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Abstract 
In work questions of distribution of waves in a viscoelastic wedge with any 
corner of top is considered. The elastic cylinder with a radial crack is a wedge 

180ϕ <   corner. The regional task for system of the differential equations in 
private derivatives is decided by means of a method of straight lines that al-
lows using a method of orthogonal prorace. 
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1. Introduction 

The problems of the propagation of viscoelastic waves in extended laminate and 
layers of variable thickness are considered in [1] [2] [3]. In these papers, the 
boundaries in the formation of the structure of the wave field, as a spectrum of 
Eigen frequencies and Eigen modes, are revealed in a series for simple problems 
(for unchanged boundaries), and the boundary change is consistently accompa-
nied by increasing difficulties. We also consider the occurrence of local singular-
ities in wave fields. 

In this paper, in contrast to the above, the propagation of waves along the z 
axis in an infinite viscoelastic cylinder with a radial crack is considered, which is 
a wedge with some angle 180ϕ < 

.
. 

2. Statement of the Problem and Methods of Solution 

The basic equations of motion of a deformable cylinder (with a radius R) with a 
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longitudinal crack, which at 0 180ϕ ϕ= <  , Case describes a wedge. They are 
given with three groups of relations. The system of equations of motion of a 
wedge in a cylindrical coordinate system ( , ,r zϕ ) it takes the form 
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f(t), is some function; ρ, density of material; ( )R tµ τ−  and ( )R tλ τ− , the 
relaxation nucleus [4]; 0 0,λ µ , Lame’s parameters (instantaneous elastic moduli); 
( ), ,r zu u uϕu , displacement vector; , , , , ,rr r rz z zzϕ ϕϕ ϕσ σ σ σ σ σ , the components of 

the stress tensor; , , , , ,rr r rz z zzϕ ϕϕ ϕε ε ε ε ε ε , respectively, the components of the 
strain tensor. The integral terms in (4) are assumed to be small [5]. Let the func-
tion f have the form ( ) ( )e Ri tf t t ωψ −= , where ( )tψ  is a slowly varying func-
tion of time; Rω  is the real constant; i, imaginary unit. Using the freezing me-
thod [6] in place (4), it is possible to obtain approximate relations: 
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( ) ( ) ( ) ( ) ( )1 с s
R Rf t f t i f tλ λλ λ λ ω ω ≈ = − Γ − Γ 
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( ) ( ) ( ) ( ) ( )1 C S
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respectively, the cosine and sine Fourier transforms; Rω , the real part of the 
complex frequency ( R Iiω ω ω= + ); ρ , density; ( )R tλ  и ( )R tµ , the relaxa-
tion nucleus of the material. 

The relations (1), (2), (3) after identical algebraic transformations are reduced 
to a system of six differential equations with complex coefficients, solved with 
respect to the first derivative with respect to the radial coordinate: 
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The boundary conditions are given in the form: 

0 0r r= →  и : 0rz rr rR ϕσ σ σ= = =  

0 0, ; 0
2 2 r zϕϕ ϕ ϕ
ϕ ϕϕ σ σ σ= − = = =                   (6) 

The periodicity conditions allow us to exclude the dependence of the main 
unknowns on time and the axial coordinate z by the following change of va-
riables: 
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where 
( ) ( ) ( ) ( ) ( ) ( ), , , , , zW r v r u r r r rϕσ τ τ , the amplitude of the oscillations, 
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which are a function of the radial coordinate; к , wave number; R Iс C iC= + , 
complex phase velocity; R Iiω ω ω= + , complex frequency. 

Under the condition (6), the separation of variables r and φ, is impossible. 
Taking into account (7), the system of Equation (5) takes the form: 
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Here k is the wave number, which is given in the construction of the disper-
sion relation [7]. 

Similarly, boundary conditions are transformed (6) 
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2 1 11 , 2 1 , 2a b c
k k k
µ µ µ = + = + = 

 
, 

Thus, the spectral boundary value problem (8)-(9) is formulated, which de-
scribes the propagation of harmonic waves in an infinite viscoelastic wedge with 
an arbitrary vertex angle. 

As examples of a viscoelastic material, we take three parametric nuclei of re-
laxation ( ) ( ) 1e tR t R t A tβ α

λ µ
− −= = , possessing a weak singularity. 

The boundary value problem for the system of partial differential Equation (8) 
is reduced to the solution of ordinary differential equations by the method of 
lines, which will allow using the method of orthogonal sweep in the solution [8]. 
According to the method of straight lines, the rectangular domain of the defini-
tion of the function of the principal unknowns is covered by straight lines paral-
lel to the axis r and uniformly spaced from each other. 

The solution is sought only on these lines, and the derivative in the direction 
φ, is replaced by approximate finite differences. The approximating formulas of 
the second order used for the first and second derivatives have the form: 

1 1 1 2 1 2
,

1 1
, 2

3 4 3 4
2 2 2

2

i i i i i i i i
i

i i i
i

y y y y y y y yy

y y yy

ϕ

ϕ

+ − + + − −

+ −

− − + − − +′ ≅ ≅ ≅
∆ ∆ ∆
− +′′ ≅
∆

      (10) 

where i varies from 0 to 1N + , iy , projection of an unknown function y  
onto the line with the number i; Δ, move partition to the coordinate φ. 

