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ABSTRACT 

A new mathematical model regarding the growth 
process of an organism is proposed, based on 
the role of surplus power (i.e. power intake mi-
nus metabolic cost) and having an allometric 
dependence on mass. Considering its use in 
growth, a differential equation has been formed, 
similar to the von Bertalanffy growth function 
(VBGF). The time dependence of mass and 
growth rate, obtained from this equation, has 
been shown graphically to illustrate the roles 
played by scaling exponents and other parame-
ters. Concepts of optimum mass, saturation 
mass and the mass corresponding to the high-
est growth rate have been discussed under the 
proposed theoretical framework. Information re- 
garding the dependence of effective growth du-
ration on various parameters has been found 
graphically. The time of occurrence of the high-
est growth rate and its dependence on various 
parameters have been explored graphically. A 
new parameter (ρ) has been defined, which de-
termines the availability of surplus power at 
different stages of the growth process of an or-
ganism. Depending on its value, there can be 
three distinctly different modes of growth phe-
nomenon, reflected in the change of surplus 
power with time. The variations of growth and 
reproduction efficiencies with time and mass 
have been shown for different values of the 
scaling exponent. The limitation regarding the 
practical measurement of growth rate has been 
discussed using the present model. Some as-
pects of length-biomass allometry have been 
explored theoretically and the results have been 
depicted graphically. 

Keywords: Allometric Scaling in biology; Von 
Bertalanffy Growth Function; Biological Growth 
Model; Growth & Reproduction Efficiency; 
Length-Biomass Allometry; Metabolism 

1. INTRODUCTION 

On the basis of experimental evidence as well as theo-
retical formulations it has already been established that 
the rates of energy intake and energy loss of a living or-
ganism have power-law (like by ax ) dependence on 
the mass of the organism [1-5]. Therefore, one can rep-
resent the rate of energy intake  1P  and rate of energy 
loss  2P  by 1

1C m  and 2
2C m  respectively; where 

1C  and 2C  are the constants of proportionality, and 1  
and 2  are the corresponding allometric scaling pa-
rameters. 

The difference between 1P  and 2P  is known as the 
rate of production of surplus energy  1 2SE P P   of 
the organism which is spent mainly for growth and re-
production processes [6-8]. One can express this surplus 
energy production rate or surplus power  SE  as 

1 2
1 2sE C m C m   .        (1) 

Eq.1 can also be derived from the theory of universal 
phenomenological growth that may be described by a 
simple law which is expressed as  

     d dY t t t Y t .          (2) 

Here,  t  is a time dependent quantity which re- 
presents the specific growth rate of a given variable 
 Y t . From Eq.2, different types of growth model can 

be derived. The “Class U1” solution of Eq.2, as de-
scribed by Castorina et al. [9], gives Gompertz law [10] 
which is largely applied to describe economical and bio-
logical growth phenomena like tumor growth pattern etc 
[11,12]. Castorina et al. described Eq.1 as the “Class 
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U2” solution of Eq.2 [9]. 

Over the past few decades, several efforts have been 
made to determine the value of two scaling parameters 

1  and 2 . In the study of von Bertalanffy, an assump-
tion of 2 = 1 was specified [13,14]. Some studies re-
veal that the metabolic cost is directly proportional to the 
mass of an organism, implying 2  = 1 [4,7]. Debates 
are still going on over the value of 1 . People attempted 
to explain the value of 1  with the help of either meta-
bolic theory of ecology or dynamic energy budget theory. 
The metabolic theory of ecology is based on the idea that 
the transport of resources takes place through a frac-
tal-like branching network [4,15]. It predicts 1  to be 
3 4 , supported by different experimental observations. 
The theory of dynamic energy budgets is based on the 
concept that the rates of basic physiological processes 
are proportional to body surface area, implying 

