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Abstract

This paper presents search model for a randomly moving target which follows
truncated Brownian motion. The conditions that make the expected value of
the first meeting time between the searcher and the target is finite are given.
We show the existence of an optimal strategy which minimizes this first
meeting time.
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1. Introduction

Detecting the holes on the oil pipeline under water prevents without a disaster
such as that occurred in the Guilf of Mexico on April 2010. Linear search model
is the one of the interesting search models which is used to detect these holes.

Searching for a Brownian target on the real line has been studied by El-Rayes
et al [1]. They illustrated this problem when the searcher started the searching
process from the origin. They found the conditions that make the expected value
of the first meeting time between the searcher and target is finite. They showed
the existence of the optimal search plan which makes the expected value of the
first meeting time between the searcher and target minimum. Mohamed et a/. [2]
studied this problem for a Brownian target on one of n-intersected real lines.
The information about the target position is not available to the searchers at all
the time. Recently, El-Hadidy [3], studied this search problem for a d-dimen-
sional Brownian target that moves randomly on d-space.

The main contribution of this paper centers on studying the search problem
for a one-dimensional truncated Brownian motion. The searcher moves with a

linear motion. This kind of search problems recently has various applications in
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physics such as finding a very small object that moves in the space like viruses
and bacteria, or the object that is very large, like stars and planets. We aim to
show the conditions that make the expected value of the first meeting time be-
tween the searcher and target is finite and show the existence of the optimal
search plan that minimizes it.

This paper is organized as follows. In Section 2, we introduce the problem. In
Section 3, the finite search plan and the expected value of the first meeting are
discussed. In Section 4, we find the existence of optimal search path. In Section
5, we give an application to calculate the expected value of the first meeting time

between the searcher and target.

2. Problem Formulation

The problem under study can be formally described as follows: We have a
searcher starts the searching process from the origin of the line. The searcher
moves continuously along its line in both directions of the starting point. The
searcher would conduct its search in the following manner: Startat H, =0 and
go to the left (right) as far as H,. Then, turn back to explore the right (left) part
of H,=0 asfaras H,. Retrace the steps again to explore the left (right) part
of H, asfaras H, and so on. The target is assumed to move randomly on the
real line according to the one-dimensional truncated Brownian motion. The ini-
tial position of the target is unknown but the searcher knows the probability dis-
tribution of it, Ze., the probability distribution of the target is given at time 0,
and the process {W (t).te R*} , which controls the target’s motion, is truncated
Brownian motion, where it has stationary independent increments, for any time
interval (#,5) W (t,)-W (t,) follows truncated normally distributed, and this
process is called a truncated Brownian motion with drift z' and variance o'".
A search plan with speed V, which the searcher follows it, is a function

¢:R" —> R such that:

|¢(t1) AL )| <Vt —t,|,Vt,t, e R". where Ris the set of real numbers

And Vis a constant in R" and ¢(0)=0. The first meeting time 7, is a

random variable valued in R* defined as:
7, =inf {t,¢(t) = X, +W (1)}

where X, is a random variable follows truncated normal distribution and in-
dependent with W (t) and represent initial position of the target. The aim of
the searcher is to minimize the expected value of 7, .

Let @, (t) is the set of all search plans with speed V. The problem is to find
a search plan ¢ e ®, (t) such that Er, <oco, in this case we call ¢ is a finite
search plan if:

Er¢* <Er,,Vged, (t)

Then we call ¢° is optimal search plan.
Let A and 6@ be positive integers greater than one and v be a rational
number such that:

1) V>|,u'|.

&8

"
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2) 6>1 such that C:M>|y’|.
(6+1)

We shall define two sequences {Gi }izo , {Hi}iZO and a search plan with speed

v as follows:

G =2(6'-1), H, =(-1) "c[ G +1+ (-1 |

Forany teR",if G <t<G.,, 4(t)=H,+(-1) (t-G)v.
Note that the truncated normal distribution:
If Vis N ( M, 0'2) then, the probability density function of double truncated
of Xis given by:
~(x—p)’

f ()= oy exp[ 20"
)+

where Fis the cumulative distribution function and I[a,b] (x)=1 which is the

a5 (X) fora<x<b.

indicator function.

