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Abstract 
In this work, a conceptual numerical solution of the two-dimensional wave 
partial differential equation (PDE) is developed by coupling the Complex Va-
riable Boundary Element Method (CVBEM) and a generalized Fourier series. 
The technique described in this work is suitable for modeling initial-boundary 
value problems governed by the wave equation on a rectangular domain with 
Dirichlet boundary conditions and an initial condition that is equal on the 
boundary to the boundary conditions. The new numerical scheme is based on 
the standard approach of decomposing the global initial-boundary value pro- 
blem into a steady-state component and a time-dependent component. The 
steady-state component is governed by the Laplace PDE and is modeled with 
the CVBEM. The time-dependent component is governed by the wave PDE 
and is modeled using a generalized Fourier series. The approximate global 
solution is the sum of the CVBEM and generalized Fourier series approxima-
tions. The boundary conditions of the steady-state component are specified as 
the boundary conditions from the global BVP. The boundary conditions of 
the time-dependent component are specified to be identically zero. The initial 
condition of the time-dependent component is calculated as the difference 
between the global initial condition and the CVBEM approximation of the 
steady-state solution. Additionally, the generalized Fourier series approxima-
tion of the time-dependent component is fitted so as to approximately satisfy 
the derivative of the initial condition. It is shown that the strong formulation 
of the wave PDE is satisfied by the superposed approximate solutions of the 
time-dependent and steady-state components.  
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1. Introduction 

In this work, the Complex Variable Boundary Element Method (CVBEM) pro- 
cedure is extended to modeling applications of the two-dimensional wave partial 
differential equation (PDE). The wave PDE, given by ( )2

xx yy ttc u u u+ = , is com- 
monly used to model the propagation of waves in highly-stretched membranes 
that are uniformly dense with approximately constant tension. Consequently, 
the solution of the wave equation is important in disciplines such as physics, 
engineering, and other applied sciences that consider the propagation of such 
waves. The numerical methodology presented in this work uses a coupling of the 
CVBEM with a generalized Fourier series. The modeling outcome is novel since 
it is a function that satisfies the strong formulation of the wave PDE within the 
problem domain. The problem being considered here is  

( ){ }
( )
( ) ( ) ( )
( ) ( )
( ) ( )

2
1 2

2

Domain: , : 0 ,0

PDE:
Boundary Conditions: , , , ,
Initial Condition: , ,0 ,

, ,0 ,

xx yy tt

t

x y x L y L

c u u u
u x y t f x y x y
u x y g x y
u x y h x y
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+ =

= ∀ ∈∂Ω
=
=



 

The proposed solution technique is based on the standard approach of de- 
composing the global initial-boundary value problem into two components; 
namely, a steady-state component and a time-dependent component. The steady- 
state problem is given as  
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( ) ( ) ( )
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The time-dependent problem is given as  
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The steady-state problem is modeled using the CVBEM [1] [2] [3] [4], which 
produces an approximation of 1u  denoted by 1̂u . The time-dependent problem 
is modeled by a generalized Fourier series, which produces an approximation of 

2u  denoted by 2û . The global approximation function is the sum  
( ) ( ) ( )1 2ˆ ˆ ˆ, , , , ,u x y t u x y u x y t= + . 
A necessary condition for using this methodology is that the initial condition 

of the global initial-boundary value problem must be equal on the boundary to 
the boundary conditions of the global BVP. That is, ( ) ( ), ,g x y f x y=  for all 
( ),x y ∈∂Ω . This is a necessary condition because it ensures that the boundary 
conditions for the time-dependent problem will be identically zero. Therefore, a 
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two-dimensional Fourier sine series in the spatial variables can be used to 
provide a particular solution to the time-dependent problem. It is noted that this 
methodology can still be used when this condition is not met, however, while the 
global approximation function might closely approximate the initial condition 
within the problem domain, it will not satisfy the initial condition on ∂Ω  since 
the time-dependent problem would have non-homogeneous boundary conditions. 

The CVBEM approximation function is both continuous and differentiable 
wherever the CVBEM basis functions are analytic. The approximate solution to the 
time-dependent component, given later in Equation (2), is also both continuous 
and differentiable. Therefore, the sum of the two approximate solutions is con- 
tinuous and differentiable wherever the CVBEM basis functions are analytic. 