1 2 3   [16,17]. A. R. P. Rau offered an explanation 
for the values of scaling parameters, on the basis of 
Poiseuille’s law of fluid flow [18]. The chemiosmotic 
theory of energy transduction, combined with the method 
of quantum statistics, is also applied to explain the varia-
tion in scaling exponents [19]. Many such investigations 
show that 1 2 3  . In some cases, it may be equal to 
3 4 . Vogel showed that biological processes are con-
trolled by different physical processes like convection, 
diffusion etc. and the process of mass transport is differ-
ent for different molecules in an organism [20]. da Silva 
et al. explained the variation of 1  with the help of 
physical processes like diffusion, convection and anoma- 
lous diffusion for different organisms [21,22]. According 
to the study of Economos [23], the geometry of body 
surface, which is different for different organisms, is 
related with energy intake of the organism. da Silva et al. 
[22] compared the exponent of basal metabolic rates for 
different organisms and proposed a theoretical explana- 
tion for the different values of that exponent. So, growth 
process can be studied using different values of these 
scaling exponents.  

It has been found through some research [5-7] that, at 
the initial stage of growth the surplus power  SE  in- 
creases with mass and then it decreases after reaching its 
peak value at a mass which is known as the optimum 
mass [7]. Based on this fact, we have shown in our ear- 
lier studies that 2 1   [24,25]. Thus, the scaling ex- 
ponent for metabolic cost is found to be greater than the 
exponent for energy intake. This is an important conclu- 
sion which is also found to be valid according to the 
studies of West et al. [26]. In the present article, we have 
studied the growth process theoretically, through a model 
developed by us on the basis of the relation between 
growth rate and surplus power. Using this mathematical 
model, an exhaustive analysis of some important aspects 

of growth mechanism has been made.   

2. MODEL FORMULATION 

In the present study, we have taken 2 1  , under the 
consideration that metabolic cost is proportional to the 
body volume (which is directly proportional to mass), in 
accordance with some studies [3,7,24,27]. Using this 
value, Eq.1 is expressed as 

1
1 2sE C m C m  .             (3) 

The above expression of sE  has been used in all fur-
ther calculations in the present article. Since excess en-
ergy is mainly used for growth and reproduction, these 
processes would stop if the surplus power ( sE ) ever be-
comes zero in the life of an organism [7,8]. For a certain 
value of m (say hM ) we have 0sE  , as evident from 
the functional form of sE . Using Eq.3, we get 

  11 1

1 2hM C C
 .           (4) 

Apart from the processes of growth and reproduction, 
some excess energy is always required for repair and also 
to sustain biological processes in situations like sudden 
environmental fluctuations etc. According to Kozlowski 
[6] and Sebens [7], some surplus energy ( )sE  is always 
required for a healthy survival of the organism. There-
fore, taking 0sE  , Eqs.3 and 4 yield the following 
relation 

  11 1

1 2 hm C C M
  .        (5) 

Thus, the growth process must stop before reaching 
the point where hm M . In any growth process, as 
t  , mass becomes asymptotic to a certain value (say 

aM ) where a hM M . The expression of aM , the 
highest attainable mass, has been derived later in this 
article. 

According to some studies [24,25], an organism has a 
natural tendency to attain the optimum mass ( )optM  or 
energetic optimum size (EOS), which corresponds to the 
greatest surplus power ( )sE  [8,12,21]. For sE  to be 
maximum at optm M  we must have 

1) d d 0sE m   and 2 22) d d 0sE m   at optm M . 
The first of the above conditions gives us the follow-

ing expression of optimum mass ( )optM  

  11 1

1 1 2optM C C
  .        (6A) 

Applying the second condition we get 

1 1  .               (6B) 

Substituting optm M  in Eq.3 from Eq.6A, the 
maximum surplus power ( sME ) is obtained as 

