
Journal of Computer and Communications, 2017, 5, 21-51
http://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2017.58003 June 15, 2017

Adaptive Region Construction for Efficient Use
of Radio Propagation Maps

Vinay B. Ramakrishnaiah, Suresh S. Muknahallipatna*, Robert F. Kubichek

Department of Electrical & Computer Engineering, University of Wyoming, Laramie, WY, USA

Abstract
The efficient construction of contours of a radio propagation map is crucial in
using radio propagation maps in a number of real-time communication and
network applications. In this research work, we first propose an adaptive re-
gion construction (ARC) technique capable of constructing contours of dif-
ferent resolutions of a radio propagation map. Next, the process of imple-
menting the ARC technique for real-time execution on a GPU is presented.
The drawbacks of the first implementation using only the global memory are
discussed, and optimization techniques to improve the performance are dis-
cussed and implemented. Simulations are performed with varying sizes of ra-
dio propagation maps, and the suitability of the ARC technique for real-time
operation is presented. A speedup of 25× is achieved with the shared version
of the GPU compared to the sequential CPU implementation. Also, the con-
tour constructed using the ARC technique is compared to that constructed
using the convex hull approach demonstrating the higher accuracy of the
contour from the ARC technique.

Keywords
Radio Propagation, Sampling, Parallel, Adaptive, Accelerator, Contours

1. Introduction

A mobile ad-hoc network (MANET) of nodes (equipped with sensors) can be
deployed rapidly in an environment to provide a communication infrastructure
for a number of applications like environmental monitoring, rescue and defense
operations to mention a few. However, the successful deployment of a MANET
is dependent on the ability of neighboring nodes establishing a wireless commu-
nication link and provides connectivity across the network. Establishing a com-
munication link is dependent on the availability of radio spectrum, transmission
power, interference from neighboring nodes, and the effect of terrain on radio

How to cite this paper: Ramakrishnaiah,
V.B., Muknahallipatna, S.S. and Kubichek,
R.F. (2017) Adaptive Region Construction for
Efficient Use of Radio Propagation Maps.
Journal of Computer and Communications,
5, 21-51.
https://doi.org/10.4236/jcc.2017.58003

Received: May 4, 2017
Accepted: June 12, 2017
Published: June 15, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2017.58003
http://www.scirp.org
https://doi.org/10.4236/jcc.2017.58003
http://creativecommons.org/licenses/by/4.0/

V. B. Ramakrishnaiah et al.

22

propagation. Depending on the deployment environment, the effect of terrain
on radio propagation can be modeled with free space (Omni-directional) or
“two-ray” propagation models if the terrain does not have any hills, buildings,
and foliage affecting the propagation of radio signals minimally. However, in a
realistic environment where MANETs are deployed, the terrain consists of hills,
buildings, foliage, etc., causing reflections, diffraction, blocking and unreliable
path loss estimates which render free space or two-ray propagation models inef-
fective in modeling the effect of terrain on radio propagation. Hence, more
complex propagation modeling techniques like the Walfisch-Ikegami model
(WIM), and 3D ray tracing have to be used to determine the effect of terrain on
radio propagation. The effect of terrain on the radio propagation by WIM or 3D
ray tracing is quantified as radio propagation map.

Radio propagation maps specify the path loss (or received signal strength) at
various distances and directions from the transmitter taking into account the ef-
fect of the terrain. The path loss [1] is computed using WIM, 3D ray tracing, and
other models. Each modeling offers trade-offs in terms of accuracy and compu-
tational complexity. A radio propagation map consists of received signal streng-
ths from a transmitter over a geographic region show neither as a heat map or
radio contours. Heat maps represent varying signal strengths from a transmitter
using distinct colors while in radio contours equal signal strength locations are
connected by lines known as contour lines. A heat map can be stored as a pixel
image, with pixels representing the signal strength of a location from the trans-
mitter. Radio propagation maps find many applications like the optimum
placement of mobile phone base stations for maximum coverage, adjusting the
antenna beam patterns for efficient communication based on the terrain, locali-
zation of mobile nodes in MANETs, etc.

The application of radio propagation maps in localizing nodes, and antenna
beam forming [2] [3] [4] [5] has been demonstrated by the authors of this paper.
The first application addressing efficient localization of nodes of a MANET un-
der free space and terrain effects is discussed in references [2] [3] [4]. In refer-
ence [3], the optimal trajectory of a single moving beacon (beacon mounted on a
drone or UAV) to localize nodes under free space was presented. Next, the use
of high-resolution radio propagation maps [2] to localize nodes in a MANET
using a single moving beacon like a drone or unmanned aerial vehicle has been
presented.

In the research work [2], the use of regular geometric shapes known as convex
hulls to represent irregular radio propagation shapes constructed using the WIM
model has been presented. The paramount reason for representing irregular ra-
dio propagation shapes with convex hulls is associated with the localizing algo-
rithm [3] developed for nodes of a MANET. The localization algorithm requires
determination of the area of intersection (approximate node position) of two ra-
dio propagation maps received by the node. Determining the area of intersection
of two radio propagation maps using a simple bit-wise AND operation [4] was
demonstrated and found to be impractical due to computational complexity,

V. B. Ramakrishnaiah et al.

23

bandwidth, and storage requirements of each node to use the radio propagation
maps. Therefore, to address the issues of bandwidth and storage requirements,
the contour of radio propagation maps was constructed as convex hulls using
Andrew’s Monotone Chain algorithm [6]. Next, the algorithm developed by
O’Rourke [7] was used to determine the area of intersection of two radio propa-
gation maps using the constructed convex hulls. The second application consists
of using low-resolution radio propagation map for computing antenna beam
patterns [5] to reduce the interference by neighboring nodes.

The success rate of the localization algorithm using convex hulls representing
the contour of a radio propagation map of the small geographical area was 80%
with an accuracy of 1 m. However, with an increase in the size of the geographi-
cal area, the performance of the algorithm deteriorated first due to the convex
hulls not capturing the contour of the radio propagation map accurately. The
second issue was with the nonlinear increase of the computational time for con-
structing a convex hull of a radio propagation map of the large geographical area
(a suburb of a city) with high resolution rendering the localization algorithm not
suitable for real-time application.

Hence in this work, we propose an adaptive region construction technique to
capture the contour of a radio propagation map of large geographical area accu-
rately and suitable for real-time implementation. We propose the use of a gener-
al purpose graphical processing unit (GPGPU) based adaptive region construc-
tion (ARC) for constructing multiple convex hulls of a radio propagation map of
a large geographical area and combine multiple convex hulls to form regions
representing the contour of radio propagation maps accurately.