And the expected value for truncated normal distribution is given by:

W=E(X)=ps ),
(°2)F (5

o O

The variance for truncated normal distribution is given by:
L)
c c c o
F(b_"l)_ F(a_ﬂj

o c
a-— b- ’
IFSals
2 o o
(o)e(5)
o o

3. Existence of a Finite Search Plan

o’ =var(x)=0|1+

-0

In this section we aim to find the conditions that make the search plan to be fi-
nite and minimize the expected value of the first meeting time.

Theorem 3.1: Let v be the measure defined on R by X, andif ¢(t) is
the search plan defined above, then the expectation E% is finite if:

S0 p {7 (Gy ) <—x}u(dk), [ 307 p{w (Gye) > —x}(dx)

=1 i=1

» —o

O — T

are finite, where 17 (G, ) =W (G, ) +¢G,, ¥ (Guyy)=W (Guy)—¢(Gpipt) -
Proof:
The continuity of ¢(t) and W (t) imply thatif X, is positive then
Xo+W (t) is greater than ¢(t) until the first meeting, also if X, is negative
then X, +W (t) is smaller than ¢(t) until the first meeting, hence for any

788 '2'I§I Scientific Research Publishing



A. A. Teamah et al.

i>0

0
p(r, > Gy 1)s.[p (Xo +W (Gy ) < Hy / X, = x)o(dX)
A where a<0,b>0. (1)
j (Xo +W (Gyuy) > Hyy 1 X = x)0(dx),

Using the notation: 17 (G, ) =W ( G2 )+ CG,; , we obtain:
W(G,) - Hy< X, = —x, then W (G [ o(Gy +1+(- )}<X0=—x

Leads to: W (G,;)—(~1)c[G,; +1-1] =W (G, |)+cGzl =7 (Gy ) <—x.
Similarly, by using the notation:  (G,;,,) =W (G,,,)—¢G,,; -

p(r, >Gyy) < j p (v x)u(dx)+I p(v (Gyuy) > —X)0(dx).  (2)
Similarly for any i>0
p(r,>Gy)< I p(v (dx)+i p(v (Gys)>—X)u(dx). (3

But we have

@© o Gix
E(r¢):jp(r¢>t)dt=§j p(r, >t)dt
0 i=0 G
(4)

Gi—G =A(0"-1)-1(0'-1)=2(0"-0')
E(T¢)S§/19i(9—l)p(r¢>G): (0- 1)249 p(z,>G,)

)+H p(z, >G,)+6°p(z, > G;)+- ]

5 >G
r¢>Gl)

1
o
—_
%"!
\%
o
~—
+
)
©
—_ A

+9k+
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Then
£(5,)2 4(0-3)] (s, >0) 09(5, @) 0" (7 () <)o(e9
07 (1 (G)> ) (@)+ 0 p(1(6,) <)o)

+ng p(v(c,)> —x)u(dx)+--1
03] p(s,>0)+00(z, > & )+ bl (&) -)o()

+(6*+6°)

p(v (G, )<—x)u(dx)+(93+64)zp(y/(G3) —X)v(dx)

0

+(6* +6°)

D — O WO

b

+(6+0*) [ p(y (Gey) > —x)u(dx)+--1.

0

hen
E(r,)<4 (f¢>0)+9p(f¢>6)+9zfp G,) > ~x)v(dx)
o 9+1T p(7(62)<x)o() 0" (03 (7 (6.) <)o)
+---+ak<e+1)£p(wek)<—x)u<dx)+93(e+1>f o1 (Gy)> X))

+95(9+1)Ip(w(G5)>—x) (dx)+---+ 6 (0+1) zp Jo(dx)+- }

Leads to:

E(r,)< 4(9—1)[9 +(9+1)@M (x)u(dx)+ZB(x)u(dx)ﬂ. (5)

where:

9=p(r, >0)+0p(z, >Gl)+6'231 p(w(G,) > —x)o(dx)

0

M (x)=>6"p(7(Gy) <—x).

B(x)= i26’2‘“p(t//(GZM) >-X).