   1 1 11 1 1

1 1 1 2 2 1 1 2sME C C C C C C
      .  (7) 
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The difference between the rates of energy intake and 
energetic cost can be termed scope for growth [28] and 
energy surplus [29] depending on which energetic costs 
are included. If the costs of building gonad are included 
then this difference is truly scope for growth. If only the 
metabolic maintenance costs are included, this difference 
is an energy surplus, used mainly for growth and repro-
duction. Experimental observations suggest that the en-
ergy allocated for reproduction has an allometric de-
pendence on mass [7,21,30]. Therefore, the rate of en-
ergy allocation for reproduction  pE  can be expressed 
as 

3
3pE C m .              (8) 

where 3  is the allometric scaling exponent and 3C  is 
the proportionality constant for the rate of energy spent 
for reproduction. Both 3C  and 3  are positive quanti-
ties. In the present study, we have taken 3 1  , as pro-
posed by Sebens [7]. Using this value, Eq.8 is written as 

3pE C m              (9)  

The above expression of pE  has been used in all 
further calculations in this article. The part of the surplus 
power ( sE ) which is not used for reproduction, is mainly 
used for the growth process. Therefore, the rate of energy 
allocation for growth  gE  is given by 

1
1 2 3( )g s pE E E C m C C m         (10) 

This energy ( gE ) causes the mass to increase. There-
fore, the rate of variation of mass with time can be ex-
pressed as (with proportionality constant scaled to unity) 

1
1 2 3d d ( )gE m t C m C C m          (11) 

The above equation is similar in form to the von Ber-
talanffy growth function (VBGF), which is basically a 
descriptive mechanistic model derived for fish growth 
rate, based on a simple mass balance equation [13]. But, 
instead of two constants of proportionality, we have three 
constants of proportionality to incorporate separately the 
effects of energy intake, metabolic cost and reproduction 
cost in the growth process. 

The growth process continues as long as gE  remains 
non-zero. As the organism reaches the state of maximum 
attainable mass ( aM ), gE  becomes zero. Therefore, 
from Eq.11, we obtain 

   11 1

1 2 3,aM C C C C C
           (12) 

with m = M0 at t = 0, the solution to Eq.11 is given by 

   
 

1
1

1 1
1  

1 0

1

1 e e

           1

t tm t C C M

C

 

 


     

   
    (13) 

Using Eqs.12 and 13 can be expressed as 

      1
1 1

1 11 1  
01 e et t

am t M M
  

       . (14) 

From Eq.14 it is found that, as t  , am M . It 
means that, after a sufficiently long time, the mass be-
comes almost equal to aM . Practically, the organism 
does not appear to grow in size when its mass is very 
close to aM .  

Now using Eqs.11 and 13 one may write the growth 
rate as  

  1 1
1 1

/1
1 1 

1 0 1 0

d d

1 e e e

g

t t t

m t E

C C M C CM
    

   



        
, 

(15) 

Hence at 0t  , 1
1 0 0d dm t C M CM  . This is ac-

tually the initial growth rate and can also be obtained by 
putting 0m M  in Eq.11. We have d d 0m t   as 
t  . Thus, the growth rate never becomes exactly 
zero although no growth is practically observed after a 
certain age. After reaching the peak value, gE  de-
creases with time and, at a certain stage, it becomes too 
small to be practically measurable. From Eq.11, one can 
compute the mass (say gM ) for which gE  has its 
highest value. This mass corresponds to the fastest 
growth rate and it is expressed as 

  11 1

1 1gM C C
  .         (16) 

Hence, the highest growth rate ( gME ) is given by 

 
   1 1 11 1 1

1 1 1 1 1

at 

       

gM g gE E m M

C C C C C C
    

 

 
.   (17) 

Comparing gM  with optM  in Eq.6A, we get 

g optM M , since 3 0C  . It clearly implies that an or-
ganism attains the state of fastest growth before reaching 
the state of highest surplus power ( sE ). 

Eq.13 expresses mass as a function of time. The sur-
plus power ( sE ), being a function of mass, should also 
be a function of time. As m approaches its saturation 
value ( aM ), sE  also approaches its saturation value ( s ). 
Substituting am M  in Eq. 3 we get 

   1 1 11 1 1

1 1 2 1s C C C C C C
      .    (18) 

Depending upon the growth parameters, there can be 
three different manners in which growth process can take 
place. These three possibilities are discussed below. 

