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Abstract 
We examine governing equations that could be used to model a one-dimen- 
sional blood flow within a pulsating elastic artery that is represented by a tube 
of varying cross-section. The model is considered from two perspectives. The 
first represents a singular perturbation theory providing explicit approximate 
solutions to the model, and the second is based on group theoretical modeling 
that provides exact solutions in implicit form. The main goal is to compare 
these two approaches and lay out the advantages and disadvantages of each 
approach. 
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1. Introduction 

The mathematical modelling and the numerical simulations have become im-
portant tools for better understanding of the human cardiovascular system in 
recent years. One of the main goals in investigating the flow in the aortic system 
is to understand arteriosclerosis and the related phenomena as well as their de-
pendence on a blood flow structure. In particular, the aorta and arteries have a 
low resistance to blood flow compared with the arterioles and capillaries. When 
the ventricle contracts, a volume of blood is rapidly ejected into the arterial ves-
sels. Since the outflow to the arteriole is relatively slow because of their high re-
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sistance to flow, the arteries are inflated to accommodate the extra blood volume. 
During diastole, the elastic recoil of the arteries forces the blood out into the ar-
terioles. Thus, the elastic properties of the arteries help to convert the pulsatile 
flow of blood from the heart into a more continuous flow through the rest of the 
circulation. Hemodynamics is a term used to describe the mechanisms that af-
fect the dynamics of blood circulation [1] [2] [3]. In reality, an accurate model of 
blood flow in the arteries would include the following realistic features: 1) the 
flow is pulsatile, with a time history containing major frequency components up 
to the eighth harmonic of the heart period; 2) the arteries are elastic and tapered 
tubes; 3) the geometry of the arteries is complex and includes tapered, curved, 
and branching tubes and 4) in small arteries, the viscosity depends upon vessel 
radius and shear rate [4]. Such a complex model has never been accomplished. 
But each of the features above has been “isolated,” and qualitative if not quantit-
ative models have been derived. As is so often the case in the engineering analy-
sis of a complex system, the model derived is a function of the major phenomena 
one wishes to illustrate. 

Our goal is to model and examine the general trend of possible solutions asso-
ciated with the governing equations describing a simple one-dimensional blood 
flow that would depict a blood progressing within a thin and elastic pulsating 
artery. In reality, for many flow situations, the changes of density due to changes 
in pressure associated with the flow are very small but not zero. In our simula-
tions, the density is assumed variable for the following reason: hereafter we treat 
blood not as a homogeneous fluid but a suspension of particles (red cells, white 
cells, platelets) in fluid called plasma. Blood particles must be taken into account 
in the rheological model in smaller arterioles and capillaries since their size be-
comes comparable to that of the vessel [5] [6] [7] [8]. In particular, as has been 
discussed in [9], red blood cells (RBCs) exhibit a unique deformability, which 
enables them to change shape reversibly in response to an external force. Human 
RBCs have the ability to undergo large deformations when subjected to external 
stresses, which allows them to pass through capillaries that are narrower than 
the diameter of a resting RBC. In fact, RBCs are more deformable than any other 
biomaterial. RBCs are biconcave discs, typically 6 - 8 μm in diameter and 2 μm 
thick, and their deformation can involve a change in cell curvature, a uniaxial 
deformation, or an area expansion. In mammals, RBCs are non-nucleated and 
consist of a concentrated hemoglobin solution enveloped by a highly flexible 
membrane. The deformability of RBCs plays an important role in their main 
function, the transport of gases (O2 and CO2) via blood circulation (see also [10] 
and [9]). 

To put the deformability of blood due to pressure in perspective, consider a 
multi-component system of total volume V, with 

i
i

V V= ∑                            (1) 

where iV  is the subvolume of component i in the system. The (isothermal) 
compressibility of the system is 
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1 1 i

iT T

VV
V P V P

κ ∂∂   = − = −   ∂ ∂   
∑                 (2) 

But the compressibility of each component is 

1 i
i

i T

V
V P

κ ∂ = −  ∂ 
                       (3) 

Therefore, (2) reduces to 
1

i i
i

V
V

κ κ= ∑                         (4) 

Finally, denoting the volume fraction of each component of the system by iα , 
we have 

i i
i

κ α κ= ∑                          (5) 

In our case, the main contribution to the compressibility and deformability of 
the blood is coming from RBCs. 

The method of obtaining general solution of the governing equations for the 
given model is considered from two prospective points of view. The first ap-
proach represents a singular perturbation theory providing explicit approximate 
solutions to the model and the second one is based on group theoretical model-
ing that provides the exact solutions written in an implicit form. The main goal 
is to compare these two approaches and fetch out the efficiency and deficiency of 
each proposed approach. 