When the CVBEM basis functions are not analytic throughout the plane, 
special treatment of the resulting singularities or branch cuts is required in order 
to ensure that the CVBEM approximation function is at least analytic through- 
out the problem domain. The recent paper [5] examines several different types 
of CVBEM basis functions and includes a discussion about the treatment of basis 
functions that have branch cuts originating from nodes located exterior to the 
problem domain. 

Suppose that the CVBEM basis functions are analytic throughout the problem 
domain (this can always be done by choosing entire functions, such as complex 
polynomials, as the CVBEM basis functions). Then, the global approximation 
function is continuous and differentiable throughout the problem domain. Thus, 
computational estimates can be developed throughout the problem domain, and 
vector fields representing the gradient of the global approximation function can 
be developed throughout the problem domain. 

These properties of CVBEM approximation functions are not shared with the 
usual real-variable domain numerical schemes such as the finite element method 
(FEM) and finite difference method (FDM), which develop point estimates at 
nodal points defined by meshing the problem domain and require interpolation 
to infill approximations of the potential function at points in the domain that are 
not nodes of the computational mesh. 

The differentiability within the problem domain of the coupled CVBEM and 
generalized Fourier series approximation functions distinguishes this methodology 
from commonly-used domain methods such as the Finite Difference Method 
(FDM), Finite Element Method (FEM), and Finite Volume Method (FVM), 
which only estimate values of the solution at a finite number of nodes defined by 
a discretization (mesh) of the problem domain. 

The purpose of this research is to the extend the well-known CVBEM mo- 
deling technique to an important hyperbolic PDE. The coupled CVBEM pro- 
cedure that is presented in this work is significant because it applies some of the 
numerical advantages of solving Laplace’s equation with a boundary element 
method to a solution for a PDE that does not have a boundary integral repre- 
sentation. The result is a numerical technique that satisfies the strong formulation 
of the wave PDE. This is important because satisfying the strong formulation of a 
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PDE is not generally a principle of the aforementioned domain discretization tech- 
niques, which only either satisfy the weak formulation of the wave equation or 
approximately solve the strong formulation of the wave equation. 

2. Steady-State Component and the Complex Variable  
Boundary Element Method 

As previously mentioned, the steady-state problem is governed by the Laplace 
equation. One numerical technique for approximating the solution to these 
problems is the Complex Variable Boundary Element Method, which has been 
the topic of numerous papers and books [6] [7] [8] [9] [10]. The CVBEM 
belongs to the general class of numerical methods known as boundary element 
methods (BEMs). As is the case with BEMs, the CVBEM relies on the use of a 
boundary integral equation in its formulation. The boundary integral equation 
for the CVBEM is the Cauchy integral formula. 

Recent research related to the CVBEM has extended its use to modeling 
problems in three and higher spatial dimensions [11] as well as problems related 
to the diffusion equation [12]. Current efforts have been dedicated to improving 
the efficiency of the three-dimensional CVBEM as well as to extending the 
CVBEM to model applications of the time-dependent three-dimensional diffusion 
equation. 

To solve the steady-state problem, the CVBEM is applied to the boundary 
conditions of the global BVP. The CVBEM formulation used in this particular 
work is based upon the use of complex polynomial basis functions, although any 
other family of analytic functions, including combinations of different families 
of analytic functions, could be used. It is noted that the choice of the analytic 
basis functions to be used in the CVBEM formulation may be motivated by the 
problem boundary geometry in order to simplify the modeling requirements and 
to better fit the boundary geometry. 

The CVBEM approximation function is a linear combination of functions 
from the family of basis functions used in the CVBEM formulation. The coef- 
ficients are complex constants, and the basis functions are complex variable 
functions. Thus, the CVBEM approximation function has both a real and an 
imaginary part. The coefficients of the CVBEM linear combination are deter- 
mined by collocating the real part of the CVBEM approximation function with 
the Dirichlet boundary conditions. 