This paper is organized as follows: In Section 2, a brief discussion of the loca-
lization algorithm [2] developed previously is discussed. The error in the inter-
section area determined using two convex hulls in comparison to the direct use
of radio propagation maps is shown. Also, the increase in computational time
for constructing convex hulls of large radio propagation maps with high resolu-
tion is demonstrated. Section 3 presents a discussion on the related work of
capturing contour of radio propagation maps. In Section 4, first, a brief discus-
sion of the sequential Andrew’s monotone chain algorithm and divide and con-
quer approach for constructing convex hulls is presented. Section 5 presents the
adaptive region construction technique that merges intermediate convex hulls to
form regions. The GPGPU implementation of the ARC using only the global
memory of the GPU is presented in Section 6. Section 7, presents the optimiza-
tions using the shared memory of the GPU to improve the performance of the
algorithms is presented. Results and analysis of the results are presented in Sec-
tion 8. In Section 9, conclusion and future work are presented.

2. Localization in Mobile Ad Hoc Networks

Miles et al. envisioned a single moving beacon mounted on a vehicle capable of
moving and broadcasting its position periodically to nodes in its transmission
range based on radio propagation models [2] representing a particular urban

V. B. Ramakrishnaiah et al.

24

environment. Using a-priori knowledge of local terrain including average build-
ing height and separation, average street width and orientation, etc., the WIM
model is used to estimate path loss and transmission range in any direction. The
single moving beacon will acquire its geographical position through GPS and
broadcast its changing position. Having a single moving beacon broadcasting its
changing position is equivalent to multiple stationary beacons broadcasting their
different positions. An exchange of a few position messages and acknowledg-
ments between an un-localized node and the moving beacon will allow the
moving beacon to compute an approximate area to confine the un-localized
node location.

Figure 1 shows an approximate propagation map generated using WIM tech-
niques. The white area in Figure 1 shows the estimated area in which an anten-
na is capable of receiving a transmission from a transmitter (beacon node) posi-
tioned at the centroid of the white area. The possible position of a sensor in a
wireless network using WIM transmission maps can be approximated as the
centroid of the set given by the intersection of several beacon transmissions as
shown in Figure 2. A WIM localization technique [4] suggested by Muralidhara
and Kubichek relies on bitwise AND operations between two radio propagation
maps for beacon transmissions near an unknown sensor. Depending on the size
of the coverage area spanned by the MANET, these maps can be quite large.

Figure 1. WIM propagation approximation.

Figure 2. Possible position of a node in MANET using WIM.

V. B. Ramakrishnaiah et al.

25

Figure 3. (a) Range map and its corresponding (b) convex hull.

Transmission and comparison of these maps require large bandwidth and com-
putational capability. Also, it is difficult to implement an intelligent localization
algorithm based on the shapes of the range maps. The above drawbacks are ad-
dressed by using convex hulls to represent the irregular radio propagation
shapes with regular geometric shapes [2]. By using the convex hull approach,
each radio propagation map can be stored using only a small number of boun-
dary points as shown in Figure 3. Next, the intersection of two convex hulls
representing the approximate location of an un-localized node as shown in Fig-

V. B. Ramakrishnaiah et al.

26

ure 4 is determined using the algorithm proposed by O’Rourke [7].
Even though the use of convex hulls to represent radio propagation maps had

reduced the storage requirement and transmission bandwidth, it introduced sig-
nificant errors in localization and increased the computational burden. In Fig-
ure 5, a number of examples of the artifacts introduced in representing radio
propagation maps by convex hulls are shown. The first column (a - c) in Figure
5 depicts the radio propagation maps constructed using the WIM model, the
second column (d - f) shows the corresponding convex hull, and the third col-
umn (g - i) shows the artifacts introduced in representing radio propagation
maps by convex hulls. The difference in the area of the convex hull and the area
enclosed by the radio propagation contour is the artifact introduced by the con-
vex hull approximation. While using the technique of localization using the in-
tersection of the convex hulls, the artifacts introduce superfluous area, which in
turn introduces error in the computed localized position compared to the loca-
lization using the intersection of radio propagation contours as shown in Figure
6. In Figure 6, with the actual radio propagation maps, the position is close to
the real position, whereas for the convex hulls it is the centroid of the intersec-
tion area of the two hulls, which is far away from the real position. As an exam-
ple, a convex hull was constructed to represent the radio propagation map of size

Figure 4. Intersection of two convex hulls.

Figure 5. The original boundary, convex hull, and the artifacts introduced by convex
hulls.

V. B. Ramakrishnaiah et al.

27

Figure 6. Estimated node positions using the boundary of radio propagation map com-
pared to the estimated position using convex hulls.

Figure 7. Time taken to compute convex hulls using Andrew’s monotone chain algo-
rithm.

2.5 km by 2.5 km. The difference in area due to the artifact introduced between
the contour of the radio propagation map and the corresponding convex hull
was approximately 0.4 km2, which is about 1/15th of the original area. This dif-
ference in the area can be even more significant when considering radio propa-
gation maps of large urban areas. Along with the introduction of artifacts, the
computation of convex hulls of very large geographic areas is a computationally
intensive problem. Even though efficient algorithms [7] are available to compute
convex hulls with the computational complexity of (O(nlog(n))), the computa-
tional complexity is an issue when computing convex hulls of large cities se-
quentially. The time taken to compute a convex hull sequentially on an Intel
Xeon Sandy Bridge processor using the best sequential algorithm for different
resolutions is shown in Figure 7. From Figure 7 we can see that the execution
time required to compute convex hulls using sequential algorithms is not suita-
ble for real time applications, especially when high resolution radio propagation
maps are used.

In this research work, we propose a new method to assist computation of
contours of a radio propagation map known as the Adaptive Region Construc-

V. B. Ramakrishnaiah et al.

28

tion (ARC) technique. The ARC technique first reduces the superfluous area in-
troduced by the use of convex hulls representing radio propagation maps and
thereby reduces the localization error. Second, the ARC technique is imple-
mented using the general-purpose computing on graphic processing units
(GPGPU) to reduce the computational time and make use of radio propagation
maps in real-time applications feasible.

3. Previous Work

Curve simplification algorithms like the Ramer-Douglas-Peucker algorithm [8]
[9] are used to approximate radio contours by representing the sequence of
points as line segments. The simplified curve consists of a subset of the original
set of points, and the algorithm tries to minimize the distance between the orig-
inal curve and the simplified curve. This algorithm does a crude simplification of
joining the first and the last vertices of a polyline with a single edge, which can
result in over-simplification of the details. Furthermore, using these algorithms
directly on large data sets is not suitable for real time applications due to in-
crease in computational complexity.

Many computer vision applications make use of convex hulls to approximate
blobs and shapes in images. The authors of [10] use convex hulls to categorize
shapes of leaves. Convex hulls are constructed to represent the contours of leaves
and are categorized by finding the variations between the interior angles at each
control point. However, if two distinct leaves have the same contour constructed
as convex hulls, the method fails to categorize distinct leaves. This idea has been
extended to represent radio contours using convex hulls in [2].

