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Abstract 
In this paper, Homotopy Analysis method with Genetic Algorithm is pre-
sented and used to obtain an analytical solution for the time-dependent Em-
den-Fowler type of equations and wave-type equation with singular behavior 
at x = 0. The advantage of this single global method employed to present a re-
liable framework is utilized to overcome the singularity behavior at the point x 
= 0 for both models. The method is demonstrated for a variety of problems in 
one and higher dimensional spaces where approximate-exact solutions are 
obtained. The results obtained in all cases show the reliability and the effi-
ciency of this method. 
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1. Introduction 

In many previous works of the diffusion of heat perpendicular to the surfaces of 
parallel planes are modeled by the heat equation 

( ) ( ) ( ) ( ), , , 0 , 0 , 0,r r
x tx

x x y af x t g y h x t y x L t T r− + + = < ≤ < < >    (1) 

or equivalently 

( ) ( ) ( ), , , 0 , 0 , 0,xx x t
ry y af x t g y h x t y x L t T r
x

+ + + = < ≤ < < >     (2) 

where ( ) ( ) ( ), ,f x t g y h x t+  is the nonlinear heat source, ( ),y x t  is the tem-
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perature, and t is the dimensionless time variable. For the steady-state case, and 
for 2r = , ( ), 0h x t = , Equation (2) is the Emden-Fowler equation [1] [2] [3] 
given by 

( ) ( ) ( ) ( )0
2 0, 0 , 0 0,y y af x g y y y y
x

′′ ′ ′+ + = = =           (3) 

where ( )f x  and ( )g y  are some given functions of x and y respectively. For 
( ) 1f x =  and ( ) ng y y= , Equation (3) is the standard Lane-Emden equation 

that was used to model the thermal behavior of a spherical cloud of gas acting 
under the mutual attraction of its molecules [1] and subject to the classical laws 
of thermodynamics. For other special forms of ( )g y , the well-known Lane- 
Emden equation was used to model several phenomena in mathematical physics 
and astrophysics such as the theory of stellar structure, the thermal behavior of a 
spherical cloud of gas, isothermal gas spheres, and theory of thermionic currents 
[1] [2] [3]. A substantial amount of work has been done on this type of problems 
for various structures of ( )g y  in [1]-[7]. 

On the other hand, the wave type of equations with singular behavior is given 
by 

( ) ( ) ( ) ( ), , , 0 , 0 , 0,r r
x ttx

x x y af x t g y h x t y x L t T r− + + = < ≤ < < >    (4) 

or equivalently 

( ) ( ) ( ), , , 0 , 0 , 0,xx x tt
ry y af x t g y h x t y x L t T r
x

+ + + = < ≤ < < >     (5) 

will be examined as well, where ( ) ( ) ( ), ,f x t g y h x t+  is a nonlinear source, t is 
the dimensionless time variable, and ( ),y x t  is the displacement of the wave at 
the position x and at time t. The singularity behavior that occurs at the point 

0x =  is the main difficulty in the analysis of Equations (2) and (5). Wazwaz [8] 
used the Adomian decomposition method (ADM) to get an analytical solution 
for the time-dependent Emden-Fowler type of equations and wave-type equa-
tion with singular behavior. 

The main objective of this paper is to apply Homotopy Analysis Method 
(HAM) to obtain approximate-exact solutions for different models for the time- 
dependent Emden-Fowler type of equations and wave-type equation with singu-
lar behavior at 0x = . While the VIM [9] [10] requires the determination of La-
grange multiplier in its computational algorithm, HAM is independent of any 
such requirements, HAM handles linear and nonlinear terms in a simple and 
straightforward manner without any additional requirements. Also, in this paper 
we apply Genetic Algorithm (GA) to obtain an approximate solution of the same 
equations. 

In what follows, we give a brief review of Homotopy analysis method and Ge-
netic algorith. 

2. Analysis of the Homotopy Analysis Method 

To describe the basic ideas of the HAM, we consider the following differential 
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equation: 

( ) ( ), , ,N y x t k x t=                        (6) 

where N is a nonlinear operator, x and t denote the independent variables, 
( ),y x t  is an unknown function and ( ),k x t  is a known analytic function. For 

simplicity, we ignore all boundary or initial conditions, which can be treated in 
the similar way. By means of generalizing the traditional Homotopy method, 
Liao [11] constructs the so called zero-order deformation equation 

( ) ( ) ( ) ( ) ( )01 , ; , , ; , ,q L x t q y x t qh N x t q k x tφ φ − − = −              (7) 

where [ ]0,1q∈  is an embedding parameter, h is a nonzero auxiliary parameter, 
L is an auxiliary linear operator, ( )0 ,y x t  is an initial guess of ( ),y x t  and 
( ), ;x t qφ  is an unknown function. It is important, that one has great freedom to 

choose auxiliary objects such as h and L in HAM. Obviously, when 0q =  and 
1q =  it holds 