CASE 1:  
The saturation mass ( aM ) can be smaller than the op-

timum mass ( optM ). This case can be mathematically 
described as, 

 3 2 1 11a optM M C C        .   (19)  

The growth process, in this case, terminates before 
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reaching the state of optimum mass ( optM ). The satura-
tion value ( s ) of the surplus power is smaller than 

sME .  
CASE 2: 

 3 2 1 11 .a optM M C C          (20) 

In this case, we have s sME   implying that after a 
sufficiently long time, the surplus power will almost re-
main at a constant level sME . As the growth process 
terminates the surplus power supply remains constant at 
its highest possible value. Therefore, the organism con-
tinues to live with the highest possible rate of surplus 
energy production. 

CASE 3: 

 3 2 1 11 .a optM M C C             (21) 

Here the surplus energy saturates at a mass which ex-
ceeds the optimum mass. Then as like case1 we again 
have s sME  . Here, sE  initially increases with time 
and after reaching the peak value ( sME ) it decreases to 
its saturation value ( s ). 

The conditions expressed by the Eqs.19-21 can be ex-
pressed by a single relation 

 3 2 1 1 1 .C C                 (22) 

For the above three cases we have, 1,   1 and   
 0 1   respectively. 

Using Eqs.6A, 12 and 22 we define a quantity R as 

    11 1

1 11 1a optR M M


  


       (23) 

This ratio (R) is a measure of the saturation mass rela-
tive to optimum mass. Since 1 1  , we have 1R   for 

1   and 1R   for 1  . For 1  , the energy 
allocation for growth process continues at most up to the 
optimum point. Beyond that point the surplus energy is 
allocated mainly for reproduction and other purposes. 
For 1  , the energy allocation for growth continues 
beyond the optimum point and there is a gradual shift in 
energy allocation from growth process to that for repro-
duction. Using Eqs.13 and 22 we get 

 

      1
1

1 1
1  

1 1 2 1 1 01 e 1 et t

m t

C C M
    


       
, 

(24) 
where     2

2 1 2 1 11 1C C        . 
Using the above expression of time-dependent mass, 

the surplus power ( sE ) can be expressed as, 

 
 

1 1
1

1
1

1
1  

1 0

1 1
1  

2 0

1 e e

1 e e

t t
s

t t

E C A M

C A M

  

 


 


 

    

    

   (25) 

where    1 1 2 1 11A C C       and 

    2

2 1 2 1 11 1C C        . Eq.25 shows how 

sE , as a function of time, depends on the value of  .  
Let us now define a time period T  as the time re-

quired for the organism to attain a mass m  where 

am M   and 0 1  . Applying this definition and 
using Eq.14 one may obtain 

        1 1
1 1

1 01 1 ln 1 1aT C M M
 

       . 

(26) 
In Eq.26, it is evident that as 1  increases, more time 

is required to attain a certain fraction ( ) of the satura-
tion mass ( aM ). For organisms with higher values of 

1 , the growth process continues for a longer time.  
In the context of growth, one can define growth effi-

ciency  g  as the ratio of the amount of surplus en-
ergy used for growth to the total surplus energy available 
at the moment, and can be expressed as, 

  1 1
1 2 3 1 2

1 .d dg g s sE E E m t

C m C C m C m C m 

  

   
  (27) 

Since d d 0m t   as t  , we must have 0g   
as t  .  

In a similar fashion, one can define the reproduction 
efficiency  p  as the ratio of the amount of surplus 
energy used for reproduction to the total surplus energy 
available at the moment, and it can be expressed as 

 1
3 1 21p g C m C m C m     .      (28) 

As t  , 0g   and therefore 1p  . 
It is consistent with the practical observation that, as 

mass increases the proportion of energy allocation for 
growth decreases and the energy allocation for reproduc-
tion increases.  