The authors of [11] propose using convex hulls for a simplified representation
of “building footprints” on radio propagation which is a crucial step in wireless
communication. Footprint reduction is crucial for reducing prediction time and
controlling prediction accuracy in radio communication. They identify that such
reductions often affect the accuracy of results as simplification error constrains
the efficiency that can be achieved. In other words, the prediction accuracy can
be improved by better footprint reduction techniques. This analysis helps in bet-
ter understanding of the trade-off between the precision of the building database
and the accuracy of predictions generated by ray-tracing based radio propaga-
tion prediction systems.

The authors of [12] construct convex ray paths to simplify radio propagation
ray path calculations. Multiple reflections are modeled by their equivalent con-
vex hull. This is a good approximation for calculating signal strengths at a given
location from the transmitter but can result in errors if the propagation path of
radio waves through the topography is complex, which cannot be modelled us-
ing simple convex hulls. They also propose using the ordinary graphics card and
specialized algorithms to achieve extremely fast radio wave propagation predic-
tions. They show that their implementation of the COST-Walfisch-Ikegami
model can efficiently calculate 200 predictions per second, whereas a CPU im-
plementation of the same COST-Walfisch-Ikegami models needs slightly less

V. B. Ramakrishnaiah et al.

29

than a minute for a single prediction.
Cheng et al. [13] proposes a method to improve wireless connectivity in ad

hoc networks using a partitioning technique based on the conductance of a net-
work. They use convex optimization to maximize the number of connections
between the communicating nodes on different sides of the partition. The opti-
mization is used to find the precise location of the relay node, which is within
the convex hull defined by the radio transmission ranges of all the nodes that
can connect the relay node. This process can be improved by accurately defining
the radio propagation maps for each transmitter positions.

Liu et al. [14] focus on identification of non-line-of-sight (NLOS) signal
propagation, which is the dominant source of localization error in wireless net-
work nodes. They present a theoretical analysis of mobile user localization in-
volving one or more NLOS beacons and show that if the mobile user is within
the convex hull region formed by the underlying beacons, localization involving
NLOS is likely to be largely inconsistent. However, if the mobile user is outside
the convex hull region, localization involving NLOS could be performed consis-
tently. They argue that relying on existing methods to identify NLOS would lead
to a great chance of underestimating the potentially serious errors in localization
involving NLOS.

Most of the research work discussed above requires contour and points inter-
nal to the contour to represent the radio propagation maps. However, for locali-
zation and other applications, accurate representations of the radio propagation
map to reduce the storages and bandwidth requirements, which are suitable for
real time applications that are required. Hence in our work, we present the
adaptive region construction (ARC) technique capable of aiding the construc-
tion of an accurate contour representing the shape of the radio propagation map.
The ARC technique described in this paper can define the given radio propaga-
tion map contour more accurately compared to a convex hull. Even though our
algorithm is developed for approximating radio propagation maps, it can im-
prove the accuracy of many applications that make use of sample approxima-
tions and demand real-time/near real-time performance. Our algorithm is
computationally less complexity and is parallelizable, which makes it suited for
real-time applications.

4. Review of Convex Hulls

To review, by definition, a set, C, is convex [15] if and only if for any x1, x2 ∈ C
and any θ where 0 1θ≤ ≤ the following condition holds: ()1 21x x Cθ θ+ − ∈ .

In simple terms, this means that a set is convex if the direct path between any
two points in the set is entirely included in the set. Figure 8 shows a convex set.
Note that the line between two elements within the set is, itself, completely en-
compassed in the set. If a set bounded by the edges of the white area in Figure 1
is used, it is easy to see that there are direct paths between elements of the set
that do not lie completely within the set as in Figure 9(a). A convex hull of a set,
C, is the minimum convex set that contains the set C. Figure 9(b) represents the

V. B. Ramakrishnaiah et al.

30

Figure 8. A convex set of points.

Figure 9. Convex hull of a non-convex set of points.

convex hull of the set shown in Figure 9(a). As the figure indicates, all paths
between points within the convex hull are now completely encompassed in the
set.

By constructing a convex hull of a range map, the storage and transmission
bandwidth requirements can be greatly reduced. This results from the fact that
only a small number of boundary points are required to represent the convex
hull, which approximates the actual radio propagation map. This will serve as a
lossy compression technique for the localization method.

Another benefit of the convex hull is that it can be used to make intelligent
movement decisions more easily as the computation of the intersecting area only
requires the use of the boundary points of the intersecting convex hulls instead
of the entire radio propagation maps.

4.1. Overview of Andrew’s Monotone Chain Convex Hull Algorithm

The Andrew’s monotone chain convex hull algorithm [6] can find the convex
hull of a set of points in O(n logn) time. One particular advantage of this algo-
rithm is that it can find the convex hull in O(n) time if the points are already
sorted in ascending order from left to right and top to bottom, which is the case
for the data in the radio propagation maps used in this work. This algorithm

V. B. Ramakrishnaiah et al.

31

computes the upper and lower convex hulls of a monotone chain of points. The
flowchart in Figure 10 illustrates the mechanism by which this algorithm com-
putes the convex hull.

The upper hull is computed in a similar fashion, and the two hull sets are
joined to find the final convex hull. Essentially, the algorithm works by compar-
ing points to lines formed between previous points starting from left to right to
make the upper hull, and then from right to left to make the lower hull. The al-
gorithm makes its decision on which point belongs in the hull by computing the
curl between the vector composed of the previously selected point and the
second to last point in the hull and vector between the current point and the
second to last point in the hull. Figure 11 shows a set of points in the early stage
of hull construction. The curl, Crl, between the vectors Pminmax,1 and Pminmax,2,
computed from Equation (1) will result in a positive number, indicating that the
point P2 lies to the relative interior if the line between Pminmax and P2.

Figure 10. Flow chart of the sequential Andrew’s monotone chain convex hull algorithm.

V. B. Ramakrishnaiah et al.

32

Figure 11. Set of points in the early stage of hull computation.

Figure 12. Resulting convex hull.

min max,1 min max,2Crl P P= × (1)

In order to satisfy Equation (1), the points included in the hull must be lo-
cated to the relative exterior of all points included in the hull, and in line with all
points included in the hull. In the case illustrated in Figure 11, the point, P1 will
be discarded from the hull and replaced, by P2. Then the algorithm proceeds by
checking points to the right until it reaches the right-most point. Then it begins
moving back to the left computing the lower hull in a similar fashion. Figure 12
shows the result of the algorithm for a set of points.

4.2. The Divide and Conquer Approach for Constructing Convex
Hulls

The divide and conquer approach was developed by [16] as an efficient algo-
rithm for computing convex hulls in three dimensions if the points are sorted in
lexicographical order. The points are divided into two sets A and B, containing
the left half and the right half of the points respectively as shown in Figure 13.
Convex hulls are computed recursively on these two sets, and the sets are
merged by computing the union of the convex hulls. The division of points into
left and right sets is continued recursively until the number of points, n, in each
set is less than or equal to three. This algorithm assumes non-collinear points,
which makes the smallest convex hull either a triangle (if n = 3) or a straight line
(if n = 2). Therefore, majority of the computational effort involved in this algo-
rithm is with the merge step.