The range of developed models or models being developed extends from 
lumped models to complicated three-dimensional fluid-structure models [11] 
and [12]. In this article we consider a simple one-dimensional model of blood 
flow in a vessel. The blood flow in the vessel is described by this and generally by 
all one-dimensional models is not suitable for describing blood flow in compli-
cated morphological regions as stenosis or bifurcations. However, these situa-
tions can also be covered to certain extent and, from one hand, can be used as an 
alternative to the more complex three-dimensional fluid-structure models or in 
conjunction with them in a geometrical multiscale fashion, as explained in [13]. 
On the other hand computational complexity of one-dimensional models is sev-
eral orders of magnitude lower than that of multi-dimensional models. Few 
decades ago, a multi scale approach has attracted wider interest. Namely, in a 
multiscale approach, one-dimensional models may be coupled on the one hand 
with lumped-parameter models [12] based on a system of ordinary differential 
equations [11] [14], or to three-dimensional fluid-structure models, as discussed 
in [15] and [16]. In the latter case they may also provide a way of implementing 
more realistic boundary conditions for 3D calculations; or, they can be used for 
the numerical acceleration of a three-dimensional Navier-Stokes solver in a mul-
tilevel-multiscale scheme. Additionally, one-dimensional models give a good 
description of the propagation of pressure waves in arteries [17] [18], hence they 
can be successfully used to investigate the effects on pulse waves of the geome-
trical and mechanical arterial modification, due e.g. to the presence of stenoses, 
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or to the placement of stents or prostheses [13]. 

2. Modeling 

In order to describe a problem in mathematical terms, one must make use of the 
basic laws that govern the elements of the problem. Within the frame of the 
present modeling, we start with conservation laws for mass and momentum and 
consider a perfect compressible fluid propagating along a tube with longitudinal 
coordinate x and slowly varying cross-section ( ),a x t . Because of the pressure 
gradient in the blood, the artery wall must deform. The elastic restoring force in 
the wall makes it possible for waves to propagate. In terms of one-dimensional 
modeling, we assume that the artery radius ( ),r x t  varies from the constant 
mean 0r  in time and along the artery (in x). We denote the local cross sectional 
area be 2πa r= , and the averaged velocity be ( ),v x t . Consider a fixed geome-
trical volume between x and dx x+ , through which fluid moves in and out. 
Conservation of mass requires 

( ) 0.
vaa

t t
∂∂

+ =
∂ ∂

                        (6) 

We next assume that the time rate of momentum change in the volume is ba-
lanced by the net influx of momentum through the two ends and the pressure 
force acting on all sides. The rate of momentum change M is given by 

( ) ,
va

M
t
ρ∂

=
∂

                         (7) 

where ( ),x tρ  is the density of fluid associated with the mixture density of the 
blood consisting of blood plasma and red blood cells (RBC). In reality, RBC 
fraction may include large viscosity variations, stressing the importance of ac-
counting for the non-Newtonian effects (see e.g. [19], where the Quemada vis-
cosity model [20] is used to account for the non-Newtonian viscosity behavior). 

The net rate of momentum influx is 

( ) ( )2

d .
v a va vx v va
x x x

ρ
ρ ρ

∂ ∂ ∂
− = − −

∂ ∂ ∂
              (8) 

The net pressure force at the two ends is given by ( )pa x−∂ ∂  while that on 
the sloping wall is 

2π .r arp p
x x
∂ ∂

=
∂ ∂

                       (9) 

The sum of all pressure forces P is given by 

.pP a
x
∂

= −
∂

                        (10) 

Balancing the momentum by equating M given by (7) to the sum of (8) and P 
given by (10) we get, after making use of mass conservation (6), 

1 .v v pv
t x xρ
∂ ∂ ∂

+ = −
∂ ∂ ∂

                    (11) 

Arterial pulse propagation varies along the circulatory system as a result of the 



R. Ibragimov et al. 
 

1339 

complex geometry and nonuniform structure of the arteries. In order to learn 
the basic facts of arterial pulse characteristics, we assume an idealized case of an 
infinitely long circular elastic tube that contains a slightly compressible blood, 
which is a suspension of particles in what’s basically water. As such, it’s com-
pressibility will be mainly due to the RBC, as explained above. We can think of it 
as a two-phase homogeneous nonviscous fluid flow of water and gas bubbles. If 
we apply pressure to the water/gas mixture the overall density will decrease as 
the gas compresses, leading to the mixture continuity equation that, under the 
assumption of zero relative velocity, reduces the equivalent single phase flow of 
density ρ  [8]: 