( ) ( ) ( ) ( )0, ;0 , , , ;1 , ,x t y x t x t y x tφ φ= =               (8) 

respectively. Thus, as q increases from 0 to 1, the solution ( ), ;x t qφ  varies from 
the initial guess ( )0 ,y x t  to the solution ( ),y x t . Expanding ( ), ;x t qφ  in 
Taylor series with respect to q, we have 

( ) ( ) ( )0
1

, ; , , ,m
m

m
x t q y x t y x t qφ

+∞

=

= +∑                 (9) 

where 

( ) ( )
0

, ;1, .
!

m

m m
q

x t q
y x t

m q
φ

=

∂
=

∂
                  (10) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and 
the auxiliary function are so properly chosen, the above series (9) converges at 

1,q =  then we have 

( ) ( ) ( )0
1

, ;1 , , ,m
m

x t y x t y x tφ
+∞

=

= +∑                  (11) 

which must be one of the solutions of the original nonlinear equation, as proved 
by Liao [11]. If 1h = − , Equation (7) becomes 

( ) ( ) ( ) ( ) ( )01 , ; , , ; , 0,q L x t q y x t q N x t q k x tφ φ − − + − =             (12) 

which is used mostly in the Homotopy perturbation method [12]. 
According to Equation (10), the governing equation can be deduced from the 

zero-order deformation Equation (7). We define the vectors 

( ) ( ) ( ){ }0 1, , , , , , .i iy x t y x t y x t=y                 (13) 

Differentiating Equation (7) m times with respect to the embedding parameter 
q and then setting 0q =  and finally dividing them by !m , we have the so- 
called mth-order deformation equation 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y             (14) 
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where 

( ) ( )
( ) ( ){ }1

1 1

0

, ; ,1 ,
1 !

m

m m m

q

N x t q k x t
R

m q

φ−

− −

=

∂ −  =
− ∂

x         (15) 

and 

0, 1,
1, 1.m

m
m

χ
≤

=  >
                      (16) 

It should be emphasized that ( ),my x t  ( )1m ≥  are governed by the linear 
Equation (14) with the linear boundary conditions that come from the original 
problem, which can be easily solved by symbolic computation softwares such as 
Maple and Mathematica. 

3. Genetic Algorithms 

Definition 1 Genetic Algorithms are search and optimization techniques based 
on Darwin’s Principle of Natural Selection. 

Definition 2 Genetic Algorithm Operators [13] [14] 
The simplest form of genetic algorithm involves three types of operators: se-

lection, crossover and mutation. 
Selection: This operator selects chromosomes in the population for reproduc-

tion. The fitter the chromosome, the more times it is likely to be selected to re-
produce. 

Crossover: This operator randomly chooses a locus and exchanges the sub-
sequences before and after that locus between two chromosomes to create two 
offspring. For example, the strings 10000100 and 11111111 could be crossed 
over after the third locus in each to produce the two offspring 10011111 and 
11100100. 

The crossover operator roughly mimics biological recombination between two 
single-chromosome (haploid) organisms. 

Mutation: This operator randomly flips some of the bits in a chromosome. 
For example, the string 00000100 might be mutated in its second position to 
yield 01000100. Mutation can occur at each bit position in a string with some 
probability, usually very small (e.g., 0.001). 

Algorithm 3 A Simple Genetic Algorithm [13] [14] 
Given a clearly defined problem to be solved and a bit string representation 

for candidate solutions, a simple GA works as follows: 
1. Start with a randomly generated population of n l-bit chromosomes (can-

didate solutions to a problem). 
2. Calculate the fitness ( ),f x t  of each chromosome x and t in the popula-

tion. 
3. Repeat the following steps until n offspring have been created: 
(a) Select a pair of parent chromosomes from the current population, the 

probability of selection being an increasing function of fitness. Selection is done 
“with replacement,” meaning that the same chromosome can be selected more 
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than once to become a parent. 
(b) With probability pc (the “crossover probability” or “crossover rate”), cross 

over the pair at randomly chosen point (chosen with uniform probability) to 
form two offspring. If no crossover takes place, form two offspring that are exact 
copies of their respective parents. (Note that here the crossover rate is defined to 
be the probability that two parents will crossover in a single point. There are also 
“multi-point crossover” versions of the GA in which the crossover rate for a pair 
of parents is the number of points at which a crossover takes place). 

(c) Mutate the two offspring at each locus with probability pm (the “mutation 
probability” or “mutation rate”), and place the resulting chromosomes in the 
new population. If n is odd, one new population member can be discarded at 
random. 

4. Replace the current population with the new population. 
5. Go to step 2. 
Also see the flow chart (Figure 1). 

4. Applications of the Method 

In this work, we examine six distinct models with singular behavior at 0x = , 
two linear time-dependent Lane-Emden type of equations, two linear models of 
wave-type equation, and two nonlinear singular models. To show the high accu-
racy of the solution results compared with the exact solution, we give the nu-
merical results applying the Genetic Algorithm (GA), HAM ( )5n = , Padé ap-
proximants (PA) of order [ ]p q , and the numerical solution with the Simpson 
rule (SIMP). Twenty points have been used in the Simpson rule. The computa-
tions associated with the examples were performed using a Maple 13 package 
with a precision of 20 dgits. 