V. B. Ramakrishnaiah et al.

33

Figure 13. Constructing the lower tangent to merge two consecutive hulls.

To merge the convex hulls, common tangents are constructed between two

consecutive convex hulls and the convex hulls are merged hierarchically. In Fig-
ure 13, the numbers represent the steps of the tangent determination process. In
order to construct the tangents, a line is drawn between the rightmost point of
the left hull and the leftmost point of the right hull. The left end of the line is
fixed, and the right end is moved on the convex hull until it becomes a tangent
to the right hull (Step 1 in Figure 13). Now the right end of the line is fixed, and
the left end is moved until it becomes a tangent to the left hull (Step 2 in Figure
13). This process is repeated until a common tangent is attained as shown in
Figure 13.

5. Adaptive Region Construction

This section describes the process of adaptive region construction (ARC). This
approach is developed to represent the radio propagation characteristics like
signal strength at a spatial location in an efficient way. The procedure described
here combines the ideas from the Andrews’s monotone chain convex hull algo-
rithm [6] and the divide and conquer approach [17] to implement ARC. ARC
provides more details about a contour of a radio propagation map when com-
pared to a convex hull approximation. ARC constructs the contour of a radio
propagation map by constructing intermediate convex hulls to fit the given radio
propagation map contour and combining them consecutively. This process also
requires points to be sorted in lexicographical order. A number of parallel sort-
ing algorithms like the CUDA Dynamic Parallelism (CDP) quicksort, CUDA
quicksort [18], etc., can be used. Furthermore, if the radio propagation map is
constructed using WIM, the data points are sorted in the Cartesian coordinate
system, thereby eliminating the need to sort the data set. The given data is di-
vided into smaller segments and operated in parallel on individual segments of
data to exploit data level parallelism. Andrew’s monotone chain convex hull al-
gorithm is used on each segment of data to construct intermediate convex hulls.
Later, the individual convex hulls are combined by constructing common tan-
gents to the consecutive convex hulls in parallel. The resulting set of points tries
to preserve the shape of the radio propagation map in general. The boundary of
ARC compared with the convex hull of the corresponding radio propagation

V. B. Ramakrishnaiah et al.

34

Figure 14. Radio propagation map represented using convex hull and adaptive region construction.

Figure 15. Illustration of adaptive region construction. Adaptive region construction
includes the octagon which is not a part of the final convex hull.

map is exemplified in Figure 14. This set obtained using the process described
above includes points that are not in the final convex hull for the given set of
points. The result at the end of this step is the adaptively constructed region as
illustrated in Figure 15. The ARC process is a combination of Andrew’s mono-
tone chain algorithm and the divide and conquer approach of computing convex
hulls, and both have a worst case computational complexity of O(nlog(n)).
Therefore, the inherently parallel process of constructing adaptive regions has a
computational complexity of the order

Andrew s monotone chain Divide & Conquer

log log 2 log ,n n n n n nO O
m m m m m m

′

 + =

where n is the total number of points in the dataset, m is the number of
processes or threads that can execute simultaneously, and 3n m ≥ as at least
three points are required to compute a convex hull. This shows that having
many processes running in parallel reduces the computational complexity of the
algorithm.

6. General Purpose GPU Implementation

Heterogeneous computing is the approach of using accelerators/co-processors in
conjunction with Central Processing Units (CPUs) to solve computationally in-
tensive problems. Accelerators can be vector processors; many core processors

V. B. Ramakrishnaiah et al.

35

like Graphics processing units (GPUs) and Intel Xeon Ph is that improve the
performance of applications by utilizing parallelism. GPUs are specialized hard-
ware designed to handle the intensive operation of the rendering of image
frames for output to a display device. With the emergence of programmable
shaders, researchers started using GPUs to solve problems involving matrices
and vectors to achieve performance improvement by making use of parallelism.
When GPUs are used for computations in non-graphics related problems, it is
known as general purpose GPU (GPGPU) computing. Initial efforts of pro-
gramming GPUs involved refactoring the problems to use graphics primitives
provided by the graphics application programming interfaces. NVIDIA’s Com-
pute Unified Device Architecture (CUDA) [19] is an attempt to ameliorate the
cumbersome process of programming GPUs. CUDA provides simple language
extensions to programming languages like C/C++, FORTRAN, and Python to
expose fine and coarse grained parallelism in applications. NVIDIA has intro-
duced several hardware architectures with CUDA support to improve the per-
formance of parallelized programs.

The generalized hardware hierarchy in NVIDIA GPUs consists of multiple
arithmetic and logic units (ALUs), and they are called CUDA cores as shown in
the right-half of Figure 16. A fixed number of these cores are grouped along
with control hardware and memory to form units known as Streaming Mul-
ti-processors (SMs). The entire device constitutes of several SMs, providing a
large number of processing cores. This hierarchy in hardware is matched in the
software hierarchy shown in the left-half of Figure 16 by the CUDA program-
ming model. It provides a software hierarchy of threads, thread blocks, and gr-
ids, which have an affinity to CUDA cores, SMs, and the device correspondingly

Figure 16. The software (left-half) and hardware (right-half) hierarchy correspondence in
NVIDIA GPUs (Image source [21]).

V. B. Ramakrishnaiah et al.

36

as shown in the left half of Figure 16. The threads in a thread block can be ar-
ranged in 1D, 2D, or 3D fashion and in a similar fashion, the thread blocks can
be arranged in a grid. The total number of threads spawned in a thread block is
fixed, hence is the load handled by each SM.

GPU memory can be classified into 3 categories namely the registers, shared
memory, and global memory as shown in Figure 17. Some GPU architectures,
in addition to the shared, global, and register memory also have texture and
constant memory that are read-only memories for GPUs with optimized cache
access. Each CUDA thread has limited private registers which are the fastest
form of memory available on a GPU. Threads within a block have access to the
shared memory through which they can exchange data, while all the threads in
the device have access to the global memory. The memory access latency in-
creases exponentially from registers to global memory as we move away from the
processing core and so does the size of memory. In other words, GPUs have a
memory hierarchy similar to any modern-day vector processor. Like any other
modern computer, GPUs are also benefited by the efficient use of memory
bandwidth.

NVIDIA GPUs follow the single program, multiple threads (SPMT) execution
model of parallel computing. This means a group of threads execute the same set
of instructions in lock-step, though conditional branches in the algorithm can
violate the lock-step execution of instructions contributing to an increase in
computational time. The SMs in NVIDIA GPUs always execute instructions

Figure 17. NVIDIA’s representation of CUDA execution model and the memory hierarchy in GPUs.