Review of CVBEM Modeling Approach 

A CVBEM approximation function, ω̂ , has the general form  

( ) ( )
1

ˆ ,
p

k k
k

z c g zω
=

= ∑
                     

(1) 

where kc  is the kth complex coefficient, ( )kg z  is the kth member of the family 
of CVBEM basis functions being used in the approximation, and p is the 
number of basis functions being used in the approximation. 

The complex coefficients kc , which are composed of two real-valued con- 
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stants, each result in two degrees of freedom to be determined as part of the 
CVBEM modeling process. Thus, there are 2p degrees of freedom in a CVBEM 
approximation function, so it is necessary to know at least 2p boundary conditions 
in order to uniquely determine the coefficients of the CVBEM approximation 
function when using collocation. 

Various techniques for determining the complex coefficients of the CVBEM 
linear combination include Fredholm integral types of formulations, minimizing 
the departure between boundary condition values and the CVBEM boundary 
values in a Hilbert space with least squares, and fitting the CVBEM approximation 
function exactly to the specified boundary conditions by using collocation [13]. 
In this paper, collocation is used to determine the coefficient values. 

Provided that the basis functions used in the CVBEM formulation are analytic 
within the problem domain and along the boundary, the result of modeling with 
the CVBEM is the development of an approximation function that is analytic 
over the entire problem domain and boundary whose real part solves the Laplace 
equation and can be fitted to satisfy the prescribed Dirichlet boundary con- 
ditions. 

3. Time-Dependent Problem 

The time-dependent component of the problem is modeled by a finite series of 
the form  

( )
2 2

2 , 2 2
1 1 1 2 1 2

2 2

, 2 2
1 2 1 2

π πˆ , , sin sin cos π

π πsin sin sin π

M N

m n
m n

m n

m x n y m nu x y t a t
L L L L

m x n y m nb t
L L L L

= =

     
  = +           

    
 + +          

∑∑

      

(2) 

Notice that these functions satisfy the strong formulation of the wave PDE. 
Sine functions are used specifically for the spatial variables in the approximation 
function so as to satisfy the homogeneous boundary conditions of the time- 
dependent problem. 

In this work, the coefficients ,m na  are determined by collocation of the 
approximation function with points located in the interior of the problem do- 
main that are set to match the initial condition of the time-dependent problem. 
It is necessary to specify mn number of collocation points in order to calculate 
values for the ,m na  coefficients. These initial condition collocation points are 
typically located so as to be reasonably uniformly spaced throughout the pro- 
blem domain (future research will assess advantages of defining collocation 
point locations non-uniformly). Additionally, the coefficients ,m nb  are deter- 
mined by collocation of the derivative of the approximation function with col- 
location points located in the problem domain that are set to match the de- 
rivative of the initial condition of the time-dependent problem. Again, it is 
necessary to specify mn number of collocation points in order to calculate values 
for the ,m nb  coefficients. These collocation points are also located so as to be 
reasonably uniformly spaced throughout the problem domain.  
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4. Method Development 

In this section, we do not consider the approximation functions 1̂u  and 2û . 
Rather, we use the exact functions 1u  and 2u  to demonstrate that the global 
problem can be decomposed in the manner that we have suggested. Suppose that 
the initial and boundary conditions are specified as the continuous functions 
( ),g x y  and ( ),f x y , respectively. We say that the initial condition is con- 

sistent with the boundary conditions if ( ) ( ), ,g x y f x y=  for each boundary 
coordinate ( ),x y ∈∂Ω . Consequently, if there exists a boundary coordinate 
pair ( ),x y ∈∂Ω  such that ( ) ( ), ,g x y f x y≠ , we say that the initial condition 
is inconsistent with the boundary conditions. 

