the data overflowed from the forwarding output of the right PE 
on the previous row. Therefore, although the input data are transferred from the 
external memory to the system only once, just like the “multi-port” imple- 
mentation, the internal memory write is taken for at most H times per input 
element as the loaded data flows over the array. 

Table 3 shows the area [mm2] and energy [nJ] specification of the “multi- 
port” and “multi-bank” 16-bit SRAMs (512 words per row) calculated using 
CACTI simulation [6] [7]. We assume that 2 more ports/banks than yP  are 
needed for interleaved read access during the multithreaded processing in the 
array in this simulation. The energy is the simulated value of a CONV operation 
of 3, 1i oH C C= = = , including the internal data moving. We supposed the 
power consumption of the write accesses of the SRAM is equal to the read 
accesses [8]. The actual capacity and number of the ports/banks should be 
determined considering the array size ( xP , yP ), the throuphput/latency of the  
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Table 3. Comparison of “multi-port” and “multi-bank” implementations. 

yP  Multi-port Multi-bank 

 #Ports Area Energy #Banks Area Energy 

2 4 0.694 0.706 4 0.085 0.103 

4 8 4.726 5.041 6 0.127 0.279 

6 8 4.726 9.410 8 0.169 0.535 

14 16 41.332 105.697 16 0.338 2.387 

 
external memory system, and the target application (mainly H). Seeing the result 
of this calculation, although the “multi-bank” memories require more write 
accesses, the energy and area are still lower than “multi-port” memories. 

5.5. Discussion 

In CONV processing, the array requires yP  input data at the first output 
channel in the multithreaded accumulators, therefore the input data rate 
requirement of the array (internal memory bandwidth) is [ ] Words CycleyP T . 
Note that the data rate may be [ ] Words Cycley oP C  if the number of output 
channels is less than that of accumulator threads. And more, if the read interval 
T or oC  is greater than x yP P , the number of input values of the whole array, 
even a 1W1R buffer with b-bit width and the shift registers for whole the PE 
array can be used. 

The x yP P T  output values of the CONV processing become valid every  
2

iH C T  cycles, the required output data rate is [ ]2  Words Cyclex y

i

P P
H C

. For the  

weights, every clock cycle the array multiply-accumulates the inputs with one 
weight value, so weight data rate is [ ]1 Words Cycle  constantly. This means 
that higher input bandwidth is required when the output channels or the threads 
are fewer, and that the output rate requirement gets severe if the input channels 
are fewer or the filter kernels are smaller. 

Then we discuss the optimal configuration of the internal SRAMs. To get over 
the latency of loading input data from the external memories, the processing 
time must exceed the memory access time, we need row SRAMs of enough 
depth that the solid partial input area can be read from the external memory 
behind the multithreaded computation. At this point, if the number of threads is 
large, the SRAM buffer size should be at least 2 xP  words per row (needs “2” for 
independent read/write accesses). The data rate of the internal read access is 

[ ] Words CycleyP T , as described above, required data rate of the external bus 
is also [ ] Words CycleyP T . When this data rate requirement is met, the time 
for the data acquirement can be covered by the processing time of the array. 

The area of the PE array is in proportion to the number of multithreading 
accumulators T, while the external bandwidth or the area of the row buffers is in 
proportion to the array height yP  and in inverse proportion to T. The pro- 
cessing time is in inverse ratio to x yP P  and direct to T. For planning the 
practical CGRA system, these observation should be in consideration on de- 
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mand from the applications. 

6. Related Work 

AlexNet [5] proved the high accuracy of the modern CNNs on image re- 
cognition in 2012. This firstly appeared in ILSVRC [9], the competition for the 
accuracy and adaptability of neural networks on image recognition; the com- 
petition has been held every year, many CNNs are invented. 

Various kinds of neural network accelerators have been developed. Zhang et 
al. analysed the data reusability and the arithmetic intensity of input- and 
output-parallel architectures built on an FPGA, and provided a method to 
optimize it when a target application is given [2]. Tanomoto et al. implemented 
EMAX [10], a CNN on the CGRA with multiple local memory banks; the main 
difference from our work is the data stationary. FPGA implementations of CNN 
coprocessors using DSP blocks were also proposed [11] [12]. LUT-based FPGA 
implementation [13] was proposed; this transforms the weight values using a 
mathematical techniques to replace the multipliers with the LUT and the adders. 
Chakradhar et al. proposed mapping a CNN into a coprocessor with the dy- 
namic reconfiguration techniques [14]. 

For an example of purpose-built architecture, MIT Eyeriss [1] is a CNN- 
targeted ASIC system with spatial processor array, which employs an NoC 
multicasting and a hierarchical memory system aiming at maximizing the PE 
utilization and exploiting the locality of the input data. Shindo et al. model 
general multicore neural network accelerators with local memories, and discuss 
the efficient way to map neural networks onto them [15]. KU Leuven’s ac- 
celerator [16] is a SIMD array system with dynamic voltage and bit precision 
control, aiming for low-power mobile applications. The accelerator proposed by 
KAIST [17] is a CNN accelerator which employs principal component analysis 
for the weights of convolutional layers to minimize the data size read from 
external memory. ShiDianNao [18] and its previous work DaDianNao [19] also 
retain the weight values in the internal buffers and employ spatial-mapped 
neural function unit. On the whole, including our work, the trend of the CNN 
accelerators is reducing external memory access and maximally utilizing the 
locality of the data for low-power embedded applications. 

Some researches are trying to reduce the data transference and the multiply 
operations. Recently “binarized” neural networks were proposed [20] [21], where 
a weight value is only 1-bit, which replace the multiplications with simple bit- 
wise operations. Exploiting redundancy of the neural networks, the computation 
costs are drastically reduced while keeping the recognition/classification accuracy. 
The hardware binary neural network accelerators with high-throughput mas- 
sively-paralleled processors have been developed [22] [23]. 

Commercial systems for neural network processing have been working. Google 
[24] and Microsoft [25] developed their own hardware/FPGA neural network 
processors and they are using them for their commercial services. NVIDIA’s 
GPUs have become a very popular way to train/examine CNNs on the server 
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with official libraries [3] both in academic/busuiness purposes.  

7. Conclusion 

We proposed a CGRA architecture with time-domain multithreading for ex- 
ploiting input data locality. This architecture employs the multithreaded PE 
accumulators for obtaining multiple in-flight operations and the row-wise data 
feeding for reusing the input of the neighboring PEs. Our evaluation proved that 
the proposed architecture is suitable for both deeper and shallower layers in 
general CNNs. The multithreading in the PEs improves the arithmetic intensity 
by an order of magnitude. We also showed the quantitative way to determine the 
specification of the architecture on demand from the applications. It indicated 
that the architecture requires only a little bandwidth of the external memory, 
this feature is useful for embedded machine learning applications. Though we 
showed the advantage of the architecture through the evaluation of the per- 
formance, the energy efficiency evaluation is desired to develop a more efficient 
architecture. In order to realize more useful accelerators, we should consider the 
co-design of the CNN algorithms and the architectures.  
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