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Abstract 
The purpose of this article offers different algorithms of Weibull Geometric 
(WG) distribution estimation depending on the progressive Type II censoring 
samples plan, spatially the joint confidence intervals for the parameters. The 
approximate joint confidence intervals for the parameters, the approximate 
confidence regions and percentile bootstrap intervals of confidence are dis-
cussed, and several Markov chain Monte Carlo (MCMC) techniques are also 
presented. The parts of mean square error (MSEs) and credible intervals 
lengths, the estimators of Bayes depend on non-informative implement more 
effective than the maximum likelihood estimates (MLEs) and bootstrap. Com-
paring the models, the MSEs, average confidence interval lengths of the MLEs, 
and Bayes estimators for parameters are less significant for censored models. 
 

Keywords 
Algorithms, Simulations, Point Estimation, Confidence Intervals, Bootstrap, 
Approximate Bayes Estimators, MCMC, MLEs 

 

1. Introduction 

The statistical distributions have a very important location of computer branches 
because of the great number of their particular applications. Being applied to 
images using Weibull distribution, the structured masks yield good results for 
the diagnosis of the early Alzheimer’s disease [1]. The paper [2] explores the re-
lationship between the visible content and the real image statistics sampled by 
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the integrated Weibull distribution. It presents a strong relationship between the 
brain and the parameters’ values using brain images. Moreover, the study dis-
cusses a simulated model of parameters estimated from the producer of EEG 
responses [3].  

The Weibull distributions display significant statistics—because of their large 
number of particular features, and practitioners—due to their efficiency to suit 
data from several scopes, beginning with real data in life, to observation made in 
economics, weather data, acceptance sampling, hydrology, biology etc. [4]. The 
article deals with the Weibull-geometric (WG) distribution. 

The Weibull-geometric (WG), Exponential-Poisson (EP), Weibull-Power-Se- 
ries (WPS), Complementary-Exponential-geometric (CEG), Exponential-Geo- 
metric (EG), Generalized-Exponential-Power-Series (GEPS), Exponential Wei-
bull-Poisson (EWP), and Generalized-Inverse-Weibull-Poisson (GIWP) distri-
butions are introduced and presented by Adamidis and Loukas [5], Kus [6], 
Chahkandi and Ganjali [7], Tahmasbi and Rezaei [8], Barreto [9], Morais and 
Barreto [10], Barreto and Cribari [11], Louzada et al. [12], and Cancho et al. 
[13]. Hamedani and Ahsanullah [14] studied and discussed many properties of 
WG, such as moments, hazard functions, and functions of order statistics. 

Barreto-Souza [9] suggested and studied the WG distribution. The modified 
Weibull geometric distribution introduced by composing the modified Weibull 
and geometric distributions and studied as class of lifetime distributions [15]. 
MohieEl-Din et al. [16] [17] and Elhag et al. [18] studied the confidence inter-
vals for parameters of inverse Weibull distribution based on MLE and bootstrap. 

The paper is organized as follows: the probability density function and cumu-
lative functions of the WG distribution are presented in Section 2. Section 3 pro-
vides Markov chain Monte Carlo’s algorithms. The maximum likelihood esti-
mates of the parameters of the WG distribution, the point and interval estimates 
of the parameters, as well as the approximate joint confidence region are studied 
in Section 4. The parametric bootstrap confidence intervals of parameters are 
discussed in Section 5. Bayes estimation of the model parameters and Gibbs 
sampling algorithm are provided in Section 6. Data analysis and Monte Carlo 
simulation results are presented in Section 7. Section 8 concludes the paper. 

2. WG Distributions 

It is assumed that there are n groups, independent and separated. Each group 
contains k items that are put in a lifetime test. Consider that the progressive 
censored scheme { }1 2, , , mR R R= �R  such that: 1R  represents a set of groups 
isolated and deleted from the current test, randomly, when the first failure 

1; , ,m n kX R  takes place. Similarly, 2R  represents a combination of groups and the 
group that the second failure is observed is deleted from the current test as soon 
as the second failure 2; , ,m n kX R  occurs randomly. In final mR , groups are ran-
domly deleted from the current test when there is an m-th failure ; , ,m m n kX R . 
Therefore, 1; , , 2; , , ; , , ,R R R

m n k m n k m m n kx x x< < <�  are known as progressively 1-failure 
censoring order statistics, where m is the number of the 1-failures 1 m n< ≤ . 
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The relation of the distribution function ( )F x  and probability density func-
tion ( )f x  are founded in the function of joint probability density for  

