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Abstract 
It is shown that an impulsive force acting on a particle perpendicular to its 
velocity vector cannot change its direction of motion without increasing its 
kinetic energy. If the particle’s kinetic energy is to remain unchanged, the 
impulsive force must have a component in the direction opposite to the direc-
tion of motion. This situation is also realized in the case of a continuous force 
acting perpendicular to the velocity vector of the particle, when the particle's 
motion is viewed as a sequence of infinitesimal steps. 
 

Keywords 
Work, Normal Force, Kinetic Energy, Speed 

 

1. Introduction 

According to the work-energy theorem, the power delivered to a particle by the 
net force on it is equal to the time rate of change of its kinetic energy [1] [2] [3], 

d
d
T
t
= ⋅F v                           (1) 

where F  is the net force acting on the particle. As a result, if the net force has a 
component in the direction of motion, the kinetic energy of the particle increas-
es. Conversely, if the net force has a component in the opposite direction of mo-
tion, the kinetic energy of the particle decreases. In each case, the normal com-
ponent of the net force changes the direction of motion of the particle. If the net 
force is strictly normal to the velocity vector of the particle, it only changes the 
direction of motion of the particle without affecting its kinetic energy and speed. 
To this end, it is stated that normal force does not do work [4] [5] [6]. 

While developing a computer simulation, a moving particle was successively 
impacted perpendicular to its direction of motion to generate a circular path. 
During the simulation, it was noticed that the speed of the particle increased af-
ter each impact even though the impulsive force was perpendicular to the in-
stantaneous velocity of the particle. This indicated that in this case the normal 
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force did in fact do work on the particle. Although this is not a significant dis-
covery by any scale, it warrants some discussion and should be brought to the 
attention of the computational science community. 

In this article, a fairly detailed analysis of the dynamics of a particle subjected 
to a net force acting normal to its direction of motion is presented. The case of 
an impulsive force as well as the case of a continuous force, such as the magnetic 
force on a moving charged particle, or gravitational force on a circularly orbiting 
planet or satellite, is considered. The question of the change of kinetic energy 
and speed of the particle in each case is addressed, and it is shown that unless 
one is careful enough during the simulation, the normal force can do work on 
the particle and change its kinetic energy and speed. 

To prevent the kinetic energy and speed from changing, one can always res-
cale the speed of the particle after each application of the normal force. This, 
however, is not a common practice in computational physics and, as a result, the 
kinetic energy and speed of the particle increase over time and error accumulates 
[7]. In this article, a different algorithm is suggested to avoid this problem. The 
algorithm is simple and more efficient than rescaling the speed in every step of 
the calculations.  

2. The Impulsive Force 

Let us begin by considering a particle of mass m moving with a constant velocity 
v along the x axis. At a certain time, an impulsive force F acts on the particle in 
the y direction for a short time interval tδ . The velocity of the particle after the 
action of the force is given by 

ˆ ˆt F tvi j
m m
δ δ′ = + = +

Fv v                     (2) 

which simply indicates that the speed of the particle has increased to 

2
2 F tv v v

m
δ ′ = + > 

 
                      (3) 

This difficulty seems to result from the finite duration of the time interval tδ  
over which the particle changes its direction of motion slightly, causing the force 
to gain a component in the direction of motion during this time interval. How-
ever, the problem can not be resolved even if the time interval is shrunk to zero 
and the force is reduced to a Dirac delta function. To see this, consider an im-
pulsive force given by 

( ) ( )0
ˆt p t t jδ= −F                       (4) 

where here δ  denotes the Dirac delta function, and the force acts on the par-
ticle at time 0t . In this equation, p is a constant having the units of momentum 
(as the delta function has the units of reciprocal time). The velocity of the par-
ticle after the action of the force is given by 

( )0

0
0

ˆˆ ˆ ˆd
t

t

pj pvi t t t vi j
m m

δ
+

−
′ = + − = +∫v




               (5) 
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where, again, the speed of the particle increases. The conclusion is that it is im-
possible to change the direction of motion of a particle by an impulsive force 
acting normal to its velocity vector without increasing its speed and kinetic 
energy. If the speed of the particle is to remain constant and only the direction of 
motion is to change, the impulsive force must act somewhat “backward”. To see 
this, consider a particle of mass m which is initially moving along the x axis and 
is subjected to an impulsive force that acts on it for a short time interval tδ  as 
it passes through the origin (Figure 1). The force acts at an angle α  backward 
from normal to the direction of motion as shown. This force causes the x com- 
ponent of velocity to decrease, but at the same time generates a y component. 
The velocity of the particle after the action of the force is given by 

