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Abstract 
The automation of extracting planner surfaces is a main field of research in 
digital photogrammetry. These surfaces are essential to generate three dimen-
sional GIS databases. Surfaces are usually determined from either DEMs or 
images. Each dataset provides a different type of information. Thus, the com-
bination of the two datasets should enhance the surface reconstruction 
process. This paper presents a new technique for generating 3D surfaces by 
combining both correlation-based DEMs and aerial images. The process starts 
by discriminating DEM points that represent planner surfaces using local sta-
tistics of neighboring elevations and intensities and point elevations. A seg-
mented orthophoto is then used to group these points into different regions. 
The elevations of the points in each region are fed into a least squares adjust-
ment model to compute the best-fit planner surface parameters. Refinement 
of surface borders is then performed using a region growing algorithm. The 
RMSE for five test sites showed a spatial accuracy of 5 - 8 cm. 
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1. Introduction 

Three dimensional surfaces support a great number of applications including; 
city modeling, generation of 3D Geographic Information Systems (GIS), and 
topographic analysis. Hence, there is an increasing demand for automatic gener-
ation of 3D surfaces. However, the end products of current digital photogram-
metric stations are usually Digital Elevation Models (DEMs). These models are 
digital representation of the terrain elevations sampled at a fixed grid interval 
over the surface of the Earth. Thus, the output is usually named 2.5D. The interval 
between the grid points is an important aspect that affects the user of such model. 
Automation of object surface reconstruction from digital images is currently one 
of the most important research fields in Photogrammetry [1]. The reconstruction 
of precise surfaces from imagery datasets is a very hard problem not completely 
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solved and problematic in case of incomplete, noisy and sparse data [2]. In the last 
years different solutions for 3D modeling have been developed.  

Some researchers worked on extracting rood planes from LIDAR dataset. A 
multi-scale LIDAR point cloud uses decomposition algorithm to exclude ground 
points and later form planer surfaces through local fitting methodologies is im-
plemented in [3]. In [4] the Gibbs energy model of building objects is first de-
fined to fit the buildings’ points and then refined to get rid of outliers and to de-
fine the building outlines. In [5], a principal component analysis is performed 
for the local neighborhood of individual points to detect points belonging to 
planar objects then segment these points based on an adaptive cylinder neigh-
borhood definition. A point clustering algorithm for extracting homogeneous 
segments in laser data is presented in [6]. The goal of the data clustering is to 
subdivide the data into disjoint regions each with a homogeneous property that 
distinguishes it from its surrounding regions. The workflow in [7] involved four 
major steps: dividing the dataset into overlapping tiles, detecting building re-
gions in each title, merging overlapping regions in adjacent tiles, and finally 3D 
surfaces are extracted. Most of these studies use LIDAR datasets that fail to pro-
vide texture or spectral information. 

Other researchers employed both aerial images and LIDAR point cloud for the 
same purpose. For example, an algorithm to delineate roof patches from LIDAR 
point cloud and orthorectified photos is presented in [8]. Geometric primitives are 
used in [9] to model building roofs then built a cost function using constraints 
from aerial imageries and LIDAR data. Other studies using both LIDAR and aerial 
images include the work performed in [10] where points on roof patches are first 
detected from the LIDAR point could and building edges are extracted from opti-
cal images. A hybrid modeling system that fuses LIDAR data, aerial images, and 
terrestrial photos is presented in [11]. The model consists of three steps. In the first 
step, surface outlines from a high-resolution aerial image are interactively ex-
tracted, then mapped to the LIDAR data using a six parameter transformation 
model. Then the two data sets are combined for full model reconstruction. In the 
third step, poses are automatically recovered from ground view images, and tex-
tures are generated and mapped to the refined models. These studies combine 
LIDAR with imageries, which are more expensive than imagery datasets. 

While laser scanners pose several challenges due to their size and cost [12], 
optical imageries offer affordable and cost effective tool for creating high quality 
and reliable DEMs, [13]. Therefore, in this paper we rely on aerial photos as our 
merely source of data. Related studies include a stereo matching algorithm for 
object surface reconstruction, [14]. The algorithm is based on integrating several 
stereo matching techniques. The matching problem was addressed by the inte-
gration of both signal- and feature-based approaches. A new feature for surface 
matching, i.e. the plateau feature, was added in the matching process. The pla-
teau feature was defined as a 1D region with near constant grayscale. Dynamic 
programming was then used to solve the matching problem. This research only 
adjusts the DEM in a line-by-line mode and doesn’t consider the inter-line rela-
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tion between the different lines. Another study for semi-automatic 3D spatial 
polygon extraction from a pair of colored aerial images is presented in [15]. The 
algorithm consists of several consecutive stages; initial pointing by a human op-
erator, extraction of a bounding polygon in the left image space, estimation of 
the average height, transformation to the right image space, extraction of a 
bounding polygon in the right image space. Finally, an iterative process which 
matches both polygons and extracts the spatial polygon is carried out. This me-
thod relies on a pair of images which might not represent the entire ground be-
cause of hidden parts. Another algorithm for planner surface reconstruction 
from DEMs is highlighted in [16]. The algorithm consists of three stages. In the 
first stage, a segmentation process is used in order to obtain planner surface 
primitives from DEMs. In a second step, a rule-based approach decides which 
segments can be explained by a set of predefined planner surface models. Finally, 
surfaces are delineated by closing any gaps that have been caused by the deletion 
of unexplainable regions. This method uses only DEMs and don’t consider im-
age data in the rectification. Using DEMs solely depends on the source of the 
DEMs and their quality. Unlike the presented method that benefit from both the 
imagery and the DEM and could be applied to any DEM and could be extended 
to other optical data sources such as satellite images.  