Lemma 3.1: Let a, >0 for n>0, and a,,<a,. Let {d,}, n>0 be a

strictly increasing sequence of integers with d, =0. Then for any k>0 see

(4]
;(dnﬂ—dn)adn+1 sgd: §(d ,—d,)a,
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Lemma 3.2: If ¢> ', where ' is the drift of W (t) and cis a constant,

then for any t>0, and for some ¢>0

p{w (t)ZCt}S%mgt.
Proof:
p{W (t)=ct}= p{o-'\/fx +u > ct} = p{x > (C;,\;lft')t}
o e

Hence

b;nexp(_;] dx = ! l Erf b Erf K

kJ. F(b)-F(a) F(b)—':(a)(z[ (Ij (ﬁnj
And then

I exp( ]dX——ErfC(\l/%j<%gt, see [1].

where: Erfc is the complementary Error function commonly donated Erfc(x),

is an entire function defined by

©

Erfc(x)=1—Erf ( _[ “dr , then Erfc(%jzl—Erf[%j

ol ) oo

Then: = %(Erfc (%) - Erfc [%D (6)
1 k 1.,
SE Erfc[ﬁj < Eé‘ .

Then: m%&”{%} —Erfe (%D < %mgt. (7)

Hence: p{W (t)zot}ﬁ—g ) (8)

where ¢ = e_ 20 and X follows truncated standardized normal distribution.
X
Lemma 3.3:If x'#0, x >X,, t> max[ﬁ,,—z,j, a<0,b>0 then
MM
p{X, W (t)<x} is non-increasing with ¢

Proof Since

P(% <W (1) <%)=P (X <o'VIX + pt<x )= p[xz Tﬁ/t <X < Xl—u’t] £
O

o'\t

4 <0, then(x, — ,u't)/d'x/f and %((X2 —y't)/o“\/f) >0 this implies that

0.?: Scientific Research Publishing 791
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P(x, <W (t)<x) is non-increasing also if 4'>0, then (X —,u't)/o”x/f <0,
this implies that P(x, <W (t)<x,) is non-increasing.

n
Lemma 3.4: If W(n)=) X;, n>1, where {X,} is a sequence of inde-
=]

pendent identically distributed random variables (i.i.d.r.v), such that X, is
truncated normally distributed with parameters #'—¢ and ¢'?, and so

q(i,j+1)=3 p{-(j+1)<W (n)<-j)

n=0
Satisfies the conditions of the Renewal theorem, see [5].
Theorem 3.2: The chosen search plan satisfies:
M (x)<L(]x|) and B(x)<L([x]).

where L(|x|) and L(|X|) are linear functions.
Proof If x<0,then B(x)<B(0),butwehavefor x>0

B(0)= 292'%( (Gy)>0), B(x)= 292'*1p(em>—x).

Then B(x)=B(0)+ g@zmp(—x <y(Gy1)<0).

1
L 3.2 h: W(t)zct; <—————
emma 3.2 states that p{ (1) C} > €

where y (t)=W (t)-ct, B(0)<
We define the following:
1) w(n)=2y,,where {y}, isasequenceof(iidrv), y,~N (y’ -, 0"2)
=]

2) d, =G, =A(0°" -1).
3) we choose d,, such that d, =max(0,—x/u), refer to Lemma 3.3 putting
X, =0 and x,=-X,.

L

4) a(n):p(—x<y/(n)s0):§p(—(j+1)<y/(n)s—j).
5) a=0°/2(0"-1).

0

6) U(i,j+1) =Y p(-(i+1)<w(n)<-j)

n=0
If n>d, then by Lemma 3.3, a(n) is non-increasing and we can apply

Lemma 3.1 we obtain;

< < 02n+l . < 03 (.92”‘ _l) [ U HE 1
_Z +az a(n)_w"r-zo (J,J"r )

J

U(j,j+1) satisfies the conditions of Renewal theorem (by Lemma 3.4),
hence U (], j+1) is bounded for all j by a constant , so

792 :«2: Scientific Research Publishing
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B(x)<B(0)+S,+S,|x=L(]x]).