( ) 0.v
t x
ρ ρ∂ ∂
+ =

∂ ∂
                     (12) 

In addition, empirical constitutive laws are needed to relate pressure and den-
sity such as equations of state 

( ), ,p p Sρ=                        (13) 

where S denotes the entropy. Since in our modeling no temperature gradient is 
imposed externally and the gradient of the flow is not too large, we ignore ther-
mal diffusion. The fluid motion is the adiabatic; entropy 0S S=  is constant. As 
a result, ( )0,p p Sρ=  depends only on density. As we have from thermody-
namics, 

,
S T

p pγ
ρ ρ

   ∂ ∂
=   ∂ ∂   

                     (14) 

where T is the temperature and γ  is the ratio of specific heats at constant 
pressure and constant volume. Furthermore, since pressure is a function of den-
sity only, we can write ( )p p ρ= . Expanding this function in a Taylor series 
about the equilibrium density 0ρ , we have 

( ) ( ) ( ) ( )20 0
0 0 01! 2!

p p
p p

ρ ρ
ρ ρ ρ ρ

′ ′′
= + − + − +�         (15) 

where 0p  is the equilibrium pressure at which 0ρ ρ= . Since 0ρ ρ−  is small, 
we can neglect the second- and higher-order terms and write 

( )0 0p p λ ρ ρ= + −                      (16) 

where λ  is a constant. From this equation it follows that 

andp p
x x t t

ρ ρλ λ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
                  (17) 

Since the force due to gravity is neglected, combining (11), (12) and (17), we 
arrive at the governing equations of motion for unknowns velocity ( ),v x t , 
pressure ( ),p x t  and density ( ),x tρ  that are written as follows: 

1 ,v v pv
t x xρ
∂ ∂ ∂

+ = −
∂ ∂ ∂

                       (18) 

( ) 0,v
t x
ρ ρ∂ ∂
+ =

∂ ∂
                        (19) 
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,p λρ=                            (20) 

in which t is time, x is a spatial variable and λ  is a constant. 
We eliminate the pressure from these equations by differentiating the Equa-

tion (18) with respect to t and using the equation of state (20) to get 
2 2 2

2
1 .v v v vv

t x x t x t t xt
λ ρ ρ ρ
ρ ρ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
           (21) 

Using Equation (19), we can rewrite (21) as 
2 2

2 2 .v v vv v
x t x xt x

λ ρλ
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ + = +   ∂ ∂ ∂ ∂∂ ∂   
             (22) 

As follows from Equations (18) and (20), we have 

2 .v v vv v
x t x

λ ρ
ρ

∂ ∂ ∂
= − −

∂ ∂ ∂
                    (23) 

Substituting this result into (22), we arrive at the following single equation for 
( ),v x t : 

2 2
2

2 22 .v v v vv v
x t xt x

λ∂ ∂ ∂ ∂ ∂ + + = ∂ ∂ ∂∂ ∂ 
               (24) 

3. First Approach: Approximate Analysis 

In order to identify the resonant input in the model, we start with a an approx-
imate solution in the form of naive expansion 

( ) ( )0
1

, , ,i
i

i
v x t v v x tε

∞

=

= +∑                    (25) 

where ε  is small parameter and 0 contv =  is an exact trivial solution of Equa-
tion (24). 

3.1. Failure of the Direct Approach 

We substitute the expansion (25) into (24) and collect powers of ε . 
Problem ( )10 ε  gives the following equation: 

2 2
21 1 1 1

0 02 2 2 0.v v v vv v
x t xt x

λ∂ ∂ ∂ ∂∂  − + + = ∂ ∂ ∂∂ ∂  
             (26) 

We look for solution of Equation (26) in the form 

( )1 1 1 1 1, sin cos ,v x t A Bθ θ= +                   (27) 

where 1 1,A B  are constants and 1 1 1 ,k x tθ ω= −  in which 1k  and 1ω  are wave 
number and frequency of the primary wave. Solution (27) is valid provided the 
dispersion relation is satisfied: 

( )2 2 2
1 0 1 1 02 0.v k k vω ω λ− − − =                   (28) 

So the ( )10 ε  problems represent a hyperbolic model with two wave modes 

( )1 1 0 .k vω λ= ±                        (29) 

Problem ( )20 ε  gives the following equation: 
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2 2
22 2 1 2 1 1

0 0 1 0 12 2 2 2 2 .v v v v v vv v v v v
x t x x t xt x

λ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   − + + = − +   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂    
    (30) 