ˆ ˆsin cosF t F tv i j
m m
δ δα α   ′ = − +   

   
v             (6) 

Now choose α  so that the speed of the particle remains constant, i.e., 
2 2

2sin cosF t F tv v
m m
δ δα α   − + =   

   
            (7) 

This gives 

sin
2
F t
mv
δα =                          (8) 

Therefore, if the particle is acted upon by an impulsive force that is not normal 
to its velocity vector, but makes a backward angle α  given by Equation (8), its 
speed and the kinetic energy remain unchanged. This force changes the direc-
tion of motion of the particle only. It is interesting to note that the new direction 
of motion makes an angle 2α  with the initial direction of motion. To see this, 
note that if we call this angle β , then from Equation (6) we have 
 

 
Figure 1. A particle of mass m moving initially along the x axis is subjected to an impul-
sive force F  that acts on it during a short time period as the particle passes through the 
origin. v  and ′v  are the velocities of the particle before and after the impact, respec-
tively. 
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cos
tan

sin

y

x

F t
v m

F tv v
m

δ α
β δ α

′
= =

′ −
                 (9) 

Substituting for F t mδ  from Equation (8), reduces Equation (9) to 

2
2sin cos sin 2tan tan 2

cos 21 2sin
α α αβ α

αα
= = =

−
           (10) 

which proves the statement. Furthermore, this result, together with Equations (2) 
and (8), reveal that the new direction of motion is the same as what it would 
have been had the force acted perpendicular to the direction of motion. 

3. The Continuous Force  

Now consider the case of a continuous force that acts on a particle perpendicular 
to its velocity vector at all times. Figure 2 shows the path of such a particle dur-
ing an infinitesimal time interval tδ  starting when the particle is at the origin. 
The x axis is chosen to coincide with the velocity vector of the particle at the be-
ginning of this time interval. The force does not need to have a constant magni-
tude, however, if we choose tδ  small enough then the magnitude of the force 
can be considered to be constant. The velocity vector of the particle at the end of 
the time interval is ′v , which makes an angle δθ  with the x axis. 

Let us use the force F  at the beginning of the infinitesimal interval to calcu-
late the speed v′  at the end of the interval (Figure 2). This gives 

ˆ ˆF tvi j
m
δ′ = +v                        (11) 

from which we obtain  
211

2
F tv v
mv
δ  ′ = +  

   
                    (12) 

 

 
Figure 2. A normal force acting on a particle during an infinitesimal time interval. The 
coordinate system is chosen so that at the beginning of the time interval the particle is 
passing through the origin with velocity in the x direction. 
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where the last equality is written because tδ  is infinitesimal and the higher- 
order terms are negligible. Since according to Equation (12), v v vδ ′= −  is 
second-order in tδ , integration over time gives a first-order increase in the 
speed of the particle [8]. On the other hand, if we use the force ′F  at the end 
of the interval to calculate v′ , we obtain 

( ) ( )sin cosˆ ˆF t F t
v i j

m m
δθ δ δθ δ   

′ = − +   
   

v            (13) 

which gives 

( )2
2 2 2 sinvF tF tv v

m m
δθ δδ ′ = + − 

 
              (14) 

However, since δθ  and tδ  are both infinitesimal quantities, we can write 

( ) ( )sin tan y

x

v F t
v mv

δδθ δθ δθ
′

= = = =
′

              (15) 

where the last equality can be obtain either from Equation (11), or from Equa-
tion (13) by neglecting the second- and higher-order terms in F t mvδ . There-
fore, Equation (14) reduces to  

211
2

F tv v
mv
δ  ′ = −  

   
                     (16) 

where again because tδ  is infinitesimal, the higher-order terms are negligible. 
In this case, integration over time gives a first-order decrease in the speed of the 
particle. Therefore, using the initial value of the force over each interval slightly 
increases the speed of the particle, whereas using the final value of the force 
slightly decreases it. 