1; , , 2; , , ; , ,, , ,m n k m n k m m n kX X X�R R R . The failure times of the k n×  items from a conti-
nuous population are defined by: (see Balakrishnan and Sandhu [19]) 

( )
( ) ( ) ( )

1,2, , 1; , , 2; , , ; , ,

1 1

; , , ; , ,
1

1; , , 2; , , ; , ,

, , ,

1 ,

0 ,

i

m m n k m n k m m n k

m k Rm
i m n k i m n k

i
R R R

m n k m n k m m n k

f x x x

k f x F x

x x x

κ
+ −

=

 = − 

< < < < < ∞

∏

� �

�

R R R

R R               (1) 

and 

( ) ( ) ( )1 1 2 1 2 11 2 1 .mn n R n R R n R R R mκ −= − − − − − − − − − − −� �     (2) 

There are special cases of the progressive first-failure censoring scheme of 
Equation (1) as follows:  

1) When { }0,0, , 0R = � , the first-failure censoring scheme is obtained.  
2) When 1k = , the censoring order statistics of progressive Type II is found. 
3) When { }0,0, , 0R = �  and 1k = , sampling case in the complete form is 

obtained. 
Generally, the progressively first-failure censoring order statistics  

1; , , 2; , , ; , ,, , ,m n k m n k m m n kX X X�R R R  can be represented as a censoring order statistics of 
progressive Type II from the size of a population with function of distribution 

( )( )1 1
k

F x− − . Hence, the results of progressive type II can be expanded to 
progressive first-failure censoring order statistic easily. The testing time in the 
progressive first-failure-censoring plan is reduced with n k×  items, which 
contains only m failures. 

The probability density function (pdf) of the WG distribution is represented by 
the following equation:  

( ) ( ) ( ) ( ) ( )( )2
11 e 1 e , 0,x xf x p x p x

α αα β βαβ β − − −= − − >         (3) 

and the cumulative distribution function (cdf) of the WG distribution is shown 
by:  

( ) ( )( ) ( )( )1 e 1 e , 0,x xF x p x
α αβ β− −= − − ≥              (4) 

where 0; 0α β> >  and ( )0 1p p< <  are parameters. The parameters α  
and β  stand for the shape and scale while p stands for the mixing parameters, 
respectively.  

The WG distribution in Equation (3) produces some special models as fol-
lows: 

1) Weibull distribution, when 0p = .  
2) WG distribution tends to a distribution that is degenerated in zero, when 

1p → .  
Hence, the parameter p can be explained as a focus parameter or concentra-

tion parameter. Figure 1 and Figure 2 show the density and cumulative plots  



M. A. El-Sayed et al. 
 

104 

 
Figure 1. Shows Weibull-geometric density functions. 
 

 
Figure 2. Displays Weibull-geometric cumulative functions. 
 
respectively, with 0.9β =  and 5α =  for the various rates of p. The EG dis-
tribution related to two-parameter with decreasing failure rate is introduced by 
Adamidis and Loukas [5]. When 1=α  and 0 1p< < , the exponential geome-
tric (EG) distribution is obtained, and at 1=α  for any 1p <  the EEG distri-
bution is achieved. Therefore, the EEG distribution expands the EG distribution. 
The Weibull ( ),W α β  distribution is obtained when p goes to zero. Figure 1 
plots the WG density for some values of the vector ( ),ϕ β α=  when  

2, 0.5,0,0.5,0.9p = − − . For all values of parameters, the density tends to zero as 
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x →∞ . The density functions of WG are shown. It is noted that the WG density 
is strictly decreasing when 1 1p− ≤ <  and 1α ≤ , and is multimodal when 

1 1p− ≤ <  and 1α > . The form 1 1
0x u αβ −=  is obtained when solution is ar-

rived of the following nonlinear formulation: 

( )1e 1 1 1 1uu p u α α−+ − + = − +                   (5) 

The WG density can be unimodal when 1p < − . For instance, when 1p < −  
and 1α = , the EEG distribution is unimodal. The hazard and survival functions 
of X are: 

( ) ( ) ( ) ( )( )111 e 1th t p t p
αα βαβ β
−− −= − −               (6) 

and 

( ) ( )( ) ( )( )1

1 e 1 e 1 ,t tS t p
α αβ β −− −= − + − −               (7) 

3. Markov Chain Monte Carlo Algorithms 

Markov chain Monte Carlo (MCMC) technique has spread widely for Bayesian 
calculation in compound statistical modeling. In general, it gives a beneficial ap-
plication for real statistical modeling (Gilks et al. [20]; Gamerman, [21]).  