4.1. Time-Dependent Lane-Emden Type 

Example 1. Firstly, let us consider the following linear homogeneous equation 

( )22 6 4 cos ,xx x ty y x t y y
x

+ − + − =                (17) 

subject to initial conditions 

( ) ( )sin0, e , 0, 0.t
xy t y t= =                   (18) 

To solve Equations (17)-(18) by means of the standard HAM, we choose the 
initial approximation 

( ) sin
0 , e ,ty x t =                        (19) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;2, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

            (20) 

with the property 

1
2 0,

cL c
x

 − + =  
                      (21) 
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Figure 1. Flow Chart of Genetic Algorithm. 
 
where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (17) 
suggests that we define the nonlinear operator as 

( ) ( ) ( )

( ) ( ) ( )

2

2

2

, ; , ;2, ;

, ;
6 4 cos , ; .

x t q x t q
N x t q

x xx
x t q

x t x t q
t

φ φ
φ

φ
φ

∂ ∂
= +   ∂∂

∂
− + − −

∂

       (22) 

Using the above definition, we construct the zeroth-order deformation equa-

start

Generate a population of chromosomes of size N:
x1, x2, ···, xN

Calculate the fitness of each chromosome:
f(x1), f(x2), ···, f(xN)

Is the termination
Crlterion satisfied?

Select a pair of chromosome for mating

With the crossover probability pc, exchange parts of the
two selected chromosomes and create two offspring

With the mutation probability pm, randomly change the
gene values in the two offspring chromosomes 

Place the resulting chromosomes in the new population

Is the size of the new 
population equal to N ?

Replace the current chromosome population with the new 
population 

stop

Yes

No

No

Yes
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tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y               (23) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                   (24) 

where 

( ) ( ) ( ) ( ) ( )2
1 1 1 1 1

2 6 4 cos .m m m m m mxx x t
R y y x t y y

x− − − − −= + − + − −y    (25) 

Now, the solution of the mth-order deformation Equation (23) for 1m ≥  is 

( ) ( ) ( )2 2
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y           (26) 

We now successively obtain 

( )

( ) ( )

( )

( ) ( )

4 2 sin
1

2 8 2 6 2 4 2 2 sin
2

3 12 3 10 2 3 8 sin
3

2 3 6 2 3 4 2 3 2

1, e ,
5

1 13 1 1, e ,
90 105 5 10

1 59 1 1, e
3510 11550 45 210

26 43 1 2 2
105 210 5

t

t

t

y x t hx hx

y x t h x h x h h x h h x

y x t h x h x h h x

h h x h h h x h h h x

 = − − 
 
  = + − − − +    
  = − − + −    

 + + − − − − + + 
 

sine ,t
 




 (27) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 

( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                  (28) 

Hence, the series solution when 1h = −  is 

( ) 2 4 6 8 sin1 1 1, 1 e .
2! 3! 4!

ty x t x x x x = + + + + + 
 

           (29) 

This series has the closed form as n →∞  

( ) 2 sin, e ,x ty x t +=                        (30) 

which is the exact solution of (17)-(18) compatible with ADM [8]. 
Also, this example is solved by using GA as follows: 
We’ll choose six values of x between ( )0,1  randomly, and converting them 

from the decimal format to the binary format 

1 1

0.2 0.001100110011
x t

=


 

2 2

0.3 0.010011001100
x t

=


 

3 3

0.5 0.100000000000
x t

=


 

4 4

0.6 0.100110011000
x t

=

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5 5

0.8 0.110011001100
x t

=


 

6 6

0.9 0.111001100100
x t

=


 

that is, 
 

ix  0.001100 0.010011 0.100000 0.100110 0.110011 0.111001 

it  0.110011 0.001100 0.000000 0.011000 0.011000 0.100100 

 

Now, 
 

ix  0.1875 0.2969 0.5000 0.5938 0.7969 0.8906 

it  0.7969 0.1875 0.0000 0.3750 0.1875 0.5625 

( ),i if x t  2.1177 1.3159 1.2840 2.0521 2.2738 3.7675 

( ),i ip x t  0.1653 0.1027 0.1002 0.1602 0.1775 0.2941 

 

where ( ),i if x t  is the series solution of HAM given by (29) and ( ),i ip x t =  
( )
( )6

1

,

,
i i

i ii

f x t

f x t
=∑

 is the probability of each chromosomes with 

( )6
1 , 12.8110.i ii f x t
=

=∑  

We arrange the chromosomes an ascending order and then choose less than 
four chromosomes to find the best solution 

31 31

21 21

41 41

11 11

0.100000, 0.000000
0.010011, 0.001100
0.100110, 0.011000
0.001100, 0.110011

x t
x t
x t
x t

= =
= =
= =
= =

 

In this step of GA, crossover operation (two points) is done as follows: 

1 2

32 32

22 22

42 42

12 12

2, 5
0.100000, 0.001100
0.010011, 0.000000
0.101110, 0.010000
0.000100, 0.111011

cut cut
x t
x t
x t
x t

= =
= =

= =
= =
= =

 