The rate of change of growth and reproduction effi-
ciencies with respect to mass can be expressed as 

   1 1
2

1 3 1 1 2d d d d 1p gm m C C m C m C m         

(29) 
Since 1 1  , the right hand side of Eq.29 is a posi-

tive quantity. Therefore, as mass increases, p  contin-
ues to increase and g  continues to decrease. Eq.29 
suggests that, under no circumstances, d dp m  and 
d dg m  can be equal to zero. As a result one concludes 
that an organism, in its life span, never attains a mass for 
which its reproduction (or, growth) efficiency would be a 
maximum. In different organisms the growth efficiency 
seems to have a universal dependence on relative body 
mass [31,32]. Using the small amount of available data, 
Makarieva et al. [27] has concluded that there is a nega-
tive correlation between growth efficiency and metabolic 
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rate. So the conclusion, drawn from Eq.28 is in good 
agreement with the literature in this topic.  

The time taken by the organism to reach the state of 
highest growth rate can be determined by substituting 

gm M  in Eq.13 from Eq.16. This span of time, de-
noted by hT  is 

   
   

1

1 1

1 11
1 1 1 0 1

1 1 11
1 0

ln

ln 1 1

h

a

T C C C C M C C

M M



 

 

 

 

  

    
    

 (30) 

A Special Case: Length-Biomass Allometry 
In our recent study of length-biomass allometry of bi- 

dimensional seaweeds we have shown that the variation 
of length with time can be described properly in terms of 
two length parameters perpendicular to each other [33]. 
These are actually the sides of the smallest rectangle that 
can enclose the organism. This theoretical analysis was 
made in an attempt to explain the experimental findings 
of Scrosati on flat seaweeds [34]. According to this 
theoretical model, these two length parameters (say L1 
and L2 ) has a power-law relation between them. This 
relation is given by, 

 2 1L k L
 .           (31) 

Here, k is a constant of proportionality. From experi-
mental observations, an average estimate of   was 
found to be 1.119 for the organisms described in our arti-
cle [33]. These length parameters, 1L  and 2L , have 
separate allometric relations with the mass of the organ-
ism. In the present article we have explored the mass- 
time relationship. Therefore, one can now formulate the 
length-time relationship of such species. 

For the species of bi-dimensional seaweeds described 
in that article [33], an average estimate of the length- 
biomass allometry can be expressed by the following 
equations. 

0.472
1 7.811 L m .         (32A) 

  0.528
2 1 9.976  L k L k m

  .       (32B) 

The mass (m) in the above equations is a function of 
time and its variation with time is described by the Eqs. 
13 and 14 of the present study. It is a common observa- 
tion that growth does not take place identically along two 
perpendicular directions in any flat organism. From the 
above equations the rates of growth along these direc- 
tions can be expressed as 

0.528
1d d 3.687 d dL t m m t ,           (33A) 

0.472
2d d 5.267  d dL t k m m t .        (33B) 

Here, d dm t  is a function of time. Its dependence on 

time is expressed by Eq.15 of the present study. 

3. GRAPHICAL DEPICTION AND 
ANALYSIS 

Using the expressions derived in this article, we have 
illustrated various growth features graphically. 

Figure 1 shows the general nature of dependence of 
mass (m) and growth rate (dm/dt) on time. These graphs 
are based on the Eqs.13 and 15. The mass initially in-
creases rapidly with time and, after a sufficiently long 
time, it becomes asymptotic to the value of aM . The 
rate of growth (dm/dt) has a very sharp rise at the initial 
stage and, after reaching its peak value, it decreases 
slowly, becoming negligible after a sufficiently long time. 
As t  , we have am M  and d d 0m t  . This 
figure shows that the growth process never stops but it 
becomes so slow that it does not remain perceptible after 
a certain point of time (such as, at nearly t = 5 in Figure 
1). 