Markov Chain is a randomly determined and stochastic process, having a 
random probability distribution or pattern that may be resolved statistically in 
that future cases are independent of previous cases specified the current case. 

Monte Carlo chain is an emulation and simulation, therefore; it used to solve 
integrals to some extent rather than analyze performance, a procedure named 
integration of Monte Carlo. In this way, interested quantities of a distribution 
can be picked from emulated draws and charts from the distribution. Bayesian 
test needs integration over probably high-dimension of probability distributions 
to produce predictions or to yield inference and deduction about parameters of 
model. Basically, Monte Carlo integration is utilized with chains of Markov in 
MCMC techniques. The patterns of integration draw from the desired distribu-
tion, and then form pattern rates to sacrificial expectations (see Geman [22]; 
Metropolis et al. [23]; and Hastings [24]). 

3.1. MH Procedure 

The Metropolis-Hastings (MH) procedure is employed by Metropolis et al. [23]. 
It is assumed that the main target here is to design samples from the distribution
( ) ( )|f xτ τ= ℘� , where �  is the normal fixed value which may be hard to 

calculate or found. MH procedure gives a method of sampling from ( )|f xτ  
without the need to inform � . Suppose that ( ) ( )( )|b aτ τ�  is an optional transi-
tion kernel, where the probability of jumping, or moving, from existing case 

( )aτ  to ( )bτ , known as the suggestion or proposal distribution. The MH Algo-
rithm generates values sequence ( ) ( )1 2, ,τ τ �  form a Markov chain with stable 
distribution given by ( )|f xτ . 
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Metropolis-Hastings Procedure 

1) Select optional beginning value ( )0τ  for which ( )( )0 | 0f xτ > .  

2) At time t sample candidate, points to or suggests that τ ∗  from  
( )( )1| tτ τ −∗� , the proposal distribution.   

3) The approval probability is computed by: 

( )( ) ( ) ( )( )
( )( ) ( )( )

1
1

1 1

| |
, min 1, .

| |

t
t

t t

f x

f x

τ τ τ
χ τ τ

τ τ τ

−∗ ∗
− ∗

− −∗

 
 =
 
 

�

�
             (8) 

4) Produce ( )0,1 .W W∼  

5) If ( )( )1 ,tW χ τ τ− ∗≤ , the suggestion is accepted and put ( )tτ τ ∗= , else refuse 

the suggestion and put ( ) ( )1t tτ τ −=  
6) Repeat steps 2 - 5.  

 
When the proposal distribution is symmetric, so ( ) ( )| |τ η η τ=� �  for all  

possible η  and τ  then, in particular, the result is ( )( ) ( )( )1 1| |t tτ τ τ τ− −∗ ∗=� � ,  

so that the acceptance probability (5) is given by 

( )( ) ( )
( )( )

1
1

|
, min 1, .

|
t

t

f x

f x

τ
χ τ τ

τ

∗
− ∗

−

 
 =
 
 

                  (9) 

3.2. GS Procedure 

Gibbs’ sampler (GS) procedure is a straightforward branch of MCMC algo-
rithms. This procedure was implemented by Geman [22]. The significance of 
Gibbs’ procedure for area of issues in Bayesian analysis is explained by Gelfand 
and Smith [25]. The complete conditional distribution forms the transition ker-
nel, so Gibbs sampler procedure is a MCMC planner. 
 

Gibbs sampling Procedure 

1) Select optional beginning value ( ) ( ) ( )( )0 0 0
1 , , dτ τ τ= �  for which ( )( )0 0.τ℘ >  

2) By using conditional distribution ( ) ( ) ( )( )1 1 1
1 2 3| , , ,t t t

dτ τ τ τ− − −℘ � , acquire ( )
1

tτ . 