As a result of the discrimination, the vector of the main unknowns of the gen-
eral dimension 6N can be written in the form: 
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the left and right differences (10), (11) allow us to take into account the boun-
dary conditions for φ. In the first case, the derivative of φ on the right sides of 
Equation (8) can be expressed by the formulas [4]: 
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Boundary conditions at 0

2
ϕϕ = −  is taken into account in the equations cor-  

responding to the straight lines 1i = . 
For the main unknowns that do not enter into the boundary conditions, wi, vi, 
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ui use the right difference (10): 
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The number of straight lines can be reduced by using the ant symmetry con-
ditions for the transverse vibrations of a plate at 
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( ) 2
, 1 ,2 .i N N iB u u r kvϕ ϕ−= − + ∆ −  

The resolving system of ordinary differential equations according to (8) has 
the form: 
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In Equation (18), the expressions for the derivatives , , , , , ,, , , , ,i i i i i iw v u Bϕ ϕ ϕ ϕ ϕ ϕ ϕτ σ  
are chosen from the relations (13)-(17), depending on the boundary conditions 
with respect to the coordinate φ. 

The free surface conditions, the equivalent conditions (9,a) and forming the 
boundary value problem together with the Equation (18), is obtained in the form 

( )0, 0, 0 1, ,i i iB i Nϕ ϕτ σ= = = =                  (19) 

Thus, the original spectral problem (8), (9) is reduced to the canonical prob-
lem (18) and (19) by discrimination of the coordinate φ by the method of lines, 
for the solution of which we apply the method of orthogonal sweep. 

3. Numerical Results 

The results of calculations are obtained on dimensionless parameters 0.25ν = , 

sс c , R λ , A = 0.048, β = 0.05, α = 0.1, where 2π kλ =   is the wavelength of 
the wave, the density 0ρ ρ ρ=  ( ( )2 2 22 ,р s sс с cλ ρ µ ρ= − = ) [9] [10]. For nu-
merical realization of the problem a software tool МAPLE 9.5. 

Comparisons of the obtained numerical results (without viscosity ( )R tλ =
( ) 0R tµ = ) with the known results [1] [3] are given in Table 1. 

The limiting values of the phase velocity of the first edge mode, depending on 
the wedge angle at the vertex, found for a material with a Poisson’s ratio υ = 0.25 
and 1r R= = , ( ) ( ) 0R t R tλ µ= =  are given in Table 1 of Column 2. Also the 
results obtained in [11] for a wedge based on plates Variable thickness are given 
in Table 1 of column 3 (according to the theory of Kirchhoff-Love plates) and 
column 4 (according to the theory of Timoshenko’s plates). Column 5 corres-
ponds to a calculation variant with three internal straight lines (N = 3) and 
boundary conditions (9,a), column 6 corresponds to the boundary conditions: 

0 0: 0; : 0
2 2r z r zu uϕ ϕ ϕ ϕϕ
ϕ ϕϕ σ σ σ ϕ σ= − = = = = = = =         (20) 

with the same number of straight lines. From the results, the variants of calcu-
lating variable-section plates (according to the Kirchhoff-Love and Tymoshenko 
theory) and the three-dimensional theory (the proposed method) show that they 
agree within 7% for wedge angles not exceeding 28˚ (wedge angle 0 28ϕ ≤  ). 
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In the framework of the work described in this paper (based on the calculation 
procedure for a three-dimensional wedge), taking into account the viscous 
properties of the material ( ) ( ) 1e tR t R t A tβ α

λ µ
− −= = , they are shown in Figure 

1. 
 

Таble 1. Comparisons of the obtained numerical results. 

φ0 

According to the proposed 
Method of calculation 

Three-dimensional wedge 

By the method of 
Kirchhoff-Love [11] 

By Tymoshenko’s 
method [11] 

By the method of 
calculating a three- 

dimensional wedge (9,а) 

By the method of 
calculating a three- 

dimensional wedge (20) 

110 - 0.2680 0.1962 - - 

170 0.3083 0.3906 0.2863 0.3086 0.2989 

280 0.4757 0.5269 0.4426 0.4758 0.4629 

300 0.6058 0.8992 0.9232 0.6054 0.5927 

530 0.7411 1.192 1.6918 0.7413 0.7294 

 

 
Figure 1. Change in real and imaginary parts of the phase velocity Fluctuations depending onк. 
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In Figure 1 shown the real (curves CR1, CR2) and imaginary (curves CI1, CI2) 
parts of the dispersion curves of the first two modes of oscillations in an infinite 
viscous elastic wedge with angle ( 0 45ϕ =  ). 

For comparison, the dependence on the wave number of the phase velocity of 
the first flexural mode of oscillations of a solid cylinder, founded by Pochhomer 
and Krie, using special functions (curve CR3) [12] [13] and curve CI3 [14] is 
shown in the same figure. We note the characteristic features of the curve CR3: at 
zero, the phase velocity is zero, and at infinity, tends to the Rayleigh wave veloc-
ity for a half-space. In the case of a viscoelastic wedge, the first mode has a cutoff 
frequency, and the phase velocity tends to infinity. At large wave numbers, the 
limiting phase velocity of this mode also coincides with the velocity of the Ray-
leigh wave. 

4. Conclusions 

Thus, unlike waveguides with a rectangular cross section in wedge-shaped wa-
veguides with a sufficiently small wedge angle, in the analysis of the dispersion 
dependences of the first mode, it is permissible to use the theory of plates of va-
riable cross section Kirchhoff-Love and Timoshenko. The established fact is ex-
plained by the phenomenon of localization of the shape of oscillations near the 
acute angle of the wedge, described in [3]. 

Based on the results obtained, the following conclusions are drawn: 
• the results of calculating the limiting real velocity part (c = CR) of the propa-

gation of the first mode of a wedge-shaped waveguide in the theory of 
changing the Kirchhoff-Love plates [10] [11] and according to the dynamic 
theory of elasticity differ by no more than 6% for corners of the wedge top 
not exceeding 28˚; 

• in the wedge-shaped waveguides, the first mode has a cut-off frequency, and 
the phase velocity tends to infinity. 

The work was supported by the Fund for Fundamental Research F-4-14 of the 
Republic of Uzbekistan. 
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