We can prove M (x) < |:(|X|) by similar way.
Lemma 3.5:
EW (T)[< o' JE(T) +[w]E(T).

where E stand for the expectation value and o&'? is the variance.

Proof

Let X (t) beastandard truncated Brownian motion, assume that
T, =min(T,n) is a bounded stopping time x(t). since X*(t)—t is a conti-
=EX?(0)=0 see [5].

nuous martingale, then E (X 2(T)-T,
) < (Iim inf E(X 2(T, ))) by Fatou

But E(X?(T,))=E(liminf (X*(T,)

n—o

lemma
<(liminf E(x (T,)). (9)
Hence E(X?(T))<E(T) bymonotonically of T,, since
W (t)=0o'X (t)+ u't, then
EW (T)| < o’E X (T)|+|«|E(T). (10)
But E|X(T)<yEX?(T)<E(T)

Then: EW (T)|<o'\[E(T)+[u|E(T). (11)

4. Existence of an Optimal Path

Definition

Let ¢ e®, (t),n>1 be a sequence of search plans, we say that ¢, con-
verges to ¢ as n tends to o if and only if for any te R", ¢, converges to
¢(t) uniformly on every compact subset.

Note that the set @, (t) constitutes an equicontinuous family of function,
also |¢n (t)|£V|t| for all n. We deduce that there exists a subsequence ¢
which converges to a continuous function ¢ by applying the theorem of Ass-
coli, see [6], it is easy to verify that this function ¢ containedin @, (t) that is,
the set @, (t) is sequentially compact.

Theorem 4.1

Let forany teR", W(t) be truncated Brownian process. The mapping

¢ —>Er,eR’

is lower semi continuous on ®, (t)
Proof let w be a sample point corresponding to the sample path y (t) of
X, +W (1)
Let (g, (t))nZl be a sequence of search plans which converges to ¢ e @, (t).
Given teR", we define forany n>1

Bn(t):{w:min y/(x)—¢n(x)|>a} and B(t):{w:min

o<x<t 0<x<t

v (x)-9(x)>a}
Let we B(t) since ¢y converges uniformly on [0,t] to ¢, then there ex-
ists an integer n(w) such that forany 0<x<t,

0:?,3: Scientific Research Publishing 793
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14, ()= (x)| < & ==min

2 0=xst

v (x)=4(x)
Hence forany 0<x<t and forany n>n(w)

b (%)=, ()| 2w (x)-¢(X)|-|p(x) - 4, (x)| 226~ = >a
Consequently we B, (t) forall n>n(w) and hence B(t)c liminfB (t).

n—o0

Now, by Fatou’s lemma
T p(B(t))dt sT p(Lirrginf B, (t))dt sTIﬂinginf(Bn (t))dt < IimbinfT p(B,(t))dt. (12)
0 0 0" ARG

Since sample paths are continuous, then B, (t)= (r,/)n > t) and
B(t) = (z-q, > t) . It is known that a lower semi-continuous function over the se-

quentially compact space attains its minimum.

5. Application

Let a target moves according to a one-dimensional truncated Brownian motion.
In addition, we have a searcher starts the searching from the origin of the line.
The searcher moves continuously along its line in both directions of the starting
point .\We want to calculate E (r¢) which is given by:

E(r,)< 4(9—1)[9 +(9+1)@M (x)u(dx)+ZB(x)u(dx)ﬂ =Q(4,0,9,a,b)
Case 1: if:

M, ()= 2267 p(7(61,) <), B () = 0" p (1 (Gy.s) > )

9=p(z,>0)+0p(z, > Gl)+¢92? p(w (G,)>—x)v(dx). (13)

Let X, =X be a random variable of initial position of target has a truncated
normal distribution, W (t)= otX + u't.

where X isarandom variable has a truncated normal, in order to calculate

Ml(x):iHZip(Qﬁ(GZi)<—X). (14).
Since 17 (G, ) =W (G, )+¢G, P(W(Gy)+¢G, <—x) = p(17(Gy)<—X)
p(x<-W(Gy,)-cGy) (15)

v(6-1)

Since G, :/I(HZi—l), c= , W(G,)=0"\JGyx+ u'G,,

(6+1)
Then we get

p <o\ [2(67 1) (0" 1) ¢ (0" 1))