2. Methodology 

The proposed method includes the following steps. An orthophoto is first gener-
ated. In the next step, points representing planner surfaces are discriminated 
from the DEM and the orthophoto using three criteria. These criteria include 
two local measurements for the likelihood of a point to be a planner surface 
point. Point elevations are also employed in the discrimination process. Image 
regions are then extracted from the orthophoto using the split and merge image 
segmentation technique. A least squares adjustment model, [17], is then applied 
to find the best-fit planner surface for each region using the contributing points. 
Borders of each surface are then delineated. 

2.1. Orthophoto Generation 

The aerial images used in this research are fully triangulated, i.e. interior and ex-
terior orientation elements have been defined, using a photogrammetric soft-
ware. The images are conventional vertical photographs at the scale of 1:4000 
scanned at 30 µm. In addition, the employed DEM is generated using the pre-
vious software. Hence, the ground space coordinates for each DEM point is 
known. For each DEM point, the collinearity equations, Equation (1), [18], is 
used to calculate the corresponding image pixel. An interpolated gray value is 
computed using bilinear interpolation, and used to generate the orthophoto.  
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where: xo, yo ,and f are the camera interior parameters, xi, and yi are the corres-

ponding pixel coordinates of point (i), 
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M , where M  is the  

rotation matrix for the image, Xc, Yc, and Zc: are the exposure station coordinates 
for the image, and (Xi, Yi, and Zi) are the object space coordinates of point (i). 

2.2. Discriminating Planner Surface Points 

Planner surface points have several characteristics that could be used to discri-
minate them from other points. In this research three major characteristics are 
used. These characteristics include; a measure for the local plane fitting quality, 
the homogeneity of the gray levels for the surrounding points, the point height. 
Each characteristic could be used as a criterion in detecting planner surface 
points. However, the combination of the three criteria should lead to better de-
tection of planner surface points.  

2.2.1. Local Planner Criterion 
This measure is calculated using a least squares adjustment model for a 3 × 3 lo-
cal window. Input to the least squares model are the elevations for one DEM 
point and the surrounding eight points in the window. Equation (2) shows the 
employed least squares adjustment model. The output of the model are three 
parameters that represent the local plane that fit thought the local window. A 
local horizontal coordinate system is used in each window and centered at the 
center point of the window. To find a, b, and c, we use the principles of regres- 

sion. We want to find a, b, and c, such that ( )2

1

N

i i
i

aX bY C
=

+ +∑  is minimum.  

Therefore, we take the partial derivative with respect to a and set it equal to zero 
and we do the same for b and c. Hence, the unknown parameters are computed 
directly as shown in Equation (3). The parameters are then used to calculate an 
adjusted elevation for each point in the window. Figure 1 shows the proposed 
local window and the points elevations before and after the fitting process. 

 

 
Figure 1. Elevations of the DEM Points in a Local Window before and after Fitting. 
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( ) 0i i i iv l aX bY c+ − − − =                     (2) 

where: 
li is the measured elevation for point (i), 
vi is the residual of the measured elevation for point (i), 
Xi and Yi are the X and Y ground coordinates for point (i), 
a, b, and c are the local plane parameters, and 
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where: 
a, b, and c are the three parameters that represent the planner surface,  
li is the elevation of point (i) measured from the DEM, and 
Xi, and Yi are the coordinates of the point (i) the local window. 
The residual vector (V) is then computed and the value (VTV) for each win-

dow is then computed. This quantity is used as a measure of the fitting quality. 
Smaller quantities imply that the DEM point belongs to a planner surface. Large 
values mean that the DEM point doesn’t fit in a planner surface. Figure 2(a) 
shows the computed quantity for the 1st test area. Dark areas represent high 
quantities, while light areas represent low quantities.  