In view of presentation (27), the right hand side in Equation (30) is written as 

( ) ( ) ( )2 21 1
1 0 1 1 1 1 1 1 12 2 cos 2 2 sin 2 ,v vv v v A B A B

x t x
δ θ δ θ∂ ∂∂  − + = − − ∂ ∂ ∂ 

   (31) 

where we denote 

( )1 1 0 12 .k v kδ ω= −                        (32) 

We look for particular solution in the form 
( ) ( ) ( )2 1 1cos 2 sin 2 .pv H Rθ θ= +                   (33) 

Substituting this solution into (31), we obtain the following expressions for H 
and R: 

( )
( )

( )
2 2
1 1 1 1

2 2 2
1 0 1 1 0

, 2
, .

4 2

B A A B
H R

v k k v

δ

ω ω λ

−
=

 − − − 
               (34) 

As expected, because of the dispersion relation (28), the right hand side of 
Equation (30) corresponds to resonance and yields the secular terms. 

In particular, if we look for particular solution of the form 
( ) ( ) ( )2 1 1cos 2 sin 2 ,pv tH tRθ θ= +� �                   (35) 

the resonance input would be removed since, in this case, the constants H�  and 
R�  would be 

( )
2 2

1 1
1 1 1, ,

2
A BH R k A B

 −
= −  

 
� �                     (36) 

and so the particular solution would have the form 

( ) ( ) ( ) ( )2 21
2 1 1 1 1 1 1cos 2 sin 2 .

2
p kv ktA B t A Bθ θ= − − −            (37) 

Since ( )
2

pv  grows linearly in time, the term 2
2vε  would become comparable 

to 1vε  for large values of time t (e.g. when time is of order 1
ε

), as shown in 

Figure 1. 
In particular, Figure 1 shows the qualitative behavior of the time series of the 

second order approximation of solution with secular terms (37) for the values 
1k =  and 2 and 1λ =  and 2. The following values of parameters have been 

chosen: 0 1 10.1, 1, 2, 0.18, 0.19v x A Bε = = = = =  and 1ω  is determined by the 
dispersion relation (29). Since we are interested only in general solutions, the 
choice of constants is arbitrary and we are focused on qualitative analysis. 

As seen from (37), the first terms of the expansion (25) provide a local (small 
t) approximation, at most. The shortcoming of (25) is related to the breakdown 
of the straightforward approach on nonlinear perturbation analysis of equation 
(24), but is more transparent to explanations. The nonlinear terms in (24) will 
slowly, but accumulative, absorb energy and damp the motion. Hence, even  
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Figure 1. Visualization of the approximate solution ( ),v x t  with secular terms in 2

pv . 

 
though the term ( )

2
pvε  itself is small the long term effects are crucial and the 

solution cannot be described as being periodic plus a small correction. The conse-
quence for a naive expansion (25) is that the ordering requirement 0 1v vε> >�  
is violated. However, it may be instructive to try and fail in order to understand 
the nature of the resonance phenomena. 

3.2. Multiple Scale Approach 

We introduce the latter scale according to the new variable 

.tτ ε=                           (38) 

We now consider the fast scale t, and the slow scale τ , as independent variables. 
We rewrite Equation (24) in terms of the new variable (38) and modify the series 
expansion (25) to the form 

( ) ( )0
1

, , , , ,i
i

i
v x t v v x tτ ε τ

∞

=

= +∑                  (39) 

which yields the perturbation hierarchy similar to (26) and (30), i.e. 
Problem ( )10 ε : 

2 2
21 1 1 1

0 02 2 2 0v v v vv v
x t xt x

λ∂ ∂ ∂ ∂∂  − + + = ∂ ∂ ∂∂ ∂  
 

and 
Problem ( )20 ε : 

2 2
22 2 1 2

0 02 2 2 ,v v v vv v F Q
x t xt x

λ∂ ∂ ∂ ∂∂  − + + = + ∂ ∂ ∂∂ ∂  
          (40) 

where F represents the right hand side if Equation (30) and 
2 2

1 1
02 v vQ v

t x tτ
 ∂ ∂

= − − ∂ ∂ ∂ ∂ 
                   (41) 
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appears because of scaling (38). Since the derivative with respect to the fast vari-
able appears only at ( )20 ε , the problem at ( )10 ε  is identical to Equation (26). 
The slow time variable τ  is implicit in the constant of integration and the most 
general real-valued solution of the ( )10 ε  problem can be written as 

( ) ( ) 1 1
1 1 1, , e e .iv x t A Aθ θτ τ −∗= +                   (42) 