= p[xr o2 (07 - < uia (6" -1)-c(2(6" -1))

- p(x(l+a'\/m)<—,u%(92i ~1)—cA (0 —1)) (16)
—u'A(07 ~1)—cA(0” -1) A(0% -1)[-4' ~c]

(1+o" [4(0* —1)) a (l+0'"//1(6’2i —1))

794 '2'I§I Scientific Research Publishing
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Put A=3, =2, v=10, 4'=2, ¢'=30, c=3.33. By subsisting in Eq-
uation (16)

(3% (2" -1)[-2-333))

p| x< : (17)
(1+(30>< 3(22i—1)))
By subsisting (17) in (14) we get:
Ml(x)=22:22ip . 3(2" -1)[-2-3.33]
= (1+(30x f3(2 —1)))
2ol xe 3(2* -1)[-2-3.33] 42| x < 3(2* -1)[-2-3.33]
(1+(30>< /3(22—1))) (1+(30>< /3(24—1))j
=2°p(x<-0.5271)+2* p(x < -1.186) (18)
:ZszX—:u’<—0.5271—2j+24p(x—:u’<—1.186—2j
o 30 30

=2°p(z<-0.08)+2"p(z<-0.1062) = 9.168, where z~n(0,1)
To calculate B, (x) by the same way we can get:
2 .
B,(x)= Z@ZHlp(l//(sz) > —X) ,since (G, ) =W (G, )—cG,,.
i=1l

v(6-1)

GZI)zo-’\/G_ZiX—i—/J'GZi» Gzi:ﬂ’(HZi_l)’ c= (9+l)

Then: p(w(Gy)>-X)=p(W (Gy)—cGy >—X)=p(x>-W(G,)+cG,)

_,u!/l(92i+1_1)+0/1(92i+1 _1)

(1+ o //1(92‘*1 —1))

2
B,(x)=>Y.60""p| x>
i=1

22: | s A(07 =1)[c - p]
3(2°-1)[3.33-2] 2ol < 3(2°-1)[3.33-2] "
1+ 30>< 3(23—1))) i (1+(30>< /3(25—1)))
(x>0202 )+2° p(x>0.426)
(Dozoz 2) 25p( 0.426—2j
30
Since E(rq,)ﬁﬁ(ﬁ—l){ngIM(x)u(dx)+J:.B(x)u(dx)}. (20)

By subsisting of (18), (19) in Equation (20) we can get

0.?: Scientific Research Publishing 795
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0 b
El(rq,)s3[g+j9.168dx+j20.8dx : (21)
a 0

Let a=-2, b=2.

Since g =p(z, >0)+0p(z, >Gl)+6'2'?p(;u(Gl)>—x)u(dx)

0
Tep > GZ|+1 J.p Xy +W 2, < H2| /XO = X) (dX)

: (22)
+[ (% +W (Gyy) > Hyiy /%, = X)0(dx).
0
Put i=0 in Equation (22), then we can get
0
P(7o >G) <[ P(% +W (Gy) < Hy /% = x)v(dx)
: (23)

b
+[ (% +W (G,)> H, / %, = x)v(dx).
0
Since: H; =(- )Hl (G +1+ (- 1)“1), W(Gi):a'ﬁx+ﬂ'Gi,
G =A(0'-1)
Then: H, =(-1)c(G, +1-1)=—-CG, =0, W(G,)=0"\[Gyx+ 1'G,
By subsisting of H;, W (G,) in Equation (23) we can get

b
(7 >G,) Jp X, <0)v(dx) + [ p(X > Hy W (G,)/ %, = X)v(dx). (24)

Since H, =(-1)"¢(G, +1+(-1)")=c(G,+2) =¢(4(0-1)+2), H,=16.65
W (G,) = o'\[G,x + 4G, = 51.9615x + 6.
By subsisting of H;, W (G,) in Equation (24) we get

0 b
p(re >G)<[p(x< o)udx+j p(x >16.65—(51.9615x + 6))dx

0

<[p(x<0) udx+jp (x+51.9615x >16.65-6)dx  (25)
0 b

<[p(x<0) +jp( 16'65_6}dx

. : 52.9615

Since p(x<0)=p(z<-0.07)=0.472

16.65-6
Pl X>
52.9615

x—u' 0.20-2
0.20) =
j p(x> ) p( = > 20

j p(z >-0.06) = 0.524.