3) By using conditional distribution ( ) ( ) ( )( )1 1
2 1 3 1| , , ,t t tτ τ τ τ− −℘ � , acquire ( )

2
tτ . 

4) By using conditional distribution ( ) ( ) ( ) ( )( )1 2 3 1| , , , ,t t t t
d dτ τ τ τ τ −℘ � , acquire ( )t

dτ . 

(5) Repeat steps 2 - 4. 

 
The three unknown parameters of WG distribution will be studied through 

the various algorithms of estimation based on progressive Type-II censoring. 
The MCMC procedures are used with Bayesian technique to produce from the 
posterior distributions. 
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4. MLE of WG Distribution 

This section determines the maximum likelihood estimates (MLEs) of the WG 
distribution parameters. Let’s assume that ; , , 1, 2, ,i i m nX X i m= = �R  are the 
progressive first-failure censoring order statistics from a WG distribution, with 
censoring plane R. Using Equations (1)-(3), the function of likelihood is shown 
by: 

( ) ( ) ( ) ( ) ( )

( )( ) ( )
1 1

2

1

, , | 1 exp 1 log 1

1 exp
i

m m
nm m

i i i
i i

m R

i
i

L p x p x x R

p x

αα

α

α β κα β α β

β

= =

− +

=

 
= − × − − + 

 

 × − −  

∑ ∑

∏
 (10) 

where κ  is given in (2). The logarithm of the function of likelihood may be 
obtained as follow:  

( ) ( )

( ) ( ) ( )

( ) ( )( )( )
1 1

1

, , | log log log 1

1 log 1

2 log 1 exp .

m m

i i i
i i

m

i i
i

l p x m m n p

x x R

R p x

α

α

α β α α β

α β

β

= =

=

= + + −

+ − − +

− + − −

∑ ∑

∑

          (11) 

Compute the derivatives l
α
∂
∂

, l
β
∂
∂

 and l
pα
∂ , then put each equation equal  

to zero, the likelihood equations can be obtained in the following: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )( )

1 1

1

, , |
log log 1 log

2 log exp
0,

1 exp

m m

i i i i
i i

m i i i i

i i

l p x m m x R x x

R x x x
p

p x

α

α α

α

α β
β β β

α α

β β β

β

= =

=

∂
= + + − +

∂

+ −
− =

− −

∑ ∑

∑
    (12) 

( ) ( ) ( )

( ) ( ) ( )( )
( )( )

1

1

1

1

, , |
1

2 exp
0

1 exp

m

i i i
i

m i i i i

i i

l p x m R x x

R x x x
p

p x

α

α α

α

α β α α β
β β

β β
α

β

−

=

−

=

∂
= − +

∂

+ −
− =

− −

∑

∑
      (13) 

and 

( ) ( ) ( )( )
( )( )1

2 exp, , |
0,

1 1 exp

m i i

i i

R xl p x n
p p p x

α

α

βα β

β=

+ −∂ −
= + =

∂ − − −
∑          (14) 

The analytical solution of ˆˆ ,α β  and p̂  in Equations (12)-(14) is very diffi-
cult. Hence, some numerical techniques like Newton’s method may be used. 

From the function of log-likelihood in (11), the Fisher information matrix 
( ), ,I pα β  is obtained by taking expectation of minus Equations (12)-(14). Un-

der some mild regularity conditions, ( )ˆˆ ˆ, , pα β  are approximately normal biva-
riate with the means ( ), , pα β  and covariance matrix ( )1 , ,I pα β− . Common-
ly, in practice, ( )1 , ,I pα β−  is estimated by ( )1 ˆˆ ˆ, ,I pα β− . This procedure is 
simpler and valid to employ the approximation. 
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( ) ( ) ( )( )1
0

ˆ ˆˆ ˆˆ ˆ, , , , , , , ,p N p I pα β α β α β−→               (15) 

where ( )0 , ,I pα β  is observed as information matrix. 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

12 2 2

2

2 2 2
1

0 2

2 2 2

2
ˆˆ ˆ, ,

; , , ; , , ; , ,

; , , ; , , ; , ,ˆˆ ˆ, ,

; , , ; , , ; , ,

ˆˆ ˆ ˆ ˆvar cov , cov ,

cov

p

l x p l x p l x p
p

l x p l x p l x p
I p

p
l x p l x p l x p

p p p

p

α β

α β α β α β
α β αα

α β α β α β
α β

β α ββ

α β α β α β
α β

α α β α

−

−

 ∂ ∂ ∂
− − − ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂
 = − − −

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ − − − ∂ ∂ ∂ ∂ ∂ 

= ( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆˆ ˆ, var cov , .