In the last step of GA a mutation operation (bit inverse, 3m = ) and then 
converting them from the binary format to the decimal format: 

33 33

23 23

43 43

13 13

0.101000 0.6250, 0.000100 0.0625
0.011011 0.4219, 0.001000 0.1250
0.100110 0.5938, 0.011000 0.3750
0.001100 0.1875, 0.110011 0.7969

x t
x t
x t
x t

= = = =
= = = =
= = = =
= = = =

 

The optimal solution is found after 51 generation to converge to the exact so-
lution, where 7.2959306 04x E= −  and 2.2287430 05t E= − . After execute 
the Equation (29) many times by using GA as in Table 1 we found the optimal 
solution. 
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Table 1. Optimal solution of genetic algorithm for example 1. 

x t yExact(x, t) GA HAM(n = 5) PA [6/6] SIMP 

7.296E−04 2.229E−05 1.0000228 1.0000228 1.0000228 1.0000228 1.0000228 

0.023 0.002 1.0025321 1.0023269 1.0025321 1.0025321 1.0025321 

0.029 0.031 1.0323482 1.0328346 1.0323482 1.0323482 1.0323482 

0.064 0.003 1.0071212 1.0074105 1.0071212 1.0071212 1.0071212 

0.222 0.011 1.0621379 1.0623118 1.0621379 1.0621379 1.0621379 

 
Example 2. We consider the following linear inhomogeneous equation, 

( )2 2 42 5 4 6 5 4 ,xx x ty y x y y x x
x

+ − + = + − −             (31) 

subject to initial conditions 

( ) ( )0, e , 0, 0.t
xy t y t= =                   (32) 

To solve Equations (31)-(32) by means of the standard HAM, we choose the 
initial approximation 

( )0 , e ,ty x t =                        (33) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;2, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

           (34) 

with the property 

1
2 0,

cL c
x

 − + =  
                     (35) 

where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (31) 
suggests that we define the nonlinear operator as 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
2

2

2 4

, ; , ;2, ; 5 4 , ;

, ;
6 5 4 .

x t q x t q
N x t q x x t q

x xx
x t q

x x
t

φ φ
φ φ

φ

∂ ∂
= + − +   ∂∂
∂

− − − −
∂

    (36) 

Using the above definition, we construct the zeroth-order deformation equa-
tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y             (37) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                 (38) 

where 

( ) ( ) ( ) ( )
( ) ( )( )

2
1 1 1 1

2 4
1

2 5 4

1 6 5 4 .

m m m m mxx x

m mt

R y y x y
x

y x xχ

− − − −

−

= + − +

− − − − −

y
        (39) 

Now, the solution of the mth-order deformation Equation (37) for 1m ≥  is 
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( ) ( ) ( )2 2
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y             (40) 

We now successively obtain 

( )

( )

( )

4 2 6 4 2
1

2 8 2 6 2 4 4 2 2 2 2 10
2

2 8 2 6 2 4 2 2

1 2 1, e ,
5 21 4

1 13 1 1 4, e
90 105 10 5 1155

31 9 2 1 1 ,
1512 56 21 2 4

t

t

y x t x x h x x x h

y x t h x h x h x hx h x hx h x

h x h h x h h x h h x

   = − + + + −   
   

 = + + − − − − 
 

   − + + + + − +   
   



(41) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 

( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                   (42) 

Hence, the series solution when 1h = −  is given by 

( ) 2 2 4 6 81 1 1, 1 e noise terms.
2! 3! 4!

ty x t x x x x x = + + + + + + + 
 

    (43) 

This series has the closed form as n →∞  

( ) 22, e ,x ty x t x += +                        (44) 

which is the exact solution of the problem (31)-(32) compatible with ADM [8]. 
Notice that the noise terms that appear between various components vanish in 
the limit. 

Using GA by the same procedure as in example 1, we get the optimal solution 
is found after 51 generation to converge to the exact solution, where x = 
4.9489E−05 and 7.6780 05t E= − . After execute the Equation (43) many times 
by using GA as in Table 2 we found the optimal solution. 

4.2. Singular Wave-Type Equations 

Example 3. Now, we consider the inhomogeneous singular wave-type equation, 

( )2 3 52 5 4 12 5 4 ,xx x tty y x y y x x x
x

+ − + = + − −            (45) 

subject to initial conditions 
 
Table 2. Optimal solution of genetic algorithm for example 2. 

x t yExact(x, t) GA HAM(n = 5) PA [6/6] SIMP 

4.949E−05 7.678E−05 1.0000767 1.0000767 1.0000767 1.0000767 1.0000767 

0.000 0.085 1.0887170 1.0882976 1.0887170 1.0887170 1.0887170 

0.065 0.023 1.0318239 1.0322448 1.0323482 1.0323482 1.0323482 

0.125 0.002 1.0334062 1.0333424 1.0334062 1.0334062 1.0334062 

0.185 0.175 1.2669473 1.2667575 1.2669473 1.2669473 1.2669473 
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( ) ( )0, e , 0, 0.t
xy t y t−= =                   (46) 