Figure 2 shows the variation of growth rate as a func- 
tion of mass for different values of the scaling exponent 

1 . For higher values of 1 , the growth rate is higher 
and the duration of growth process is longer. At the very 
initial stage of growth, the rise in growth rate is almost 
independent of 1 . The time required for attaining the 
peak rate is longer for higher values of 1 . After reach- 
ing the peak value, the growth rate decreases but it does 
not fall as rapidly as it rises at the initial stage. 

The graphs in Figure 3 show the change of mass of an 
organism with time for different values of the constant 

1C . As time goes on, the mass (m) becomes closer and 
 

 

Figure 1. It shows the variation of mass and growth rate as 
functions of time. Here, the mass increases with a gradually 
decreasing rate and finally it becomes asymptotic to the value 
of Ma. The rate of growth rises fast at the initial stage; reaches 
its peak value and then continues to decrease slowly. At 
t  , we have am M  and d d 0m t  . In this case the 

value of Ma is 1.953. The growth rate reaches its highest value 
at m = Mg = 0.579. 



S. Roy et al. / Natural Science 3 (2011) 802-811 

Copyright © 2011 SciRes.                                                                    OPEN ACCESS 

807

 

Figure 2. These plots show the change of the growth rate with 
mass for different values of the scaling exponent σ1. For higher 
values of σ1, the growth process continues for a longer time and 
the growth rate becomes higher. At the very initial stage of 
growth, the rise in growth rate seems to be almost independent 
of σ1. As σ1 increases, the time required for attaining the peak 
rate increases. After reaching the peak value, the growth rate 
decreases but it does not fall as rapidly as it rises at the initial 
stage. The values of Mg for these three cases are 2.370, 5.063 
and 10.486. 
 

 

Figure 3. These plots show how the mass of an organism in- 
creases with time for different values of the constant C1. The 
mass (m) approaches a saturation level (Ma) which increases 
with a rise in C1. After a certain point of time the rise in mass 
becomes so slow that practically no growth can be observed. 
The values of Ma for these three cases are 1, 3.375 and 8. 
 
closer to its saturation level (Ma) which increases with a 
rise in C1. After a long time the mass changes so slowly 
than no growth can be practically observed. The values 
of Ma for these three cases are 1, 3.375 and 8. These va- 
lues are consistent with Eq.12, according to which, Ma 
increase as the ratio 1C C  and σ1 become larger. 

The graphs in Figure 4 show the dependence of 

growth rate on time for different values of the constant 

1C . It is evident from these graphs that the time required 
for attaining the peak growth rate is independent of 1C . 
For higher values of this constant, the growth rate is 
higher at any stage of the growth process. The change in 
mass remains perceptible until dm/dt becomes negligible. 
This effective termination point of growth is found to be 
the same for the cases shown in this figure and in Figure 
3. Therefore, the effective duration of growth process is 
independent of 1C . 

Figure 5 shows the dependence of growth rate on time 
for different values of the constant C. As C increases, the 
growth rate becomes smaller and the effective duration 
of growth process becomes shorter. It is found in these 
graphs that, as C increases, the time to reach the peak 
rate becomes shorter. According to Eqs.13 and 15, as C 
increases, the value of   increases and hence the or-
ganism approaches the effective termination point faster. 

Figure 6 shows the variation of growth rate with time 
for different values of the scaling exponent 1 . For 
higher values of 1 , the effective duration of growth 
process is longer. At the very early stage of growth, an 
organism with smaller value of 1  has greater growth 
rate. Apart from this stage, organisms with higher values 
of 1  have larger growth rates in general. An organism 
with larger value of 1  takes more time in attaining the 
peak growth rate. 