V. B. Ramakrishnaiah et al.

37

with a granularity of 32 threads known as a warp. A SM has multiple warp
schedulers allocating hardware resources to each thread/warp and scheduling
the concurrent execution of multiple warps based on the requested shared re-
sources per thread.

The CUDA programming model can be exploited to implement both data lev-
el and task level parallelism in the implementation of ARC. The given data is di-
vided into smaller segments and Andrew’s monotone chain convex hull algo-
rithm is used on individual segments to construct intermediate convex hulls.
Each CUDA thread operates on a segment of data and computes one convex
hull. CUDA has the capability to spawn a large number of threads to compute
several convex hulls in parallel. Once the intermediate convex hulls are con-
structed by individual threads, each thread next considers two consecutive con-
vex hulls at a time and constructs common tangents to merge the two hulls. This
process is shown in Figure 18. If the number of intermediate convex hulls is N,
then N-1 threads are required for to merging these hulls in parallel. The result-
ing set of points may not form a convex hull as we do not combine the interme-
diate convex hulls hierarchically but consecutively as explained in Section 5. One
of the important observations is that the computations on the upper half are in-
dependent of the lower half computations, thereby allowing concurrent compu-

Figure 18. Scaled down illustration of data level parallelism in our implementation.

V. B. Ramakrishnaiah et al.

38

tations on the upper and lower half. The CUDA streams approach is used to
compute the upper and lower hull in parallel and exploit task level parallelism.

An initial version of the algorithm utilizing both data level and task level par-
allelism was implemented on a NVIDIA Tesla K40c accelerator and hence forth
known as the naïve version. For the naïve version, the number of points
processed by each thread was fixed at a value of 4 and the kernel execution time
of the naive version is shown in Figure 19. Comparing the execution time of the
naïve and the sequential versions of Andrew’s monotone chain convex hull algo-
rithm (Figure 7) shows a 60% improvement in performance. Even though 60%
improvement in performance is significant for many applications, the naïve ver-
sion is still not suitable for real time applications, especially when handling large
data points (64 million points take 650 ms for computation of ARC). To im-
prove the performance of the naive version, refactoring the program to the GPU
hardware and software architectures is necessary. Therefore, as a first step, the
naïve version code is profiled using the NVIDIA visual profiler [19].

6.1. Profiling Analysis of Naive Version

The NVIDIA Visual Profiler [20] is a cross-platform performance analysis tool
that provides guidance for optimizing CUDA applications. It helps in the identi-
fication of performance bottlenecks and delivers a graphical visualization of the
bottlenecks. The profiling results of the naive version are shown in Figure 20.
The naïve version consists of 4 kernel functions: 2 kernels to construct upper/
lower intermediate convex hulls and 2 kernels to merge the intermediate convex
hulls consecutively. As we can see in Figure 20 timeline, the memory transfer
time from the host (CPU) to the device (GPU) and vice versa is significantly
greater than the computational time, and also the memory transfers are not con-
tiguous. This indicates that the program performance is bottlenecked by the
bandwidth of the Peripheral Component Interconnect Express (PCIe) bus. Also,
the computations of the kernel functions that operate on the upper/lower halves

Figure 19. Execution time of the naive version of ARC.

V. B. Ramakrishnaiah et al.

39

Figure 20. Execution timeline generated by the NVIDIA visual profiler.

of data are not perfectly overlapped. This is mainly due to the GPU being stalled
as it waits for all the data required by the kernel to be transferred before starting
the computations.

Furthermore, the profiler also identifies additional performance bottlenecks
which are summarized below:
• Low warp execution efficiency due to divergent branches

The profiler indicates low warp execution efficiency for the kernel functions
signifying the inefficient use of GPUs for computation. The compute resources
are best utilized when all the threads in a warp are active. The algorithm is im-
plemented with different control statements that result in branching, and the
profiler recognizes 33.2% and 93% divergence in the kernel function that com-
putes intermediate convex hulls and the kernel function that merges the hulls
respectively. The number of active threads in an SPMD execution model can be
improved by having less divergent branches executing different instructions
within the same warp.
• Global memory alignment and access pattern

The profiler identifies inefficient use of memory bandwidth due to misaligned
global memory access patterns. As the instructions are issued per warp in an
SPMD execution model, 32 threads in a warp cooperatively request a single
memory access, which is serviced by one or more memory transactions. Un-
aligned and non-coalesced memory access due to warp divergence or the pattern
of memory addresses requested by each thread can result in inefficient memory
accesses. For uncached global memory accesses, the data always flows through
the L2 cache, and it performs four 32-byte transactions in a single memory cycle.
In ARC, redundant loads of data occur if the threads in a warp access data points
such that N mod (128) ≠ 0, where N is the total number of data points accessed
by the threads in a warp as shown in Figure 21. Redundant loads could be
avoided by making N an integer multiple of 32, however, for efficient utilization
of memory bandwidth N must be an integer multiple of 128.
• L2 cache access latency

The profiler records 2.7 million global memory loads performed at a rate of
155.852 GB/s and 5.3 million reads from the L2 cache. The L2 cache reads are

V. B. Ramakrishnaiah et al.

40

Figure 21. Inefficient use of memory bandwidth due to redundant loads.

Table 1. CGMA for different kernel functions.

Kernel functions CGMA

lower Hull On GPU 1/2

upper Hull On GPU 1/2

merge Lower Hull 8/15

merge Upper Hull 8/15

higher because the algorithm reuses spatially adjacent data in computations, be-
nefitting by both temporal and spatial locality of data. As an example, we have
the arrays that store the size of intermediate convex hulls and the convex hulls
themselves accessed repeatedly within the same kernel function and therefore
are cached. However, the L2 cache located outside the SMs has significant mem-
ory access latency of 100 clock cycles, and this latency can be reduced by moving
data that is reused to a cache closer to the SMs. The cache closer to the SMs
which can be programmatically controlled in the GPUs is known as the shared
memory which has a latency of 12 to 32 clock cycles.

GPUs use DDR5 memory, which is a high bandwidth memory but has latency
[21] of 400 - 800 cycles resulting in large memory access latency compared to 10
- 20 cycle latency for arithmetic operations. The memory access latency is hid-
den due to the multiple threads executing the job at the same time, but it is still
necessary to access the memory efficiently. To analyze the memory access effi-
ciency, the compute-to-global memory access ratio (CGMA) for the naive ver-
sion is determined. CGMA is defined as:

Number off loating point operationsCGMA .
Number of global memory accesses

= (2)

If CGMA is significantly greater than 1, the GPU spends more time perform-
ing computations rather than fetching data from memory. These types of prob-
lems are called compute bound problems. On the other hand, if the CGMA is
less or close to 1, the problem is memory bound indicating that the GPU spends
most of the time fetching data from the memory rather than computing. Table 1
shows the CGMA of different kernel functions of the naïve version. The CGMA
of all the four kernels is significantly less than 1, making the naïve version mem-
ory bound. The performance of memory bound problems is limited by the
memory bus bandwidth and memory clock speed, which makes it difficult to
improve the performance.