To solve Equations (45)-(46) by means of the standard HAM, we choose the 
initial approximation 

( )0 , e ,ty x t −=                         (47) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;2, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

            (48) 

with the property 

1
2 0,

cL c
x

 − + =  
                      (49) 

where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (45) 
suggests that we define the nonlinear operator as 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
2

2

2
3

2

, ; , ;2, ; 5 4 , ;

, ;
12 5 4 .

x t q x t q
N x t q x x t q

x xx
x t q

x x x
t

φ φ
φ φ

φ

∂ ∂
= + − +   ∂∂
∂

− − − −
∂

 

Using the above definition, we construct the zeroth-order deformation equa-
tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y              (50) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                  (51) 

where 

( ) ( ) ( ) ( )
( ) ( )( )

2
1 1 1 1

3 4
1

2 5 4

1 12 5 4 .

m m m m mxx x

m mtt

R y y x y
x

y x x xχ

− − − −

−

= + − +

− − − − −

y
          (52) 

Now, the solution of the mth-order deformation Equation (50) for 1m ≥  is 

( ) ( ) ( )2 2
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y            (53) 

We now successively obtain 

( )

( )

( )

4 2 7 5 3
1

2 8 2 6 2 4 4 2 2 2 2 11
2

2 9 2 7 2 5 2 3

1 1 1, e ,
5 14 6

1 13 1 1 1, e
90 105 10 5 462

43 43 1 1 1 ,
3780 336 14 3 6

t

t

y x t x x h x x x h

y x t h x h x h x hx h x hx h x

h x h h x h h x h h x

−

−

   = − + + + −   
   

 = + + − − − − 
 

   − + + + + − +   
   



(54) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 
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( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                  (55) 

Hence, the series solution when 1h = −  is given by 

( ) 3 2 4 6 81 1 1, 1 e noise terms.
2! 3! 4!

ty x t x x x x x − = + + + + + + + 
 

    (56) 

This series has the closed form as n →∞  

( ) 23, e ,x ty x t x −= +                       (57) 

which is the exact solution of the problem (45)-(46) compatible with ADM [8]. 
Notice that the noise terms that appear between various components vanish in 
the limit. 

Using GA by the same procedure as in example 1, we get the optimal solution 
is found after 51 generation to converge to the exact solution, where 0x =  and 

0.879t = . After execute the Equation (56) many times by using GA as in Table 3 
we found the optimal solution 

Example 4. We now examine the inhomogeneous wave-type equation, 

( ) ( )4 4 24 18 9 2 18 9 ,xx x tty y x x y y x x t
x

+ − + = − − +          (58) 

subject to initial conditions 

( ) ( )20, 1 , 0, 0.xy t t y t= + =                   (59) 

To solve Equations (58)-(59) by means of the standard HAM, we choose the 
initial approximation 

( ) 2
0 , 1 ,y x t t= +                         (60) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;4, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

            (61) 

with the property 

1
2 0,

3
cL c
x

 − + =  
                       (62) 

where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (58) 
suggests that we define the nonlinear operator as 
 
Table 3. Optimal solution of genetic algorithm for example 3. 

x t yExact(x, t) GA HAM(n = 5) PA [5/5] SIMP 

0.000 0.879 0.4151979 0.4150192 0.4151979 0.4151979 0.4151979 

0.011 0.872 0.4181664 0.4183309 0.4181664 0.4181664 0.4181664 

0.092 0.845 0.4339872 0.4338056 0.4339872 0.4339872 0.4339872 

0.136 0.901 0.4400918 0.4161477 0.4400918 0.4400918 0.4400918 

0.203 0.961 0.4069677 0.4071075 0.4069677 0.4069677 0.4069677 
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( ) ( ) ( ) ( ) ( )

( ) ( )

2
4

2

2
4 2

2

, ; , ;4, ; 18 9 , ;

, ;
18 9 2.

x t q x t q
N x t q x x x t q

x xx
x t q

x x t
t

φ φ
φ φ

φ

∂ ∂
= + − +   ∂∂

∂
− + + +

∂

   (63) 

Using the above definition, we construct the zeroth-order deformation equa-
tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y             (64) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                  (65) 

where 

( ) ( ) ( ) ( )
( ) ( ) ( )

4
1 1 1 1

4 2
1

4 18 9

1 18 9 2 .

m m m m mxx x

m mtt

R y y x x y
x

y x x tχ

− − − −

−

= + − +

 − + − + + 

y
        (66) 

Now, the solution of the mth-order deformation Equation (64) for 1m ≥  is 

( ) ( ) ( )4 4
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y           (67) 

We now successively obtain 

( )

( ) ( ) ( )

( )

( ) ( )

6 3
1

2 12 2 9 2 6 2 3
2

3 18 3 15 3 2 12 3 2 9
3

3 2 6 3 2 3

1, ,
6
1 1 1, ,

120 9 6
1 23 1 1 1 2,

5040 5400 90 60 6 9
1 3 2 2 ,
6

y x t hx hx

y x t h x h x h h x h h x

y x t h x h x h h x h h x

h h h x h h h x

= − −

= + + − − +

   = − − − − + +   
   

+ + − − + +



(68) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 

( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                 (69) 