4.1. A Consistent Initial Condition 

A function u satisfies the two-dimensional wave equation if ( )xx yy ttc u u u+ = , or 
equivalently, if ttc u u∆ = . We can decompose the problem into a steady-state 
component and a time-dependent component. The solution to the steady-state 
problem is a function ( )1 ,u x y  such that 1 0u∆ = . That is, the solution to the 
steady-state problem is a function that satisfies the well-known Laplace partial 
differential equation as well as the boundary conditions from the global BVP. 
The solution to the time-dependent component of the problem is a function  

( )2 , ,u x y t  that satisfies (1) the PDE 
2

2
2 2

uu
t

∂
∆ =

∂
, (2) the homogeneous boundary  

conditions, and (3) the initial condition for the time-dependent component 
calculated as ( ) ( )1, ,g x y u x y− . The global solution is obtained by adding the 
solutions to the steady-state and time-dependent problems, 1 2u u u= + . 

We shall show that an arbitrary term of Equation (2) satisfies the PDE 
2

2
2 2

uu
t

∂
∆ =

∂
. This is sufficient to show that the linear combination in Equation 

(2) also satisfies the wave PDE. 
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Since 1u  is a function of only x and y, it follows that 
2

1
2 0u

t
∂

=
∂

. Therefore, 

2 2 2
1 2 2

2 2 2tt
u u uu
t t t

∂ ∂ ∂
= + =
∂ ∂ ∂

. To see that u satisfies the governing PDE, observe that  

( )1 2 1 2
2 2

2 2
2 20 tt

u u u u u
u u u
t t

∆ = ∆ + = ∆ + ∆

∂ ∂
= + = =

∂ ∂
                   

(4) 

4.2. An Inconsistent Initial Condition 

Now suppose ( ) ( ), , 0 ,u x y f x y≠  on Γ . When the boundary and initial con- 
ditions are only specified at a discrete number of points, this case is equivalent to 
saying that there exists a point ( ),i ix y  at which ( ), , 0i iu x y  is specified, but 
( ) ( )1, , 0 ,i i i iu x y u x y≠ . In this case, the initial condition is not equal on the 

boundary to the global boundary conditions, so the initial condition is said to be 
inconsistent. Since the initial condition of the global problem is inconsistent 
with the boundary conditions, the difference between the initial condition of the 
global problem and the CVBEM approximation of the steady-state solution 
would not be approximately zero on the boundary. Thus, use of the two-dimen- 
sional Fourier sine series, as done in Section 4.1, to approximate the initial 
condition of the time-dependent component would not be appropriate since the 
boundary conditions of this problem would not be approximately zero on the 
boundary. Problems with inconsistent initial conditions can still be modeled 
using this procedure, however, it is noted that they outcome of this procedure 
will not satisfy the initial condition on ∂Ω . 

5. Global Solution 

The global solution is achieved by summing the solutions to the steady-state and 
time-dependent problems. Since both of the approximation functions from the 
two problems are continuous throughout the two-dimensional plane (except for 
at any branch points or cuts associated with the basis functions used in the 
Complex Variable Boundary Element Method formulation), their sum, which 
represents the solution to the global problem is also continuous throughout the 
plane except for at any point where the CVBEM basis functions are not analytic. 
Consequently, computational results can be developed continuously throughout 
the two-dimensional plane except where the CVBEM basis functions have 
branch points or branch cuts. 

5.1. Satisfying the Boundary Conditions 

Substituting k k kc iα β= +  and ( ) ( ) ( )= , ,k k kg z x y i x yλ µ+  in Equation (1), 
we can derive a CVBEM approximation function of the form  

( ) ( ) ( ) ( ) ( )( )
1 1

ˆ , , .
p p

k k k k k k
k k

z c g z i x y i x yω α β λ µ
= =

= = + +∑ ∑
        

(5) 

The real part, 1̂u , of the CVBEM approximation function, which represents 
the potential function, is  
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )

1 1 1 1 1 2 2 2 2

1

ˆ , , , , ,

, ,

, , .

p p p p

p

k k k k
k

u x y x y x y x y x y

x y x y

x y x y

α λ β µ α λ β µ

α λ β µ

α λ β µ
=

= − + −

+ + −

= −∑



       

(6) 

The boundary conditions for the steady-state problem are Dirichlet and are 
specified as the same boundary conditions as the global initial-BVP. This implies 
a system of 2p equations given by 