Consider now the average of the two forces F  and ′F  over the infinitesi- 
mal interval, 

( ) ( )sin and 1 cos
2 2x y
F FF Fδθ δθ= − = +              (17) 

Using this average force, the components of the velocity at the end of the time 
interval are given by 

( ) ( )1 cossin
and

2 2x y

F tF t
v v v

m m
δθ δδθ δ +  ′ ′= − =       (18) 

from which we find  

( ) ( )
2 2

2 2
2 1 cos sin

2
F t vF tv v

mm
δ δδθ δθ′ = + + −             (19) 

Now writing 

( ) ( ) ( )
2 3 3

cos 1 , sin , tan
2! 3! 3
δθ δθ δθδθ δθ δθ δθ δθ= − = − = +    (20) 

which together give  

( ) ( )
3

sin tan
2

δθδθ δθ= −                     (21) 
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and substituting for ( )tan δθ  from Equation (15), which is also valid in this 
case as can be seen from Equation (18), reduces Equation (19) to 

2 2
2 2 2 3

2 24
F t vF tv v

mm
δ δδθ δθ′ = − +                  (22) 

Finally, substituting for δθ  from Equation (15) gives  
411

8
F tv v
mv
δ  ′ = +  

   
                      (23) 

where the terms higher than 4th order have been neglected. Since v v vδ ′= −  is 
fourth order in tδ , integration over time gives a change in the speed that is 
third-order in tδ  [8]. Consequently, the speed of the particle remains constant 
to a high order. 

It is interesting to note that the angle that the average force in the infinitesimal 
interval makes with the y axis is exactly 2δθ  (Figure 2). To see this, let us 
denote the angle between the average force and the y axis by γ . Then from Eq-
uation (17) we have  

( )
( )

sin
tan tan

1 cos 2
δθ δθγ
δθ

 = =  +  
                 (24) 

which proves the statement. Furthermore, since δθ  is infinitesimal, from Equ-
ation (15) we have 

sin
2 2

F t
mv

δθ δ  = 
 

                        (25) 

which is the same result as Equation (8) for the backward angle in the case of the 
impulsive force. It should be noted, however, that Equation (8) is exact whereas 
Equation (25) is an approximation obtained for a continuous force under the 
assumption of infinitesimal tδ . 

To sum up, the motion of the particle under a continuous force that is always 
perpendicular to its velocity vector can be viewed as consisting of a succession of 
infinitesimal steps or intervals. At the beginning of each step, the particle is acted 
upon by a force that is not perpendicular to the direction of motion but slightly 
pointing backward by a backward angle that is given by Equation (8) or (25). As 
a result of the action of this force, the speed and the kinetic energy of the particle 
remain unchanged over the interval, but the direction of motion changes by an 
angle equal to twice the backward angle. 

4. Conclusions  

It is impossible to change the direction of motion of a particle by a normal im-
pulsive force without changing its kinetic energy and speed. If the latter is to re-
main unchanged, the impulsive force must act at a backward angle from the 
normal to the direction of motion. 

This situation is also realized in the case of a continuous normal force, where 
the dynamics of the particle can be viewed as a sequence of infinitesimal steps. 
At the beginning of each step an impulsive force acts on the particle according to 
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the rule described above. This conserves the kinetic energy and speed of the par-
ticle to a high degree of accuracy and only changes its direction of motion. This 
algorithm is particularly useful when numerical calculations of dynamics of a 
particle under a continuously varying net normal force, such as a charged par-
ticle moving in a magnetic field or a particle moving under a central force field, 
are concerned. Since in all computer simulations and numerical calculations fi-
nite time intervals are involved, the above algorithm provides an efficient tool 
for achieving a high degree of constancy in the kinetic energy and speed of the 
particle. Simply using a normal force at the beginning or at the end of the finite 
intervals will result in an increase or decrease of the kinetic energy and speed of 
the particle, respectively. 

Finally, as was pointed out in the Introduction section, one can always let the 
force act perpendicular to the direction of motion of the particle, then rescale its 
speed after the action of the force. However, this process is more involved and 
results in a less efficient algorithm. The goal of this article, however, is not to just 
find a way to keep the speed and kinetic energy of the particle constant. The ob-
jective here, among other things, is to show that when a force normal to the ve-
locity of a particle acts on it in a time interval tδ , it does work on it regardless 
of how short tδ  is, unless 0tδ = . 
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