Thus, the series solution when 1h = −  is given by 

( ) 2 3 6 9 121 1 1, 1 .
2! 3! 4!

y x t t x x x x = + + + + + + 
 

          (70) 

This series has the closed form as n →∞  

( ) 32, e ,xy x t t= +                       (71) 

which is the exact solution of the problem (58)-(59) compatible with ADM [8]. 
Using GA by the same procedure as in example 1, we get the optimal solution 

is found after 51 generation to converge to the exact solution, where x = 
4.6903E−06 and 1.1498 06t E= − . After execute the Equation (70) many times 
by using GA as in Table 4 we found the optimal solution 
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Table 4. Optimal solution of genetic algorithm for example 4. 

x t yExact(x, t) GA HAM(n = 5) PA [6/6] SIMP 

4.693E−06 1.150E−06 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

0.000 0.102 1.0104040 1.0103960 1.0104040 1.0104040 1.0104040 

0.058 0.035 1.0014201 1.0013941 1.0014201 1.0014201 1.0014201 

0.164 0.079 1.0106616 1.0106261 1.0106616 1.0106616 1.0106616 

0.173 0.001 1.0051921 1.0051844 1.0051921 1.0051921 1.0051921 

4.3. Nonlinear Models 

In what follows we close this analysis by examining two nonlinear time-de- 
pendent equations 

Example 5. We now consider the nonlinear time-dependent equation, 

( )2 2 2 25 24 16 e 2 e ,
y

y
xx x ty y t t x x y

x
+ + + − =            (72) 

subject to initial conditions 

( ) ( )0, 0, 0, 0.xy t y t= =                   (73) 

To solve Equations (72)-(73) by means of the standard HAM, we choose the 
initial approximation 

( )0 , 0,y x t =                         (74) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;5, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

            (75) 

with the property 

1
2 0,

4
cL c
x

 − + =  
                     (76) 

where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (72) 
suggests that we define the nonlinear operator as 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
, ;2 2

2

, ;
2 2

, ; , ;5, ; 24 16 e

, ;
2 e .

x t q

x t q

x t q x t q
N x t q t t x

x xx
x t q

x
t

φ

φ

φ φ
φ

φ

∂ ∂
= + + +   ∂∂

∂
− −

∂

   (77) 

Using the above definition, we construct the zeroth-order deformation equa-
tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y             (78) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                  (79) 

where 
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( ) ( ) ( ) ( ) ( )2 2 2
1 1 1 1 1 1

5 24 16 2 .m m m m m m mxx x t
R y y t t x A x B y

x− − − − − −= + + + − −y  (80) 

For the nonlinear terms ( ), ;
1

1
e x t q

m
m

Aφ
∞

−
=

= ∑  and 
( ), ;

2
1

1
e

x t q

m
m

B
φ ∞

−
=

= ∑ , the corres-

ponding Adomian polynomials [15] [16] are: 

0

0

0

0

0

0

1 1

2
2 2 1

3
3 3 1 2 1

2 2 4
4 4 2 1 3 1 2 1

e ,

e ,

1 e ,
2!

1 e ,
3!

1 1 1 e ,
2! 2! 4!

y

y

y

y

y

A

A y

A y y

A y y y y

A y y y y y y y

=

=

  = +     
  = + +     
      = + + + +            


        (81) 

and 

0

0

0

0

0

2
0

2
1 1

22
2 2 1

23
3 3 1 2 1

22 2 4
4 4 2 1 3 1 2 1

e ,
1 e ,
2

1 1 1 e ,
2 4 2!

1 1 1 1 e ,
2 4 8 3!

1 1 1 1 1 1 1 1 e ,
2 4 2! 4 8 2! 16 4!

y

y

y

y

y

B

B y

B y y

B y y y y

B y y y y y y y

=

=

  = +     
  = + +     
      = + + + +            


   (82) 

Now, the solution of the mth-order deformation Equation (78) for 1m ≥  is 

( ) ( ) ( )5 5
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y            (83) 

We now successively obtain 

( )

( )

( )

2 4 4 2
1

2 4 2 2 2 8 2 3 2 6
2

2 2 2 2 4 2 2

1 1, 2 ,
2 16

1 1 1 11 3,
12 64 1536 15 40

1 1 12 2 ,
2 8 16

y x t ht x hx htx

y x t h t h t h x h t h t x

h t ht h h x h h tx

= − +

   = − + + −   
   
 + + − − + + 
 



   (84) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 

( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                 (84) 

Thus, the series solution when 1h = −  is given by 
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( ) 2 2 4 3 6 4 81 1 1, 2 noise terms.
2 3 4

y x t tx t x t x t x = − − + − + + 
 

     (85) 

This series has the closed form as n →∞  

( ) ( )2, 2 ln 1 ,y x t tx= − +                    (86) 

which is the exact solution of the problem (72)-(73) compatible with ADM [8]. 
Notice that the noise terms that appear between various components vanish in 
the limit. 