In order to improve the performance, we have to increase the CGMA for our

V. B. Ramakrishnaiah et al.

41

implementation. Considering Equation (2), we can either increase the numera-
tor to improve CGMA or decrease the denominator. Increasing the numerator is
not a feasible option because increasing the number of floating point operations
translates to artificially introducing the computational complexity of the existing
algorithm. Therefore, we consider the second option, which is to decrease the
value of the denominator. This can be done by reducing the number of global
memory accesses and specifically multiple accesses to the same data either on the
global memory or L2 cache. We use shared memory, which is a user controlled
cache to store chunks of data from global memory. Later, we use the data in the
shared memory to perform the computations. This reduces the memory access
latency due to multiple accesses of the data on global memory and L2 cache.

7. Optimizations

The profiler analysis of the naïve version along with the CGMA computations
provides insights about the possible approaches that can improve performance.
This section discusses the various optimization approaches used to improve the
performance of the naïve version.

7.1. Shared Memory to Reduce Global Memory Access

To improve L2 cache access latency by reusing on-chip data, and reduce the
global memory bandwidth required by the kernels we make use of shared mem-
ory. Assuming each thread performs only one iteration of the algorithm, the
kernel function that computes convex hulls of one half of the given set of points
have to access the global memory 16 times, and the kernel function that com-
bines two consecutive convex hulls has to access the global memory 30 times in
the naïve version. The shared memory latency being 12 to 32 cycles is about 50
times lower than the uncached global memory latency [22] and three times low-
er than the L2 cache. Therefore, a program accessing shared memory instead of
global memory or L2 cache performs better. To reduce the number of global
memory accesses, we load the data from global memory to shared memory and
perform the computations. Later, the result is written back into global memory.

In the kernel function that computes either the upper half or lower half of in-
termediate convex hulls, the data seen by each thread block is loaded into the
shared memory. Each thread computes convex hulls by considering a small
number of elements. The number of elements processed by each thread is calcu-
lated as the ratio of the total number of points to the total number of threads.
Copying the data from the global memory to the shared memory and perform-
ing computations using the copied data on the shared memory is shown in Step
1(a) and 1(b) of Figure 22. Once all the threads in a block have finished compu-
ting the convex hulls, the resulting points are written back into the global mem-
ory. This is illustrated in Step 2 of Figure 22. As discussed previously, two con-
secutive convex hulls are combined together by constructing common tangents
between them. To reduce the number of global memory accesses while con-
structing tangents, the convex hulls seen by each thread block along with one

V. B. Ramakrishnaiah et al.

42

Figure 22. Shared memory implementation of constructing one half (upper/lower) of the convex hulls.

Figure 23. Shared memory implementation of combining two convex hulls by constructing common tangents.

convex hull from the next thread block is loaded into the shared memory
(Figure 23: Step 1). For a given pair of consecutive convex hulls, only the indices
to increment the right hull and the indices to decrement the left hull are stored
in registers local to each thread (Figure 23: Step 2). These indices point to the
data points that form a common tangent to the two consecutive convex hulls.
The indices are written into the global memory after each thread completes its
operation (Figure 23: Step 3).

We also use shared memory as a scratchpad memory to store the size of in-
termediate convex hulls and also enabled L1 caching (16 KB) along with the
shared memory (48 KB) to cache global memory transactions.

7.2. Avoiding Warp Divergence

While loading the data into shared memory for combining two consecutive
convex hulls, each thread loads one convex hull into the shared memory. But the

V. B. Ramakrishnaiah et al.

43

threads at the end of each thread block (except for the last block) must load two
convex hulls, one at the end of thread block and the other from the beginning of
the next thread block. This can be easily achieved by using simple control state-
ments on a traditional CPU based computing system. CPUs have complex
hardware with advanced branch prediction mechanisms to implement control
statements. On a CPU, there are pipelines for each program flow of the control
statement. If the predicted branch is false, a CPU can quickly switch to the other
pipeline and continue with the execution flow, eluding any significant perfor-
mance penalty.

On the other hand, GPUs are simple devices with no branch prediction me-
chanisms requiring all the 32 threads in a warp execute in a synchronous fa-
shion. If different threads in a warp execute different instructions, the GPU
flushes the execution pipeline each time to load new instructions resulting in the
sequential execution of each branch of the control statement. Also, since all
threads in a warp execute in parallel, some of the threads in a warp will be idle
and will become active during the upcoming sequence that will make the pre-
viously executing threads in that warp idle as shown in Figure 24.

To avoid warp divergence, we loaded both the flow paths of the control state-
ments into the same branch by making use of multiple if statements instead of
if-else chains as exemplified in Figure 25. In this way, both the conditional in-
structions are loaded into the execution pipeline, and only the statements with
conditions resulting to true will be executed by the threads.

7.3. Optimized Memory Access

While accessing global memory, the data has to pass through L2 cache by de-
fault, and four 32-byte transactions are performed to fetch 128 bytes of single

Figure 24. Warp divergence due to if-else statements.

V. B. Ramakrishnaiah et al.

44

Figure 25. Warp divergence due to if-else statements.

Figure 26. Optimized memory access with L1 caching disabled.

precision data for the threads in a warp. On enabling the L1 cache, a 128-byte
transaction request is used to load single precision data for a warp. In other
words, NVIDIA GPUs has a L1 cache line granularity of 128 bytes and an L2
cache line granularity of 32 bytes. The memory fetches from the global memory
is a major performance bottleneck, and it is necessary to keep the number of
load transactions to a minimum. One way to keep the load transactions to a
minimum is to load only the required data by a warp and avoid redundant data
loads. Figure 26 shows an example where a warp requests 128 bytes of data and
the GPU performs four 32-byte transactions to load 128 bytes, and the data is
accessed within the same 128-bytesegment (aligned to the 128-byte boundary).
This is very efficient when compared to the unaligned redundant load shown in
Figure 21, where the data requested by a warp requires six 32-byte transactions
in three 128-byte segments, and all the data that is loaded is not used by the
warp.

We adjust the number of points seen by each thread to construct intermediate
convex hulls such that the data requested by a warp is a multiple of cache line
granularity depending on the problem size, thereby minimizing redundant loads
of data. NVIDIA also reports [23] that the effective bandwidth is poor for strided
memory access with strides greater than 8 as the hardware cannot combine the
accesses that are far apart in the physical memory. Therefore, adjacent threads in
our program access contiguous data points to construct adjacent intermediate

V. B. Ramakrishnaiah et al.

45

convex hulls and do not perform strided access.