( ) ( ) ( )( ) ( )1 1
1

ˆ , , , ,
p

i i k k i i k k i i i i
k

u x y x y x y u x yα λ β µ
=

= − =∑
        

(7) 

for 1, 2, , 2i p=  . Equivalently, in matrix form 

[ ]{ } { }1 1 ,A =c u                         (8) 

where { }1u  is a vector containing the specified potential boundary conditions 
from the global BVP, [ ]1A  is the matrix obtained from evaluating the CVBEM 
basis functions at each of the collocation points, and { }c  is a vector containing 
the unknown coefficients 1 1, , , ,p pα β α β

. Once the coefficients are determined 
by solving the linear system in (8), they can be substituted back into Equation 
(6), which is the CVBEM approximation of the solution to the steady-state 
problem. The resulting function can be evaluated throughout the two-dimen- 
sional plane wherever the CVBEM basis functions are analytic. 

In both two-dimensional and higher-dimensional problems, the use of a ran- 
dom number generator is sometimes employed to locate the collocation points 
approximately uniformly spatially on the problem boundary. However, they may 
also be located exactly uniformly spatially on the problem boundary, and the 
specific problem may dictate which approach is desirable. 

Computational issues may arise depending on the choice of basis functions 
used in the CVBEM approximation function. For example, basis functions in- 
volving branch cuts, such as complex logarithms or reciprocals of complex 
monomials, among other types of functions, include considerations of positioning 
branch cuts to lie outside of the problem domain and boundary in order to 
enlarge the area of applicability of the CVBEM approximation. Procedures for 
handling these branch cuts have been well-documented in several papers and 
books including, [3] and the most recent book [4] and so are not repeated here. 

5.2. Satisfying the Initial Condition  

Since the exact solution to the steady-state problem is unknown, we need to use 
the CVBEM approximation of 1u  to determine the initial condition for the 
time-dependent problem. Thus, the initial condition of the time-dependent pro- 
blem is given by ( ) ( ) ( )2 1̂, , 0 , ,u x y g x y u x y= − . The coefficients ,m na  are se- 
lected so as to satisfy  

( ) ( ) ( )2 , 1
1 1 1 2

π πˆ ˆ, , 0 sin sin , ,
M N

i i
i i m n i i i i

m n

m x n yu x y a g x y u x y
L L= =

   
= = −   

   
∑∑

   
(9) 

at each of the initial condition collocation points. Equivalently, in matrix form  
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[ ]{ } { }2 2 ,A =a u                        (10) 

where { }2u  is a vector containing the specified initial conditions from the 
time-dependent problem, [ ]2A  is the mn mn×  matrix obtained from eva-  

luating 
1 2

π πsin sinm x n y
L L

   
   
   

 at each of the collocation points, and { }a  is a 

vector containing the unknown coefficients ,m na . 

5.3. Satisfying the Derivative of the Initial Condition 

The derivative of the initial condition is specified as ( ),h x y . At 0t = , the time 
derivative of the finite series approximation of the time-dependent component is  

( )
2 2

2 , 2 2
1 1 1 21 2

π πˆ , , 0 π sin sin .
M N

m n
m n

m n m x n yu x y b
t L LL L= =
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 = +     ∂     

∑∑
    

(11) 

The coefficients ,m nb  are selected so as to satisfy  

( ) ( )
2 2

2 , 2 2
1 1 1 21 2

π πˆ , , 0 π sin sin , .
M N

i i
i i m n i i

m n

m x n ym nu x y b h x y
t L LL L= =

     ∂
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(12) 

at each of the collocation points for the derivative of the initial condition. 
Equivalently, in matrix form  

[ ]{ } { }3 ,A =b h                         (13) 

where { }h  is a vector containing the value of the derivative of the initial 
condition at each of the collocation points, [ ]3A  is the mn mn×  matrix  

obtained from evaluating the expression 
2 2

2 2
1 21 2

π ππ sin sinm n m x n y
L LL L

     
 +          

 at 

each of the collocation points, and { }b  is a vector containing the unknown 
coefficients ,m nb . 