2.2.2. Image Intensity Criterion 
Pixels that represent planner surfaces should have similar intensities. The varia-
tion of the gray levels in the vicinity of such pixels should be small. For each pix-
el in the generated orthophoto a local window is generated. The size of the local 
window is 3 × 3. For each pixel, the standard deviation of the gray levels in the 
local window is computed. The standard deviation of the gray levels is used as 

 

  
(a)                                     (b) 

Figure 2. The 1st and 2nd Measured Criteria for 1st Test Site (higher values are darker). (a) 
The 1st criterion, (b) The 2nd criterion. 
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another criterion in the process of detecting planner surface points. Figure 2(b) 
shows the computed standard deviation of the gray levels in the orthophoto for 
the 1st test area.  

2.2.3. Height Criterion 
Planner surfaces usually describe man made features. These surfaces tend to be 
elevated above the bare terrain. However, DEMs measure the elevations of the 
ground surfaces. The combination of the DEM and the DSM should lead to in-
formation about elevated points. Hence, the extraction of the DSM is essential. 
Minimum filters are usually used in this task, [19] and [20]. The main objective 
of such filtering process is to detect and consequently remove points above the 
ground surface in order to recognize height DSM points in the data set. The 
minimum filter size should be large enough to include data points that are not 
part of the noise. However, iterative approaches could be used to avoid the effect 
of noise. In this research, the size of the minimum filter window is 3 × 3. The 
filtering is repeated iteratively until the DSM is extracted. Figure 3 shows two 
perspective views of the 1st test site. The first view represents the original DEM, 
while the second view represents the extracted DSM. In this test site, the maxi-
mum height in the DEM is 227 meters, while the maximum height in the DSM is 
206 meters. The minimum elevation in both models is 195.6 meters. The results 
show that even when the bare ground is not flat, the filtering process is capable 
of extracting the DSM.  

2.3. Extraction of Image Regions 

There are several image segmentation techniques in the literature that could be 
used to extract image regions. These techniques show good results if the intensi-
ties of the image regions are approximately the same. In addition, high contrast 
between the region and surrounding objects should exist. The split and merge 
image segmentation technique [21] showed good results with such situation. In 
this research, the split and merge image segmentation technique is used. 

The split and merge image segmentation is described as follows: first, splitting 
the image. The image is recursively divided into smaller regions until a homo-
geneity condition is satisfied. This is done using a quad-tree representation. 
Then adjacent regions are merged to form larger regions based upon the pre-
vious criterion. In the last step, small regions are either eliminated or merged 
with bigger regions. The criterion used in the split and merge image segmenta-
tion method is that the difference between the minimum and maximum intensi-
ties is less than a certain threshold. Holes are then automatically detected using a 
region growing algorithm [22]. Based on the average intensity of the holes, they 
are either eliminated or merged with the surrounding regions. Figure 4 shows the 
orthophoto image before and after the segmentation process for the 1st test site.  

2.4. Extraction of Planner Surfaces 

Each outcome of the previous processes could be used individually for the detec-
tion of the planner surface points. However, the combination of the previous 
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Figure 3. The DEM and the DSM for 1st test site (units in meters). 

 

 
Figure 4. Original and Segmented Orthophoto for 1st Test Site. 
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criteria in the discrimination process should lead to higher quality description of 
planner surfaces. The literature describes a number of techniques for the com-
bination of such information. An object-based classification rather than pix-
el-based classification is used in [23]. A knowledge-based classification consi-
dering elevation, spectral, texture, and shape information is used in [24]. 

In this research a rule based algorithm is used to detect planner surface points. 
The algorithm starts by normalizing the output of the three computed criteria. 
For the first and second criteria the differences between the maximum and 
minimum values is computed. Then, for each criterion a normalized value is 
computed using Equation (4). The larger the value in each normalized output, 
the more likely the point will belong to a planner surface. In the next step, the 
differences between the DEM and the DSM are computed. Equation (3) is then 
used to normalize the differences between the two models.  

1n i
i

g
g

d
= −                           (4) 

where: 
n
ig  is the normalized value for point (i), 

ig  is the original value for point (i), and  
d is the difference between the maximum and minimum values of the output. 
The three normalized values and the segmented image are used to detect plan-

ner surface points as follows. First, the average of the three normalized outputs are 
computed for each point. If the average is greater than 0.75 and the value of each 
normalized value for that point is greater than 0.9 the point is detected as a plan-
ner surface point. Noise and small regions are removed using a region growing 
process. Neighboring planner surface points are connecting and if the size of the 
region is smaller than a given threshold the region is removed. In this research a 
threshold of 10 - 25 points is used. The result for the 1st test area is shown in Fig-
ure 5. 