Using GA by the same procedure as in example 1, we get the optimal solution 
is found after 51 generation to converge to the exact solution, where 0.470x =  
and 0.895t = . After execute the Equation (85) many times by using GA as in 
Table 5 we found the optimal solution 

Example 6. Finally, we examine the nonlinear homogeneous equation, 

( )46 14 4 ln ,xx x tty y t x y ty y y
x

+ + + + =              (87) 

subject to initial conditions 

( ) ( )0, 1, 0, 0.xy t y t= =                   (88) 

To solve Equations (87)-(88) by means of the standard HAM, we choose the 
initial approximation 

( )0 , 1,y x t =                         (89) 

and the linear operator 

( ) ( ) ( )2

2

, ; , ;6, ; ,
x t q x t q

L x t q
x xx

φ φ
φ

∂ ∂
= +   ∂∂

           (90) 

with the property 

1
2 0,

5
cL c
x

 − + =  
                    (91) 

where ic  ( )1,2i =  are constants of integration. Furthermore, Equation (87) 
suggests that we define the nonlinear operator as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
4

2

2

2

, ; , ;6, ; 14 , ;

, ;
4 , ; ln , ; .

x t q x t q
N x t q t x x t q

x xx
x t q

t x t q x t q
t

φ φ
φ φ

φ
φ φ

∂ ∂
= + + +   ∂∂

∂
+ −

∂

   (92) 

 
Table 5. Optimal solution of genetic algorithm for example 5. 

x t yExact(x, t) GA HAM(n = 5) PA [6/6] 

0.470 0.895 −0.3608152 −0.3606302 −0.3603871 −0.3608131 

0.841 0.813 −0.9085352 −0.8831179 −0.8170968 −0.9083255 

0.866 0.878 −1.0117805 −0.9155520 −0.8245006 −1.0114234 

0.946 0.728 −1.0033665 −0.9260635 −0.8376409 −1.0030238 

0.974 0.672 −0.9863539 −0.9277153 −0.8436189 −0.9860390 
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Using the above definition, we construct the zeroth-order deformation equa-
tion as in (7) and (8) and the mth-order deformation equation for 1m ≥  is 

( ) ( ) ( )1 1, , ,m m m m mL y x t y x t hRχ − −− =   y             (93) 

with the initial conditions 

( ) ( ) ( )0, 0, 0, 0m m x
y t y t= =                  (94) 

where 

( ) ( ) ( ) ( ) ( )4
1 1 1 1 1 1

6 14 4 .m m m m m m mxx x tt
R y y t x y tA y

x− − − − − −= + + + + −y   (95) 

For the nonlinear term ( ) ( ) 1
1

, ; ln , ; m
m

x t q x t q Aφ φ
∞

−
=

= ∑ , the corresponding 

Adomian polynomials [15] [16] are: 

( )

( )

( )

( )

0 0 0

1 0 1

2
2 0 2 1

0

3
3 0 3 1 2 12

0 0

2 2 4
4 0 4 2 1 3 1 2 12 3

0 0 0

ln ,
1 ln ,

1 11 ln ,
2!

1 1 11 ln ,
3!

1 1 1 1 2 11 ln ,
2! 2! 4!

A y y
A y y

A y y y
y

A y y y y y
y y

A y y y y y y y y
y y y

=

= +

 = + +  
 

 = + + −  
 

     = + + + − +     
     



  (96) 

Now, the solution of the mth-order deformation Equation (93) for 1m ≥  is 

( ) ( ) ( )6 6
1 10 0

, , .
x x

m m m m my x t y x t h x x Rχ −
− −= + ∫ ∫ y            (97) 

We now successively obtain 

( )

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

6 2
1

2 12 2 8 2 6 2 2 4 2 2
2

3 18 3 14 3 2 12
3

3 2 10 3 2 8 3 3 2 6

3 2 2 4 3 2 2

1, ,
66

1 7 1 1, ,
13464 572 66 2

1 965 1,
5574096 18290844 6732

67 7 1 11 2
12870 286 66

2 ,

y x t hx htx

y x t h x h tx h h x h t x h h tx

y x t h x h tx h h x

h t x h h tx h t h h x

h h t x h h h tx

= +

= + + + + + +

= + + +

+ + + + + +

+ + + + +



(98) 

and so on, in this manner the rest of the iterations can be obtained. Thus, the 
approximate solution in a series form is given by 

( ) ( ) ( )0
1

, , , ,m
m

y x t y x t y x t
+∞

=

= +∑                  (99) 

Thus, the series solution when 1h = −  is given by 

( ) 2 2 4 3 6 4 81 1 1, 1 .
2! 3! 4!

y x t tx t x t x t x= − + − + +          (100) 
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Table 6. Optimal solution of genetic algorithm for example 6. 

x t yExact(x, t) GA HAM(n = 5) PA [6/6] 

0.270 0.935 0.8117150 0.8116540 0.8117157 0.8117155 

0.478 0.913 1.0025321 1.0023269 1.0025321 1.0025321 

0.855 0.954 0.4978791 0.4974576 0.4983086 0.4979100 

0.903 0.973 0.4523075 0.4521125 0.4532268 0.4522629 

0.981 0.938 0.4054755 0.4052946 0.4069536 0.4057609 

 
This series has the closed form as n →∞  

( ) 2
, e ,txy x t −=                        (101) 

which is the exact solution of the problem (87)-(88) compatible with ADM [8]. 
Using GA by the same procedure as in example 1, we get the optimal solution 

is found after 51 generation to converge to the exact solution, where 0.270x =  
and 0.935t = . After execute the Equation (100) many times by using GA as in 
Table 6 we found the optimal solution. 