With this solution in hand, Equation (40) reads 

( ) ( )2 22 21 11 1 1 1
1 0 1 1 1 1

d d2 e e 2 e e .
d d

i i i iA AF Q v k i k A Aθ θ θ θω
τ τ

∗
− −∗  

+ = − − − +  
  

  (43) 

To avoid secular terms we must require 

( ) ( )2 21 1
1 1 1 1 1

d d sin 2 cos 2 ,
d d
A A k A Aθ θ
τ τ

∗
∗ 

+ = − + 
 

           (44) 

( ) ( )2 21 1
1 1 1 1 1

d d cos 2 sin 2 .
d d
A A k A Aθ θ
τ τ

∗
∗ ∗ 

− = − 
 

           (45) 

The natural choice is to set 1 0.A∗ =  Then, squaring and adding the resulting 
equations for 1A , we arrive at a single equation 

21
1 1

d 2 .
d
A k A
τ
=                          (46) 

Solving Equation (46), we write the solution in the form 

( ) ( )21 1
0

1 1

cos, 0 ,
2

k x tv x t v
k t c

ωε ε
ε

−
= + +

+
               (47) 

where 1c  is a constant of integration and 1ω  is related to 1k  and λ  by the 
dispersion relation (28), i.e. 

( )1 1 0 .k vω λ= ±  

For the purpose of visualization, Figure 2 is used to compare the qualitative  
 

 
Figure 2. Visualization of the approximate solution ( ),v x t . 
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behavior of the time series of the of solution (47) for the values of 1 1k =  and 

2 4k =  when 1 1.5c =  and for the same values of parameters 0, ,v xε  and 1A  
as we used above to visualize the time series of ( )

2
pv  shown in Figure 1. 

A question of particular interest is the investigation of asymptotic stability of 
the trivial solution 0v . This will be done in the next section. 

3.3. Stability of Perturbed Steady Flows 

We note that the stationary solution 

( )v U x=                          (48) 

solves Equation (24) in the stationary case, i.e. 
2

2
2 .v vv

x x x
λ∂ ∂ ∂  = ∂ ∂ ∂ 

                     (49) 

which can be integrated to give the exact solution of the form 

( ) ( )3
1 23 ,U x U x M x Mλ− = +                  (50) 

where 1M  and 2M  are constants. We denote 

( )2 3 2
1 2 1 1 2 24 4 4 2 4M x M M x M M x Mσ λ= + + + − +        (51) 

Then the only real branch of the solution for ( )U x  of Equation (49) can be 
written explicitly as 

( )
2
3

1
3

1 4 .
2

U x σ λ

σ

+
=                      (52) 

Figure 3 is used to visualize the stationary flow ( )U x  given by (52) for differ-
ent values of the constant 1 2,λ λ λ λ= =  and the following fixed values of pa-
rameters: 1 2 15, 1, 5Mλ λ= = =  and 2 1.M =  
 

 
Figure 3. Visualization of the stationary solution ( )U x . 
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Since, as Figure 2 shows, ( )U x  is growing linearly in x, we classify ( )U x  
as non-physical solution. 

Let us now look for a nonstationary solution of Equation (24) that is close to 
( )U x  in the form (see e.g. [21] [22]) 

( ) ( ) ( ), , ,v x t U x v x tε= + �                  (53) 

where ε  is a small parameter and v�  denotes the perturbation. This proce-
dure is largely formal. Mathematics ideal requires proof that the solution of the 
complete equations in question for 0ε →  has a solution of the approximate 
equations at zeroth order of ε  (at least asymptotically). In fact, this ideal is 
achieved in very rare cases; researchers are usually limited to the formal con-
struction of an approximate model. The justification is based on physical intui-
tion which opens a wide scope. It is clear that, at the same time, the role of the 
criterion of practice is greatly increased. 

We assume a perturbation of the form of a plane harmonic wave propagating 
in the positive x direction, 

( ) ( ), e ,i kx tv x t A ω−=�                     (54) 

where A is a constant amplitude, k is a wave number and ω  is the angular fre-
quency of the oscillations. Substituting the presentations (53) and (54) into Equ-
ation (24) and collecting the terms of the order 0ε , we get the nonlinear equa-
tion for the mean flow 

2
2

2 0,U UU
x x x

λ∂ ∂ ∂  − = ∂ ∂ ∂ 
                 (55) 

which coincides with (49) and thus ( )U x  has the form (52). 
Similarly, collecting and separating the real and imaginary parts of the terms 

of the order ε , we get the equations 

( )2 22 2 0UU k k U U
x x

ω ω λ ∂ ∂ − + − − = ∂ ∂ 
        (56) 

and 

( )1 0.U U
k x
ω ∂

− =  ∂
                 (57) 

For progressing wave like solution, Equations (56) and (57) implies that there is 
another particular exact solution of Equation (49) (and, correspondingly, of Eq-
uation (24)) 

( ) 0, const,v x t v= =                   (58) 

provided that ω  and k satisfy the dispersion relation (28), i.e. 