ˆˆˆ ˆ ˆcov , cov , var

p

p p p

β α β β

α β

 
 
 
 
 
  

 (16) 

Confidence intervals can be calculated approximately for ,α β  and p to be 
bivariate normal distributed with the means ( ), , pα β  and covariance matrix 

( )1
0

ˆˆ ˆ, ,I pα β− . Hence, the ( )100 1 %α−  confidence intervals approximately for 
,α β  and p are 

2 2 2
11 22 33

ˆˆ ˆ,      and   z v z v p z vα α αα β± ± ±              (17) 

respectively, where the values 11v , 22v  and 33v  are on the major diagonal of 
the covariance matrix ( )1

0
ˆˆ ˆ, ,I pα β−  and 

2
zα  is the percentage of the standard  

normal distribution with right-tail probability 
2
α . 

5. Intervals of Bootstrap Confidence 

The bootstrap technique is used for resampling in statistical inference cases. It is 
usually utilized to evaluate confidence regions and it can be applied to evaluate 
bias and variance of a calibrator or estimator assumption tests. Additional scan-
ning of the parametric and nonparametric bootstrap technique is applied, see 
Davison and Hinkley [26], and Elhag et al. [27]. The parametric bootstrap tech-
nique of the two confidence intervals is suggested. The algorithm for evaluating 
the confidence intervals of parameters uses both Efron and Tibshirani proce-
dures [28], and bootstrap-t Hall procedure [20]. The Bootstrap sampling algo-
rithm for estimating the confidence intervals of parameters is illustrated below. 
 

Bootstrap Sampling Algorithm 

1) Using the normal progressively Type-II samples, ( )1 2 mx x x x= < < <� , 

obtain ˆˆ ,α β , and p̂ , 1, 2,3j = . 
2) Using the values of n and m (1 m n< ≤ ) with the same values of R, 
( )1, 2, , , 1, 2,3i m j= =� , generate random sample of sizes m from WG distri-

bution, ( )* * * *
1 2 mx x x x= < < <�  based on the procedure introduced in Bala-

krishnan and Sandhu [5]. 
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Continued 

3) Use *x  as in step 1 to calculate the bootstrap sample estimates of ˆˆ ,α β  

and p̂  indicated as *α̂ , *β̂  and *p̂ .  
4) By repeating the steps 2 and 3 N times, where N is the number of various 
bootstrap samples, put N = 1000. 
5) Sort all values of *α̂ , *β̂  and *p̂  in an ascending order to get bootstrap 

sample  [ ] [ ] [ ]( )* 1 * 2 *, , , , 1, 2,3N
k k k kϕ ϕ ϕ =�  where ( )* * *

1 2 3ˆ , , .pϕ α ϕ β ϕ∗ ∗ ∗= = =  

 
Percentile bootstrap confidence interval: Assume that ( ) ( )ˆ jG y P yϕ∗= ≤  

is the cumulative distribution function of ˆ jϕ∗ . Determine ( )1ˆ jboot G yϕ∗ −=  for 
the given y. The bootstrap confidence interval approximately with ( )100 1 %γ−  
of ˆ jϕ∗  may be obtained as follows: 

ˆ ˆ, 1 .
2 2jboot jboot
γ γϕ ϕ∗ ∗    −        

                    (18) 

First, locate the sort statistics [ ] [ ] [ ]1 2 ,N
j j jδ δ δ∗ ∗ ∗< < <�  wherever 

[ ]
[ ]

[ ]( )
ˆ ˆ

,  1, 2, , ,  1, 2,3,
ˆvar

i
i j j

k
i

j

i N j
ϕ ϕ

δ
ϕ

∗
∗

∗

−
= = =�              (19) 

and 1 2 3
ˆˆ ˆ ˆ ˆ ˆ, , .pϕ α ϕ β ϕ= = =  

Consider that ( ) ( )jH y P yδ ∗= <  is the cumulative distribution function of 

jδ
∗ . If y is given, then 

( ) ( )1ˆ ˆ ˆvar .jboot t j j H yϕ ϕ ϕ −
− = +                  (20) 