The variation of surplus power with time, for different 
values of the  , is shown in Figure 7. For 1  , sE   
 

 

Figure 4. This figure shows the variation of growth rate with 
time for different values of the constant C1. For higher values 
of this constant, the growth rate becomes higher at any stage of 
the growth process. For these three cases, the growth rates at- 
tain their respective peaks at the same time. The increase in 
mass remains perceptible up to a certain point where dm/dt is 
almost zero. This effective termination point of growth is found 
to be the same for the cases shown in this figure. Thus, the 
effective duration of growth process is independent of C1. 
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Figure 5. These plots show the variation of growth rate with 
time for different values of the constant C. For higher values of 
this constant, the growth process becomes slower at any stage 
of the growth process. It is evident from the graphs that as C 
increases, the time required for attaining the peak rate becomes 
shorter. The increase in mass remains perceptible up to a cer- 
tain point where dm/dt is almost zero. For higher values of C, 
the organism approaches this effective termination point with 
greater rapidity. Thus, the effective duration of growth process 
becomes shorter for higher values of C. 
 

 

Figure 6. This figure shows the variation of growth rate with 
time for different values of the scaling exponent σ1. It is clearly 
evident from these graphs that, as σ1 increases, the effective 
duration of growth process increases. At the very early stage of 
growth, an organism with smaller value of σ1 has greater 
growth rate. Except for this very small period, growth rate is 
higher for larger values of σ1. For higher values of σ1, the or- 
ganism takes more time to attain the state of largest growth 
rate. 
 
tends to reach the highest possible surplus power ( sME ), 
implying that the organism continues to live with the 
largest supply of surplus power. For 1  , sE  initially 
increases with time, reaches the peak value at optm M  
and, beyond that point, it attains saturation at a level  

 

Figure 7. This figure shows the variation of surplus power with 
time for different values of the constant ρ. For ρ = 1 we have 
Ma = Mopt, for ρ < 1 we have Ma > Mopt and for ρ > 1 we have 
Ma < Mopt. For ρ = 1, the saturation value of Es is equal to the 
highest possible surplus power (EsM). For ρ < 1, Es initially 
increases with time, reaching its peak value (EsM) at m = Mopt 
and then decreases to saturate at a level smaller than EsM. For ρ 
> 1, the mass saturates at a level smaller than Mopt and conse- 
quently, Es saturates at a level smaller than EsM. 
 
smaller than sME . For 1  , the mass attains its satu-
ration level before reaching the value of optM  and 
therefore, sE  saturates at a level smaller than sME . 

Figure 8 shows the change of growth efficiency ( g ) 
and reproduction efficiency ( p ) with respect to the ra-
tio am M , which is actually a measure of mass relative 
to its saturation value. As the growth process proceeds 
towards completion, this ratio ( am M ) approaches unity. 
This ratio, therefore, is a measure of the degree of com-
pletion of the growth process in an organism. As growth 
continues, g  decreases from 1 to 0 and p  increases 
from 0 to 1. With a rise in mass, the utilization of surplus 
energy for reproduction increases and its allocation for 
growth decreases. 

Figure 9 show the variation of growth efficiency with 
time for different values of the constant  . At 0t  , 
the efficiency has the highest value (i.e. unity), for any 
value of  . The growth efficiency decreases with time 
and it approaches its lowest value (i.e. zero) as t  , 
for any value of  . As   increases, the growth effi-
ciency decreases faster with time. For higher values of 
 , the growth efficiency is smaller at any stage of the 
growth process. Thus, for larger values of  , the utili-
zation of surplus energy for growth is smaller. 

Figure 10 shows the variation of T  as a function of 
 , for different values of the scaling exponent 1 . For 
any value of  , T  is larger for higher values of 1 . 
Near the right edge of the above frame, a vertical line has 
been drawn to mark the point where the mass attains 
95% of its saturation level ( aM ). Near this point, the  
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Figure 8. This figure shows the variations of growth efficiency 
(εg) and reproduction efficiency (εp) with respect to the ratio 
m/Ma. As the growth process approaches termination, this ratio 
(m/Ma) approaches unity. As growth continues, εg decreases 
from 1 to 0 and εp increases from 0 to 1. With a rise in mass, 
the utilization of surplus energy for reproduction increases and 
its allocation for growth decreases. 
 