( )2 2
0 02v k v kω ω λ− + −                 (59) 

with two known wave modes given by (29). As one can expect, since the flow is 
away of frictional boundaries, the dispersion relation (28) confirms asymptotic 
stability of the mean constant flow (58). 

Figure 4 shows snap-shots of the perturbed flow ( ) ( )0, ,v x t v v x tε= + �  at  
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Figure 4. Visualization of the perturbed constant flow 0v  for different values of wave 
number k. 
 
initial time 0t =  (red line) and later times of 0.5,1.0,1.5t =  and 1.8 units 
(plotted in different colors) for different values of the wave number k and the 
following fixed values of parameters: 0 1v =  (for 1k = ), 0 2v =  (for 2k = ), 

0 3v =  (for 10k = ), and 0 4v =  (for 25k = ), 1a =  and 0.1ε = . 

4. Second Approach: Group Theoretical Point of View 

Detailed presentations of the theory of symmetries and invariant solutions of 
differential equations can be found elsewhere [23] [24] [25] [26]. For conveni-
ence, we summarize the basic notation from calculus of Lie group analysis in 
Appendix, which represents a simplified version of the overview of basic con-
cepts of Lie symmetry groups. 

A simple inspection shows that Equation (24) admits the one-parameter 
groups of translations 

1 2,t t a x x a= + = +  

of t and x and the one-parameter group of uniform scaling transformations in 
the ( ),t x -plane: 

3 3e , e .a at t x x= =  

The above transformations groups have the following generators (called also 
infinitesimal symmetries): 

1 2 3, ,X X X t x
t x t x
∂ ∂ ∂ ∂

= = = + ⋅
∂ ∂ ∂ ∂

              (60) 

Various linear combinations of the generators (60) can serve for constructing 
group-invariant solutions of Equation (60). A brief description of group inva-
riant solutions and illustrative examples are given in [27]. 
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4.1. Traveling Waves 

Traveling waves are invariant solutions with respect to any linear combination 
of the translation generators 1X  and 2X . We take the linear combination in 
the form 

1 2 , const.X mX m m
t x
∂ ∂

+ = + =
∂ ∂

               (61) 

The operator (61) has two independent invariants, v and .z x mt= −  According 
to the theory of invariant solution (see, e.g. [27], Section 7.2), the invariant solu-
tion has the representation 

( ).v f z=                           (62) 

The representation (62) reduces Equation (24) to the ordinary differential eq-
uation 

( ) ( )2 2 2 0.m f f mffλ ′′′ ′ ′− − =  

We integrate it once and obtain 

( )2 2
1 12 , const.m f f mff M Mλ ′ ′ ′− − = =  

The second integration gives the cubic equation 

( )3 2 2
1 23 3f mf m f M Mλ µ− + − = +               (63) 

for determining ( )f µ . Thus, the traveling wave solution (62) is determined by 
the cubic Equation (63) and involves three arbitrary parameters 1 2, ,m M M . 
Cardan’s solution for the cubic equation (see, e.g. [27], Section 1.1.1) allows to 
express the traveling waves in radicals. 

Remark: In the special case 0m =  in (61), Equations (62) and (63) give the 
stationary solution ( )v U x=  given explicitly by the cubic Equation (50). 

4.2. Similarity Solution 

The invariant solution with respect to the generator 

3X t x
t x
∂ ∂

= +
∂ ∂

                        (64) 

of the uniform scaling transformation group is known as a similarity solution. 
The operator (64) has two independent invariants, v and 

x
t

ξ = ⋅                             (65) 

The invariant solution has the representation 

( ).v g ξ=                           (66) 

Calculations show that the representation (66) reduces Equation (24) to the 
second-order ordinary differential equation 

( ) ( ) ( )2 22 2 0.g g g g g gµ λ µ µ  ′′ ′ ′− − + − − − =   

Rewriting this equation in the form 
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( )2 0g g gµ λ′ ′ ′′− − =                      (67) 

and integrating once, we arrive at the first-order equation 

( )2
1 1, const.g g C Cµ λ  ′− − = =                 (68) 