6. Bayes Estimation of the Model Parameters 

In the consideration that each of the parameters ,α β  and p are unknown, it 
may be considered that the joint prior density is a product of gamma density of 
α  and β  uniform prior of p, where 

( ) ( ) ( ) ( )1
1 exp ,  0,  , 0 ,

a
ab b a b

a
π α α α α−= − > >

Γ
         (21) 

( ) ( ) ( ) ( )1
2 exp ,  0, , 0 ,

c
cd d c d

c
π β β β β−= − > >

Γ
         (22) 

and 

( )3 1pπ =                            (23) 

By multiplying ( )1π α  by ( )2π β  and ( )3 pπ , we get the joint prior densi-
ty of ,α β  and p  computed by 

( ) ( ) ( ) ( )( ) ( )1 1, , exp ,  , 0 and 0 1 .
a c

a cb dp b d p
a c

π α β α β α β α β− −= − + > ≤ ≤
Γ Γ

 (24) 

Based on the prior of joint distribution of ,α β  and p  the posterior of joint 
density function of ,α β  and p known as the data, indicated by ( ), , |p xπ α β∗  
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can be expressed as follows: 

( ) ( ) ( )
( ) ( )

0 0 0

, , | , ,
, , | .

, , | , , d d d

L p x p
p x

L p x p p

α β π α β
π α β

α β π α β α β
∗

∞ ∞ ∞

×
=

×∫ ∫ ∫
      (25) 

Hence, using squared error loss function (SEL) of any function ( ), , pϕ α β , 
the Bayes estimate of ,α β  and p  can be expressed as 

( ) ( )( )
( ) ( ) ( )

( ) ( )

, , |

0 0 0

0 0 0

ˆ , , , ,

, , , , | , , d d d

, , | , , d d d

p xp E p

p L p x p p

L p x p p

α βϕ α β ϕ α β

ϕ α β α β π α β α β

α β π α β α β

∞ ∞ ∞

∞ ∞ ∞

=

×
=

×

∫ ∫ ∫
∫ ∫ ∫

   (26) 

In general, the value of two integrals specified by (26) cannot be acquired in a 
cleared and closed format. In this situation, the MCMC procedure is used to 
create patterns from the posterior distributions and; therefore, is calculated the 
Bayes estimator of ( ), , pϕ α β  along with the function of SEL. A wide diversity 
of MCMC techniques is available and can be troublesome to select any of them. 
A significant type of MCMC technique is Gibbs samplers and widespread Me-
tropolis within-Gibbs samplers. 

The MCMC procedure has the advantage over the MLE procedure that we can 
permanently gain an appropriate estimation of intervals of the parameters by 
building the probability intervals and using the experimental posterior distribu-
tion. 

This, sometimes, is not obtainable in MLE. The samples of MCMC can be uti-
lized to fully brief the uncertainty of posterior about the parameters ,α β  and 
p , by using a kernel estimation of the posterior distribution. 

The function of joint posterior density of ,α β  and p  may be described as  

( ) ( )

( ) ( )( ) ( ) ( )

1 1

1

1 1

, , | 1 exp log

2 log 1 exp 1 .

m
nm a m c

i
i

m m

i i i i
i i

p x p b d x

R p x R x

α

α α

π α β α β α β α

β β

∗ + − + −

=

= =


∝ − − − +


 − + − − − +    

∑

∑ ∑
 (27) 

The conditional posterior PDF’s of ,α β  and p  are shown as 

( )

( ) ( )( ) ( ) ( )

1
1

1

1 1

| , , exp log log

2 log 1 exp 1 ,

m
m a

i
i

m m

i i i i
i i
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π α β α α β

β β
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=

= =

  
∝ − +  

 
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∑
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 (28) 

( ) ( ) ( )( )
( ) ( )

1
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1 ,

m
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and 

( ) ( ) ( ) ( )( )3
1

| , , 1 exp 2 log 1 exp .
m

n
i i

i
p x p R p x απ α β β∗

=

  ∝ − − + − −    
∑     (30) 

The Metropolis-Hastings procedure [23] with normal proposal distribution 
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under the Gibbs sampler algorithm is described as follows: 
 

Gibbs/Metropolis-Hastings Sampler Algorithm 

1) Initialize 1I = , ( )0 ˆα α=  and ( )0 ˆβ β= . 