For each region in the region-based orthophoto, its correspond planner sur-
face points are counted. If the number of these points is more than 90%, this re-
gion is believed to be a planner surface. Other regions are eliminated. Elevations 
of points belonging to a planner surface region are employed in a least squares 
adjustment. In the adjustment model, the elevations of all the region points are 
used as observations. Unknowns are the surface parameters. Since only planner 
surfaces are assumed, only three parameters for each region are used. Equation 
(5) shows the least squares adjustment model employed to compute the plane 
parameters. These parameters are then used to compute the adjusted elevations 
of each point in the DEM that belongs to a planner surface.  
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Figure 5. Points Detected as Planner Surface Points. 

 
where: 

a, b, and c are the three parameters that represent the planner surface,  
li is the elevation of point (i), 
Xi, and Yi are the coordinates of point (i), and 
n is the number of points in the planner surface region. 
In order to delineate border points for each region, a refining step is then im-

plemented. For each region, the neighboring points for each border point are 
located. Each neighboring point that doesn’t belong to the region is tested if it 
could be appended to the region. The test is based on the difference between the 
point elevation and the expected elevation using the three parameters of the 
planner surface of the region. If the point is appended to the region the parame-
ters are recomputed and updated. In addition, the elevations of the region 
points, including the appended points, are recomputed. This process is repeated 
iteratively until no more neighboring points are appended. Figure 6 shows the 
final extracted planner surfaces for the 1st test site. 

3. Experimental Results and Analysis 

To test and verify the proposed algorithm, a C++ program was developed using 
Microsoft Visual Studio 6.0. The employed DEMs are generated with a one me-
ter interval. Five test sites are used to test the proposed algorithm. Figure 7 
shows the extracted planner surfaces for the reaming four test sites. Results are 
evaluated both visually and numerically. The visual evaluation shows that plan- 
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Figure 6. Extracted Planner Surfaces for 1st test site. 

 

  
2nd test site                                   3rd test site 

       
4th test site                                   5th test site 

Figure 7. Extracted Planner Surfaces for 4 Test Sites. 
 

ner surfaces in all test sites are detected. Moreover, no false surfaces were ex-
tracted. However, for some surfaces the borders are not well delineated. The 
process is affected by outlier or missing points in the extracted regions. This is 
due to the sensitivity of the segmentation process. In addition, noise in the vicin-
ity of elevation discontinuities also affects the results. 

Numerical evaluation is based on computing the Root Mean Square Errors 
(RMSE) for differences in elevations. Numerical evaluation is performed only 
for points contributing to planner surfaces. Extracted surfaces are divided to two 
groups, horizontal and non-horizontal. For horizontal surfaces, reference eleva-
tions are measured manually for all corner points and a mean value is computed. 
This value is used to evaluate the elevations of the planner surface corners. For  
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Table 1. RMSE for the refining process. 

Test Area 
RMSE 

Horizontal surfaces Non-Horizontal surfaces 

1 5.2 cm 8.3 cm 

2 --- 6.4 cm 

3 6.4 cm --- 

4 3.2 cm 9.5 cm 

5 6.7cm --- 

 
non-horizontal surfaces, the reference elevations are measured manually for 
three corner points and used to compute the true parameters of the planner sur-
faces. These parameters are then used to compute several reference elevations 
using the exact horizontal coordinates (X and Y). The RMSE of the differences 
between the reference elevations and the computed elevations using the pre-
sented technique are computed and presented in Table 1. Results show that the 
average RMSE for horizontal surfaces is about 5.3 cm. The average RMSE for in-
clined surfaces is about 8 cm. In addition, for each test site a reference DEM is 
collected manually. The average RMSE for the employed DEMs is about 10 cm. 
This algorithm works perfectly for any type of building; however, the limitation 
is cases where there are parts of the buildings covered by trees. It is also sensitive 
to the slopes of the roof patches, i.e. cases where different roof segments with 
different orientations might not be differentiated.  

4. Conclusions and Recommendations 

This paper shows the potential of generating 3D planner surfaces by integrating 
elevation data, provided by correlation-based DEMs, and image intensities. 
DEM points contributing to planner surfaces are discriminated from other DEM 
points using different features. Points contributing to each planner surface are 
then used to fit a plane through this surface using a least squares adjustment 
model. Input to the model are the 3D coordinates of all DEM points that con-
tribute to the surface. The model is then solved to find the best plane that fit 
these points. Results show that the proposed process is able of detecting all tested 
planner surfaces with no false surfaces. The spatial accuracy shows that the 
RMSE for the elevations of a number of manually selected planner surface points 
is about 5 cm to 8 cm. The RMSE depends on the inclination of the surface. Fu-
ture research will focus on testing the proposed algorithm on laser-based DEMs. 
In addition, other discrimination features to classify planner surface points 
could be tested. Other techniques for combining the proposed features such as 
belief networks, expert systems, or fuzzy logic systems could be used. Our algo-
rithm should work with any configuration of roofs; however, if any part of the 
building is covered by trees it could fail.  
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