We transform Equation (68) into separable form 

( )2 2
1

d
d
ww w Cλ λ
µ

− = − + +                    (69) 

by introducing the new dependent variable 

.w g µ= −                          (70) 

Separating the variables, 
2

2
1

d d ,w w
C w

λ µ
λ

−
=

+ −
 

we write Equation (69) as 

1
2

1

d d d ,Cw w
C w

µ
λ

− + =
+ −

 

whence upon integration 

1 2
1

d .wC w
C w

µ
λ

= +
+ −∫                     (71) 

Evaluating the integral in (71) we obtain the following cases. 
Case 1: 1 0.Cµ + =  Then the integration in Equation (71) gives 

2 ,w C
w
λ µ− = + +  

whence 

( ) ( )2
2 2

1 4 .
2

w C Cµ µ λ = − + ± + −  
              (72) 

Case 2: 1 0.Cµ + <  Then we evaluate the integral by writing 

( )1 12 2
1 1

d dw wC C
C w C wλ λ

= −
+ − − + +∫ ∫  

and write Equation (71) as 

( ) ( )
1

2
1 1

arctan .C w w C
C C

µ
λ λ

− = + +
− + − +

           (73) 

Case 3: 1 0.Cµ + >  In this case Equation (71) becomes 

11
2

1 1

ln
2

C wC w C
C C w

λ
µ

λ λ
+ +

= + +
+ + −

              (74) 

when 2
1,w Cµ< +  and 

11
2

1 1

ln
2

w k CC w C
C w C

µ
λ λ

+ +
= + +

+ − +
              (75) 

when 2
1.w Cµ> +  
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Based on the above calculations we conclude that all similarity solutions based 
on the infinitesimal symmetry (64) are provided by Equations (65), (66), (70) 
and (72)-(75). 

5. Conclusion 

We have investigated a nonlinear partial differential equation of second order 
that could be used to model a simple one-dimensional blood flow inside a tube 
of varying cross-section. This model can be an approximation for a pulsating 
elastic artery. We have proposed two different points of view. The first approach 
represents a singular perturbation theory that formalizes the scale-separation 
property by explicitly defining multiple scales that exist in the given nonlinear 
model with the goal of separating derivatives with respect to fast and slow scales 
into different orders of perturbation theory. The advantage of this approach is 
that it yields a solvable perturbative hierarchy of equations that provides useful 
perturbative information already at low orders in ε . However, the disadvantage 
of this approach is the need to identify the various scales a priori and, in the 
frame of the present modeling, multiple scale approach cannot be brought 
beyond the leading order. Alternatively, group theoretical approach provides all 
possible exact solutions of the nonlinear model (24) without any perturbations 
and, consequently, without introducing a small parameter ε , which is a signifi-
cant advantage. In this article, we have provided the exact solutions that were 
obtained implicitly by solving the nonlinear ordinary differential equations, 
which have the deficiency of the latter approach. However, in terms of numerical 
simulations, the second approach seems more advantageous. 
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Appendix: Outline of Methods from Lie Group Analysis 

Basic concepts from Lie group analysis of differential equations that are used in 
the present paper are assembled here. For further information regarding Lie 
groups and their applications to the theory of differential equations, the reader 
should consult the various classical and modern texts in the field, such as [23] 
[24] [25] [26] [28] [29] [30] [31]. A concise introduction to the calculus of Lie 
symmetry groups can be found in [27]. Readers interested in applications of Lie 
groups in fluid dynamics can find a wealth of information in [23] and [32]. 

Definition of one-parameter groups. Let 

( ), , 1, , ,i iz f z a i N= = �                     (A1) 

be a one-parameter family of invertible transformations of points  

( )1= , , N Nz z z ∈�   into points ( )1, , .N Nz z z= ∈�   Here a is a real para- 
meter from a neighborhood of 0,a =  and we impose the condition that Trans- 
formation (A1) is an identity if and only if 0,a =  i.e., 

( ), 0 , 1, , .i if z z i N= = �                     (A2) 

The set G of transformations (A1) satisfying Condition (A2) is called a (local) 
one-parameter group of transformations in N  if the successive action of two 
transformations is identical to the action of a third transformation from G, i.e., if 
the function ( )1, , Nf f f= �  satisfies the following group property: 

( )( ) ( ), , , , 1, , ,i if f z a b f z c i N= = �               (A3) 

where 

( ),c a bϕ=                           (A4) 

with a smooth function ( ),a bϕ  defined for sufficiently small a and b. The 
group parameter a in the transformation (A1) can be changed so that the func-
tion (A4) becomes .c a b= +  In other words, the group property (A3) can be 
written, upon choosing an appropriate parameter a (called a canonical para- 
meter) in the form 