7.4. Reducing Host to Device Data Transfer Latency

The transfer of data from the host to the device takes place over the PCIe bus.
Even though it is not possible to increase the speed of data transfer due to hard-
ware limitations, it is possible to reduce the time that the GPU spends waiting
for data. Data is allocated on the CPU memory as pageable memory. Pageable
memory can be swapped into the secondary storage by the operating system to
give an illusion of additional main memory than available. Since the GPU does
not have control over the paging operation, it takes more time for the data to be
transferred from pageable memory to GPU memory. To decrease the data trans-
fer time from CPU memory to GPU memory, we used pinned memory on the
CPU. Pinned memory or page-locked memory is a non-swappable memory al-
location on the CPU random access memory (RAM) preventing the operating
system from swapping the allocated memory to secondary storage. This allows
the data transfer between CPU and GPU through the PCIe bus at a higher
bandwidth.

8. Results and Analysis

We implemented the ARC technique on a NVIDIA GPU using the CUDA C
programming model. The hardware platform consists of an Intel Xeon
E5-2620-0 (Sandy Bridge) processor for implementing the sequential Andrew’s
monotone chain convex hull algorithm and NVIDIA Tesla K40c for imple-
menting the ARC technique.

Sets of random points with a normal distribution to test and compare the op-
timized implementation of ARC technique with the sequential Andrew’s mono-
tone chain convex hull algorithm were generated. Figure 27 shows the execution
times of the sequential Andrew’s monotone chain convex hull algorithm and the
parallel ARC technique kernels of the naïve and advanced versions using the
shared memory with the number of elements processed by each thread held
constant. The results shown in Figure 27 correspond to the load being equally
distributed among CUDA threads with each thread operating on 4 data points to
construct the intermediate convex hulls and excludes the memory transfer time
over the PCIe bus for the parallel implementations. We can see from Figure 27
that the computation of adaptive regions for 16 million data points takes place in
about 14 ms in contrast to 306 ms for the sequential implementation, indicating
near real time performance. Figure 28 shows the overall execution time for the
same three cases indicated previously and the result includes the data transfer
time over the PCIe bus. The naïve parallel version had a larger execution time in
comparison to the sequential version due to significant time spent on memory
transfers from host to device and vice versa. The considerable time for memory
transfers is due to a redundant data transfers required in the naïve version. The
memory transfer time was improved by eliminating redundant data transfers
and making use of pinned memory in the advanced version, which shows

V. B. Ramakrishnaiah et al.

46

Figure 27. Execution times of sequential, naive parallel kernel, and advanced parallel kernel im-
plementations for computing contours.

Figure 28. Overall execution times of sequential, naive parallel and advanced parallel implementa-
tions for computing contours.

significant improvement in performance. In Figure 29, the speedup between the
naïve kernel and sequential version and the advanced kernel and sequential ver-
sion is presented. The advanced version kernel on an average has a speedup of
21.6× while the naïve version kernel had only a speedup of 2×. The higher spee-
dup of the advanced version clearly demonstrates the effectiveness of the opti-
mizations applied to the naïve version. Taking into account the memory transfer
time for the advanced versions, the average speedup achieved is 9.3× as shown in
Figure 30. The overall improved speedup of the advanced version can be attri-
buted to the use of pinned memory instead of the paged memory in the naïve

V. B. Ramakrishnaiah et al.

47

Figure 29. Computational speedup of naive and advanced parallel versions.

Figure 30. Overall speedup of the advanced parallel version.

version in addition to the use of shared memory. Even though an overall 9.3×
speedup has been achieved, the speedup remains constant with increasing num-
ber of points as depicted in Figure 30 indicating weak scaling of the problem. As
the number of points in increased, correspondingly, the number of threads is
also increased as the number of points per thread is held constant. However, the
number of cores or processors in a GPU is constant. According to Gustafson’s
law [24], the workload is scaled up to maintain a fixed execution time as the
number of processor increases; the speedup increases linearly. Since the number
of GPU cores is not increasing with increasing workload, the speedup has to re-
main constant or decrease with increasing workload.

V. B. Ramakrishnaiah et al.

48

The second goal for using the ARC technique was to eliminate the artifacts
present in the contour of a radio propagation map determined using the convex
hull approach. Given a set of points, the ARC technique can either construct a
convex hull or a set of points, which is not a convex hull representing the con-
tour of a radio propagation map accurately. If the ARC technique is forced to
use a single thread, i.e., a sequential construct, the set of points obtained using
ARC will match the convex hull. However, by varying the number of threads, the
result can be a non-convex hull with varying levels of granularity. The resulting
set of points obtained using ARC is selected by computing a number of interme-
diate convex hulls to fit the given set of points. These intermediate convex hulls
are merged consecutively in order to obtain the resulting set. In other words, the
number of intermediate convex hulls constructed represents the “resolution” or
detail with which the radio propagation map is approximated. In our imple-
mentation, since each thread constructs one intermediate convex hull, the reso-
lution of approximation will depend on the number of threads. Decreasing the
number of threads decreases the number of intermediate convex hulls, and de-
grades the application performance as the load handled by each thread increases.
ARC does not result in the contour of a radio propagation map directly but also
includes points inside the contour that are eliminated using simple techniques
[25] if a contour is desired. In Figure 31, the original radio propagation map,
convex hull based, and ARC based contours are shown for increasing number of
points. We can see that the contours generated based on the ARC technique has
eliminated the artifacts present in the convex hull based contour and also accu-
rately represent the contour of the original radio propagation map.

9. Conclusions

The technique of adaptive region construction is a low complexity approach that
can represent the given contour with varying degrees of details. Adaptive region
construction technique provides the capability to construct the contour of a ra-
dio propagation map efficiently. The implementation of the adaptive region
construction technique on a GPU using the CUDA programming model has
been demonstrated. The GPU implementation provides good application per-
formance (speedup) for high resolution representation of contours but is not
suitable for low resolution representations. By applying optimization techniques
to the naïve version, a 21× improvement in computational performance for large
data sets was achieved. As most of the applications that use radio propagation
maps are benefited by the detailed representation of radio propagation maps, the
ARC technique fulfills the necessity for a fast algorithm. The ARC technique is
not only suitable for real-time operation but also avoids artifacts in contrast to
the contours determined using the convex hull approach.

In addition to using the ARC technique for determining the contour of a radio
propagation map, it is also possible to approximate other spatial data. Using the
ARC, multi-resolution representation of the spatial data is possible. The mul-
ti-resolution representation of large spatial data sets allows improved processing

V. B. Ramakrishnaiah et al.

49

Figure 31. Contours of radio propagation map using ARC.

time and lower storage requirements.

The ARC technique as mentioned previously is inefficiently operating on low
resolution radio propagation maps. Also, with large resolution, special attention
has to be paid to the memory transfers between the CPU and the GPU. Howev-
er, with the newer versions of the NVIDIA GPU equipped with the NVlink
technology, the latency due to memory transfers is significantly reduced.

References
[1] Haslett, C. (2008) Essentials of Radio Wave Propagation. Cambridge University

Press, Cambridge.