By subsisting in Equation (25) we can get p(z, >G,)<-a(0.472)+b(0.524).
Since a=-2, b=2, p(r, >G,)<1.992. (26)
To calculate p (v (G,)>—X), where (G, ) =W (G,,,)— Gy, -
That is, y(G,)=W (G,)-cG,, since  (G;)=51.9615x —3.99 (27)
p(v(G,)>-x)=p(51.9615x —3.99 > —x)
Then = p(51.9615x + X > 3.99) (28)
= p(Z >-0.06) = 0.524.
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By subsisting (26), (28) in Equation (13), we get

2
g =1+2(1.992) + 2 0.524dz = 9.176 (29)
0
By subsisting (29) in (21) we get
E, () <3[9.176 +18.336 + 41.6] = 207.336.
5
Case 2: if we take: M, (x)=>6"p(7(G,)<-x) and
i=1
S 2i+1
B,(x)=>_6""p (1,1/ (Gyir) > —X) . By the same way for chosen
i
A=3, =2, v=10, 4'=2, ¢'=30, ¢=3.33.
We can get: M, (x)=37.42, B,(x)=85.10.
Then E,(z,)<762.69.
Table 1. The upper bound of E (r¢) '
A T 5, (x) ()
9.729 19.2158 200.6225
40.06 77.015 729.4211
3 2 10 333 03 30 8984
155.693 281.752 2651.619
573.24 901.032 8872.5896
9.665 19.384 201.34
39.7517 77.9632 733.34
3 2 10 333 05 30 9016
154.084 287.47 2676.40
464.1078 936.716 9031.99
9.347 20.2276 204.866
38.199 82.72 752.93
3 2 10 333 15 30 9138
146.084 316.4488 2802.6112
519.074 1123585 9883.365
9.168 20.8 206.56
37.426 85.10 762.69
32 10 333 2 30 9176
142.11 331.082 2866.71
497.02 1220.95 10,335.41
9.03086 21.0704 208.0213
36.6565 88.704 772.247
3 2 10 333 25 30 7.256
138.174 352.896 2930.9624
475.329 1385.088 10,798.165
8.8739 21.49 210.142
35.889 89.859 782.45
3 02 10 333 3 30 932
134.26 360.407 2995.97
454.034 1419.155 11,267.1
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Case 3: if we take:
4 4

M, (X) =207 p(i7(Gy) <—x), By(x)= 6""p(y(Gys)>—X).

i1 i1

By the same way for chosen A=3, =2, v=10, u'=2, o¢'=30,
c=3.33.

we can get: M, (x)=142.12, B,(x)=2331.082.

Then E,(r,)<2866.71.

Case 4: if we take:
5 ) 5 :
M, (X) = 367 p(7 (G <—x) By (x)= 207 p(v (Gos) > ).
i=1 i=1

By the same way for chosen A=3, =2, v=10, u'=2, ¢'=30,
c=3.33.

We can get: M, (x)=497.02, B,(x)=1220.95.

Then E, (r¢) <10335.41. If we want to see the effect 4’ on the search plan,
choose A=3, =2, v=10, ¢'=30, ¢=3.33 as constants and give dif-
ferent values to ', and for each chosen we calculate the values

B;(x),M;(x),j=12,34 and corresponding values of Q(.), see Table 1, in
this table we can determine a search plane which make the value of the upper
bound of E (r¢) is small. In future study we can do a program in order to get
the search plan for different values of A,0,c,v,o’, i’ .

6. Conclusion

In this paper, we investigated the search model for a lost target whose truncated
Brownian motion is on a real line, and the expected value of the first meeting
between the searcher and target is studied. Also the existence of the optimal
search plan that minimizes this expected value is proved. The search model,
when the lost target follows truncated Brownian motion on one of finite number

of disjoint linear lines will be investigated in the future.
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