( )( ) ( ), , , .i if f z a b f z a b= +                   (A5) 

Group Generator. Let G be a group of transformations (A1) satisfying the 
condition (A2) and the group property (A5). Expanding the functions ( ),if z a  
into Taylor series near 0a =  and keeping only the linear terms in a, one 
obtains the infinitesimal transformation of the group G: 

( ) ,i i iz z a zξ≈ +                        (A6) 

where 

( ) ( )
0

,
, 1, , .

i
i

a

f z a
z i N

a
ξ

=

∂
= =

∂
�                 (A7) 

The first-order linear differential operator 

( )i
iX z

z
ξ ∂

=
∂

                        (A8) 
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is known as the generator of the group G. 
Invariants. A function ( )J z  is said to be an invariant of the group G if for 

each point ( )1= , , N Nz z z ∈�   is is constant along the trajectory determined 
by the totality of transformed points ( ) ( ): .z J z J z=  

The function ( )J z  is an invariant of the group G with Generator (A8) if and 
only if 

( ) ( ) 0.i
i

JX J z
z

ξ ∂
≡ =

∂
                    (A9) 

Hence any one-parameter group has exactly 1N −  functionally independent 
invariants (basis of invariants). One can take them to be the left-hand sides of 

1N −  first integrals ( ) ( )1 1 1 1, , N NJ z C J z C− −= =�  of the characteristic equa-
tions for linear partial differential Equation (A9). Then any other invariant is a 
function of ( ) ( )1 1, , .NJ z J z−�  

Invariant equations. We say that a system of equations 

( ) 0, 1, ,kF z k s= = �                    (A10) 

is invariant with respect to the group G (or admits the group G) if the trans- 
formations (A1) of the group G map any solution of Equations (A10) into a so-
lution of the same equations, i.e., 

( ) 0, 1, ,kF z k s= = �                    (A11) 

whenever z solves Equations (A10). The group G with the generator (A8) is ad-
mitted by Equations (A10) if and only if 

( )
(A10)

0, 1, , ,kX F k s= = �                  (A12) 

where the symbol (A10)|  means evaluated on the solutions of Equations (A10). 
If z is a collection of independent variables ( )1, , ,nx x x= �  dependent 

variables ( )1, , mu u u= �  and partial derivatives ( ) { } ( ) { }1 2, , ,i iju u u uα α= = �  of 
u with respect to x up to certain order, where 

2

, ,i iji i j
u uu u
x x x

α α
α α∂ ∂
= =
∂ ∂ ∂

�  

then (A10) is a system of partial differential equations 

( )( )1, , , 0, 1, , .kF x u u k s= =� �                (A13) 

Furthermore, if the transformations (A1) are obtained by the transformations of 
the independent and dependent variables 

( ) ( ), , , , ,x f x u a u g x u a= =                 (A14) 

and the extension of (A14) to all derivatives ( )1 ,u  etc. involved in the differen-
tial Equations (A13), then Equations (A11) define a group G of transformations 
(A14) admitted by the differential Equations (A13). In other words, an admitted 
group does not change the form of the system of differential Equations (A13). 
The generator of the admitted group G is termed an infinitesimal symmetry (or 
simply symmetry) of the differential Equations (A13). Equations (A12) serve for 
obtaining the infinitesimal symmetries and are known as the determining 
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equations. These equations are linear and homogeneous and therefore the set L 
of its solutions is a vector space. Integration of determining equations often pro-
vides several linearly independent infinitesimal symmetries. Moreover, the de-
termining equations have a specific property that guarantees that the set L is 
closed with respect to the commutator [ ]1 2 1 2 2 1, .X X X X X X= −  Due to this 
property, L is called a Lie algebra. If the dimension of the vector space L is equal 
to r, the space is denoted by rL  and is called an r-dimensional Lie algebra. An 
r-dimensional Lie algebra rL  generates a group depending on r parameters 
which is called an r-parameter group. 

Invariant solutions. Let the differential Equations (A13) admit a multi- 
parameter group G, and let H be a subgroup of G. A solution 

( ) , 1, ,u h x mα α α= = �                    (A15) 

of Equations (A13) is called an H-invariant solution (termed for brevity an 
invariant solution) if Equations (A15) are invariant with respect to the subgroup 
H. If H is a one-parameter group and has the generator X, then the H-invariant 
solutions are constructed by calculating a basis of invariants 1 2, , ,J J � . 
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