[2] Miles, J., Muknahallipatna, S., Kubichek, R.F., McInroy, J. and Muralidhara, H.
(2014) Use of Radio Propagation Maps in a Single Moving Beacon Assisted Locali-
zation in MANETs. 2014 International Conference on Computing, Networking and
Communications (ICNC), Honolulu, 3-6 February 2014, 871-877.

[3] Miles, J., Kamath, G., Muknahallipatna, S., Stefanovic, M. and Kubichek, R.F. (2013)
Optimal Trajectory Determination of a Single Moving Beacon for Efficient Locali-

V. B. Ramakrishnaiah et al.

50

zation in a Mobile Ad-Hoc Network. Ad Hoc Networks, 11, 238-256.
https://doi.org/10.1016/j.adhoc.2012.05.009

[4] Muralidhara, H. and Kubichek, R. (2011) MANET Localization Using Non-Circular
Overlapping Range Maps. International Conference on Wireless Networks, Las Ve-
gas, 18-21 July 2011, 8-12.

[5] Ramakrishnaiah, V.B., Kubichek, R.F. and Muknahallipatna, S.S. (2015) Optimiza-
tion of Antenna Beam Pattern in Ad Hoc Networks for Optimal Global Perfor-
mance. 2015 IEEE 58th International Midwest Symposium on Circuits and Systems
(MWSCAS), Fort Collins, 2-5 August 2015, 1-4.

[6] Andrew, A.M. (1979) Another Efficient Algorithm for Convex Hulls in Two Di-
mensions. Information Processing Letters, 9, 216-219.

[7] O'Rourke, J. (1993) Computational Geometry in C. Cambridge University Press,
Cambridge.

[8] Douglas, D.H. and Peucker, T.K. (1973) Algorithms for the Reduction of the Num-
ber of Points Required to Represent a Digitized Line or Its Caricature. Cartographi-
cal: The International Journal for Geographic Information and Geovisualization, 10,
112-122. https://doi.org/10.3138/FM57-6770-U75U-7727

[9] Ramer, U. (1972) An Iterative Procedure for the Polygonal Approximation of Plane
Curves. Computer Graphics and Image Processing, 1, 244-256.
https://doi.org/10.1016/S0146-664X(72)80017-0

[10] Prakash, N. and Sarkar, A. (2015) Development of Shape Based Leaf Categoriza-
tion,” IOSR Journal of Computer Engineering (IOSR-JCE), 17, 48-53.

[11] Chen, Z., Delis, A. and Bertoni, H.L. (2004) Building Footprint Simplification
Techniques and Their Effects on Radio Propagation Predictions. The Computer
Journal, 47, 103-133. https://doi.org/10.1093/comjnl/47.1.103

[12] Catrein, D., Reyer, M. and Rick, T. (2007) Accelerating Radio Wave Propagation
Predictions by Implementation on Graphics Hardware. IEEE Vehicular Technology
Conference, Dublin, 22-25 April 2007, 510-514.
https://doi.org/10.1109/vetecs.2007.116

[13] Cheng, M.X., Ling, Y. and Sadler, B.M. (2014) Wireless Ad Hoc Network Connec-
tivity Assessment and Relay Node Deployment. 2014 IEEE Global Communications
Conference, Austin, 8-12 December 2014, 399-404.
https://doi.org/10.1109/GLOCOM.2014.7036841

[14] Liu, D., Lee, M.-C., Pun, C.-M. and Liu, H. (2013) Analysis of Wireless Localization
in Nonline-of-Sight Conditions. IEEE Transactions on Vehicular Technology, 62,
1484-1492. https://doi.org/10.1109/TVT.2013.2244928

[15] Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge University
Press, Cambridge. https://doi.org/10.1017/CBO9780511804441

[16] Preparata, F.P. and Hong, S.J. (1977) Convex Hulls of Finite Sets of Points in Two
and Three Dimensions. Communications of the ACM, 20, 87-93.
https://doi.org/10.1145/359423.359430

[17] Preparata, F.P. and Shamos, M.I. (1985) Computational Geometry. Springer, Berlin.
https://doi.org/10.1007/978-1-4612-1098-6

[18] Manca, E., Manconi, A., Orro, A., Armano, G. and Milanesi, L. (2016) CUDA-
Quicksort: An Improved GPU-Based Implementation of Quicksort. Concurrency
and Computation: Practice and Experience, 28, 21-43.
https://doi.org/10.1002/cpe.3611

[19] NVIDIA (2017) NVIDIA Developer Zone—CUDA Toolkit Documentation.
http://docs.nvidia.com/cuda/index.html#axzz4fZgKptTq

https://doi.org/10.1016/j.adhoc.2012.05.009
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1093/comjnl/47.1.103
https://doi.org/10.1109/vetecs.2007.116
https://doi.org/10.1109/GLOCOM.2014.7036841
https://doi.org/10.1109/TVT.2013.2244928
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/359423.359430
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1002/cpe.3611
http://docs.nvidia.com/cuda/index.html%23axzz4fZgKptTq

V. B. Ramakrishnaiah et al.

51

[20] NVIDIA (year) NVIDIA Visual Profiler.
https://developer.nvidia.com/nvidia-visual-profiler

[21] Cheng, J., Grossman, M. and McKercher, T. (2014) Professional CUDA C Pro-
gramming. John Wiley & Sons, Indiana.

[22] Harris, M. (2013) Using Shared Memory in CUDA C/C++.
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

[23] Harris, M. (2013) How to Access Global Memory Efficiently in CUDA C/C++ Ker-
nels.
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cu
da-c-kernels/

[24] Gustafson, J.L. (1988) Reevaluating Amdahl's law. Communications of the ACM,
31, 532-533. https://doi.org/10.1145/42411.42415

[25] Nitzberg, M., Mumford, D. and Shiota, T. (1993) Filtering, Segmentation and
Depth. Springer-Verlag New York, Inc., Secaucus.
https://doi.org/10.1007/3-540-56484-5

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jcc@scirp.org

https://developer.nvidia.com/nvidia-visual-profiler
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
https://doi.org/10.1145/42411.42415
https://doi.org/10.1007/3-540-56484-5
http://papersubmission.scirp.org/
mailto:jcc@scirp.org

	Adaptive Region Construction for Efficient Use of Radio Propagation Maps
	Abstract
	Keywords
	1. Introduction
	2. Localization in Mobile Ad Hoc Networks
	3. Previous Work
	4. Review of Convex Hulls
	4.1. Overview of Andrew’s Monotone Chain Convex Hull Algorithm
	4.2. The Divide and Conquer Approach for Constructing Convex Hulls

	5. Adaptive Region Construction
	6. General Purpose GPU Implementation
	6.1. Profiling Analysis of Naive Version

	7. Optimizations
	7.1. Shared Memory to Reduce Global Memory Access
	7.2. Avoiding Warp Divergence
	7.3. Optimized Memory Access
	7.4. Reducing Host to Device Data Transfer Latency

	8. Results and Analysis
	9. Conclusions
	References