 
Figure 9. These graphs show the variation of growth efficiency 
with time for different values of the constant ρ. At t = 0, the 
efficiency has the highest value (i.e. unity), irrespective of the 
value of ρ. The growth efficiency is found to decrease with 
time and it approaches its lowest value (i.e. zero) as t   in 
all these three cases. As ρ becomes larger, the growth efficiency 
falls more rapidly with time. For higher values of ρ, the growth 
efficiency is smaller at any stage of the growth process. Thus, 
for larger values of ρ, smaller fraction of surplus energy is util-
ized of for growth. 
 
slopes of these curves become extremely high, implying 
the fact that a very long time is required for a slight 
change in mass. This vertical line almost marks the ef-
fective termination point of growth because any practical 
observation (or measurement) of growth becomes more 
and more difficult at this stage. 

Figure 11 shows the variation of the length parameters 
(L1 and L2) of a bi-dimensional organism with time. 
These plots are based on the Eqs.32A and B for L1  

 
Figure 10. This figure shows the variation of Tλ as a function 
of λ, for different values of the scaling exponent σ1. For any 
value of λ, Tλ is larger for higher values of σ1. The vertical line, 
near the right edge of the frame, mark the point where m = 0.95 
Ma. Very high slope near this point implies that practically very 
little rise in mass is observable at this stage of the growth proc-
ess. 
 

 
Figure 11. This figure shows the variation of the length pa- 
rameters (L1 and L2) of bi-dimensional organisms with time. 
One of the parameters attains the state of saturation earlier than 
the other. 
 
and L2 respectively. Here, the time dependence of mass 
(m) has been obtained from Eq.13. One of the parame-
ters attains the state of saturation earlier than the other, 
which is quite consistent with our observations.  

Figure 12 shows the rate of change of two length pa-
rameters of a bi-dimensional organism as functions of 
time. These plots are based on the Eqs.33A and B for L1 
and L2 respectively. Here, the time dependence of the 
growth rate ( d dm t ) has been obtained from Eq.15. Any 
of these rates attains a maximum value and then de-
creases to zero asymptotically. One of the rates attains 
peak value earlier and goes to zero faster than the other  
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Figure 12. This figure shows the rate of change of two length 
parameters of bi-dimensional organisms as functions of time. 
The rate attains a maximum value and then decreases to zero 
asymptotically. One of the rates attains peak value earlier and 
goes to zero faster than the other parameter. 
 
parameter. 

An important fact, regarding the constant 3C , comes 
out in this growth model. Using Eqs.6A and 11 it is 
found that, at optm M  this constant is given by 

 3 d d d d d dgC E m m m t    .   (34) 

Using Eq.34, one can determine the value of 3C  ex-
perimentally. 

4. CONCLUSIONS 

An organism must always have some surplus energy 
( sE ) for a healthy survival which involves processes like 
repair, maintenance and coping with environmental fluc- 
tuations etc. apart from growth and reproduction phe- 
nomena. Therefore, the net amount of surplus energy or 
the mass specific surplus energy may be the determining 
factors for mortality of an organism. For such quantities, 
there should be specified limit below which the survival 
of the organism is not possible and the limiting value 
may be different for different species. Generally, a part of 
surplus energy is always converted into mass, causing an 
enhancement in size of the organism. There should be an 
extensive experimental investigation to find out the func- 
tional dependence of reproduction (or, growth) efficiency 
on body mass. Through the present mathematical formu- 
lations, we have shown that biological growth process 
can take place in three possible modes, depending on the 
relationships among various parameters. Using this 
model, we have analyzed the mechanism of variation of 
length with age of a bi-dimensional organism where 
growth takes place essentially along two dimensions. The 

usefulness of this model is that, using the expressions of 

aM , gM , T , hT  it would be possible to determine 
the values of 1 , 1C , 2C  and 3C  from experimental 
observations, leading to a deeper insight into the energy 
allocation for different physiological purposes. 
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