The coefficients of the CVBEM approximation function are determined so 
that the CVBEM outcome approximately satisfies the specified Dirichlet boun- 
dary conditions of the global initial-boundary value problem. Further, the boun- 
dary conditions for the time-dependent component are identically zero on the 
boundary due to the use of the two-dimensional Fourier sine series for the 
spatial variables. Consequently, upon summing the approximate solutions from 
the two components, the value of the global approximation function on the 
boundary is exactly the value of the CVBEM outcome on on the boundary, 
which approximately satisfies the global boundary conditions. 

The initial condition of the time-dependent component is calculated as the 
difference between the initial condition of the global initial-boundary value 
problem and the CVBEM approximation of the steady-state solution. Therefore, 
upon superposing the approximate solutions of the steady-state and time- 
dependent problems, the global initial condition is approximately satisfied. As 
indicated by the generalized Fourier series in Equation (2), there are two sets of 
coefficients to be determined; namely, the ,m na  and ,m nb  coefficients. When 
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evaluated at 0t = , the only terms of the time-dependent approximation func- 
tion that are nonzero are those corresponding to the ,m na  coefficients. Hence, 
the ,m na  coefficients are determined so as to approximately satisfy the calcu- 
lated initial condition of the time-dependent component. Further, when evalu- 
ated at 0t = , the only terms of the time derivative of the time-dependent appro- 
ximation function that are nonzero are those corresponding to the ,m nb  co- 
efficients. Thus, the ,m nb  coefficients are determined so as to approximately 
satisfy the specified derivative of the initial condition. 

6. Limitations 

To ensure that the boundary conditions of the global problem are satisfied, the 
steady-state solution is fitted to the global boundary conditions. Since the global 
boundary conditions are satisfied exclusively by the steady-state solution, it is 
necessary to prescribe homogeneous boundary conditions for the time-depen- 
dent problem. Therefore, only sine functions are used in the Fourier series 
approximation of the time-dependent problem. By using the Fourier sine series, 
the solution to the time-dependent problem is zero along the boundary of a 
rectangular domain of dimensions 1 2L L× . However, this is a property of the 
rectangular geometry of the domain and would not necessarily be true for other 
geometries. Thus, this technique is currently generally limited to problems with 
rectangular domain geometries or unions of rectangular subdomains. Additionally, 
this methodology is limited in that it will not satisfy the initial condition on the 
boundary if ( ) ( ), ,g x y h x y≠  for all ( ),x y ∈∂Ω  since the boundary con- 
ditions for the transient component would no longer be homogeneous, which 
means that the two-dimensional Fourier sine series would not satisfy the 
boundary conditions of the transient problem. 

7. Conclusions 

The Complex Variable Boundary Element Method approach to solving partial 
differential equations is well-documented in other publications and the reader is 
referred to [4] for details regarding the mathematical foundations of the mo- 
deling approach. In this work, the Complex Variable Boundary Element Method 
is extended to modeling applications of the two-dimensional wave equations. 
The technique is based on resolving the global problem into two components, 
namely steady-state and time-dependent components, that are modeled sepa- 
rately. The solutions to each component are then summed, which yields a func- 
tion that satisfies the strong formulation of the wave PDE and approximately 
satisfies the boundary and initial conditions. 

The steady-state component of the problem is solved by application of the 
CVBEM, and the time-dependent component of the problem is modeled by a 
truncated series of functions that would be used to solve the PDE analytically. 
The steady-state solution is fitted so as to satisfy the boundary conditions of the 
global problem. The boundary conditions of the time-dependent problem are 
specified to be zero continuously so that when the solutions to the steady-state 
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and time-dependent components are added together, the value of the global 
solution at each boundary collocation point is as specified by the boundary con- 
ditions of the global problem. Although the current work focuses on the wave 
equation, the modeling approach presented applies to other PDE formulations as 
well as to problems in higher dimensions. 

An alternative to the CVBEM is the recently-developed strong-form colloca- 
tion method known as the Singular Boundary Method (SBM), which uses a 
linear combination of the fundamental solution of the governing partial dif- 
ferential equation to approximate the field variables. In that sense, the SBM is a 
coupling of the boundary element method and the method of fundamental solu- 
tions. The SBM can easily be applied to problems with complex geometries and 
can be extended to model problems in three spatial dimensions. The reader is 
referred to [14] [15] [16] for more details. 
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