5. Conclusions 

To our best knowledge, this is the first result on the application of the HAM with 
GA to solve models of the time-dependent Emden-Fowler type of equations and 
wave-type equation with singular behaviors. The HAM with GA has been suc-
cessfully applied to solve models of the time-dependent Emden-Fowler type of 
equations and wave-type equation with singular behaviors. The HAM with GA 
has worked effectively to handle these models giving it a wider applicability. The 
proposed scheme of HAM has been applied directly without any need for trans-
formation formulae or restrictive assumptions. The solution process of HAM is 
compatible with those methods in the literature providing analytical approxima-
tion such as ADM. 

The approach of HAM with GA has been tested by employing the method to 
obtain approximate-exact solutions of six examples. The results obtained in all 
cases demonstrate the reliability and the efficiency of this method. 

Acknowledgements 

We would like to thank the referees for their careful review of our manuscript. 

References 
[1] Davis, H.T. (1962) Introduction to Nonlinear Differential and Integral Equations. 

Dover Publications, New York. 

[2] Chandrasekhar, S. (1967) Introduction to the Study of Stellar Structure. Dover Pub-
lications, New York. 

[3] Richardson, O.U. (1921) The Emission of Electricity from Hot Bodies. London. 

[4] Adomian, G., Rach, R. and Shawagfeh, N.T. (1995) On the Analytic Solution of 
Lane-Emden Equation, Found. Physics Letters, 8, 161-181.  

710 



W. Al-Hayani et al. 
 

https://doi.org/10.1007/BF02187585 

[5] Shawagfeh, N.T. (1993) Nonperturbative Approximate Solution for Lane-Emden 
Equation. Journal of Mathematical Physics, 34, 4364-4369.  
https://doi.org/10.1063/1.530005 

[6] Wazwaz, A.M. (2001) A New Method for Solving Differential Equations of the 
Lane-Emden Type. Applied Mathematics and Computation, 118, 287-310. 

[7] Wazwaz, A.M. (2005) Adomian Decomposition Method for a Reliable Treatment of 
the Emden-Fowler Equation. Applied Mathematics and Computation, 161, 543-560. 

[8] Wazwaz, A.M. (2005) Analytical Solution for the Time-Dependent Emden-Fowler 
Type of Equations by Adomian Decomposition Method. Applied Mathematics and 
Computation, 166, 638-651. 

[9] Yıldırım, A. and Öziş, T. (2009) Solutions of Singular IVPs of Lane-Emden Type by 
the Variational Iteration Method. Nonlinear Analysis, 70, 2480-2484. 

[10] Dehghan, M. and Shakeri, F. (2008) Approximate Solution of a Differential Equa-
tion Arising in Astrophysics Using the Variational Iteration Method. New Astron-
omy, 13, 53-59. 

[11] Liao, S.J. (2003) Beyond Perturbation: Introduction to the Homotopy Analysis Me-
thod. Chapman and Hall, CRC Press, Boca Raton.  
https://doi.org/10.1201/9780203491164 

[12] He, J.H. (2003) Homotopy Perturbation Method: A New Nonlinear Analytical 
Technique. Applied Mathematics and Computation, 135, 73-79. 

[13] Gen, M. and Cheng, R. (1997) Genetic Algorithms and Engineering Design. John 
Wiley & Sons, Hoboken. 

[14] Melanie, M. (1998) An Introduction to Genetic Algorithms. MIT Press, Cambridge. 

[15] Adomian, G. (1989) Nonlinear Stochastic Systems Theory and Applications to 
Physics. Kluwer Academic Publishers, Dordrecht.  
https://doi.org/10.1007/978-94-009-2569-4 

[16] Wazwaz, A.M. (2000) A New Algorithm for Calculating Adomian Polynomials for 
Nonlinear Operators. Applied Mathematics and Computation, 111, 53-69. 

 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact am@scirp.org 

711 

https://doi.org/10.1007/BF02187585
https://doi.org/10.1063/1.530005
https://doi.org/10.1201/9780203491164
https://doi.org/10.1007/978-94-009-2569-4
http://papersubmission.scirp.org/
mailto:am@scirp.org

	Analytical Solution for the Time-Dependent Emden-Fowler Type of Equations by Homotopy Analysis Method with Genetic Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Analysis of the Homotopy Analysis Method
	3. Genetic Algorithms
	4. Applications of the Method
	4.1. Time-Dependent Lane-Emden Type
	4.2. Singular Wave-Type Equations
	4.3. Nonlinear Models

	5. Conclusions
	Acknowledgements
	References