2) Based on Metropolis-Hastings, create ( )Iα  using (28) with the  
( )( )1

1,IN α σ−  proposal distribution, where 1σ  is from  

variances-covariance matrix. 

3) Based on Metropolis-Hastings, create ( )Iβ  using (29) with the 
( )( )1

2,IN β σ−  proposal distribution, where 2σ  is from  

variances-covariance matrix. 

4) Based on Metropolis-Hastings, create ( )Ip  using (30) with the  
( )( )1

3,IN p σ−  proposal distribution, where 3σ  is from  

variances-covariance matrix. 

5) Calculate ( ) ( ),I Iα β  and ( )Ip . 
6) Put 1I I= +  . 
7) Repeat steps (2 - 5) N times. 
8) We get the point estimation by Bayes MCMC of lϕ  ( 1 2,ϕ α ϕ β= =  and 

3 pϕ = ) as 

( ) ( )

1

1| ,
N

i
l l

i M
E x

N M
ϕ ϕ

= +

=
− ∑                   (31) 

where M is the number of iterations (burn-in period) before the stationary 
distribution is accomplished and posterior variance of lϕ  becomes 

( ) ( ) ( )( )2

1

1ˆ ˆ| | ,
N

i
l l l

i M
V x E x

N M
ϕ ϕ ϕ

= +

= −
− ∑             (32) 

9) The quintiles of the pattern are picked as the endpoints of the interval to 

calculate the reliable intervals of lϕ . Sort ( ) ( ) ( )1 2, , ,M M N
l l lϕ ϕ ϕ+ + �  as  

( ) ( ) ( )1 2, , ,l l l N Mϕ ϕ ϕ −� . Hence, the symmetric credible interval with  

( )100 1 %γ−  is  

( ) ( )1
2 2

,
l N M l N M
γ γϕ ϕ    − − −        

 
 
 
 

                  (33) 

7. Illustrative Example and Simulation Studies 

To explain the procedures evolved of estimation in this paper, gamma distribu-
tion for given hybrid parameters ( 1.5, 1a b= = ) is used and produce sample of  

space 10, randomly (21), the average of the sample 
10

1

1
10 i

i
α α

=

≅ ∑ , is computed  

and supposed as the real population rate of 1.5α = . So that they are obtained to  

verify ( ) bE
a

α α= ≅  with the past parameters is nearly the average of gamma  

distribution. Similarly, when the valued 2c =  and 1d =  are given, create 
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( )2π β  based on the last 2β = , from gamma distribution (22). The previously  

parameters selected to verify ( ) dE
c

β β= ≅ , are nearly the average of gamma  

distribution. A progressive Type II samples are created by employing the proce-
dures of Balakrishnan and Sandhu [19] from WG distribution with the available 
data: 0.0409, 0.0552, 0.0561, 0.0726, 0.0776, 0.0840, 0.0906, 0.1108, 0.1291, 
0.1502, 0.1513, 0.1540, 0.1624, 0.1691, 0.1930, 0.2175, 0.2188, 0.2700, 0.2709, 
0.2994, 0.3219, 0.3342, 0.4065, 0.4396, 0.5385, and under the parameters; 
( 1.5α = , 0.6p = , 2β = , 50m n= =  and  

{ }2,0, 2,0,1,0, 2,0,0,3,0,0, 2,0, 2,0,1,0,3,0,3,0, 2,0, 2R = ).  
The approximate bootstrap, Bayes estimates and MLEs are calculated of ,α β , 

and p  under these data utilizing MCMC algorithm outputs are explained in 
Table 1 and Table 2. Table 2 yield the 95%, approximate confidence intervals of 
two bootstrap, approximate credible and MLE under the MCMC samples. Stu-
dies of simulation have been executed employing Mathematica ver. 9.0 for ex-
plaining the theoretic outcomes of estimates issue. The accomplishment of the 
performing estimators of the parameters has been supposed in valued of their 
mean square error (MSE) and average (AVG), where 

( ) ( )1 2 3
1

1ˆ ˆ ,  , , ,
M

i
k k

i
p

M
ϕ ϕ ϕ α ϕ β ϕ

=

= = = =∑               (34) 

and 

( )( )2

1

1 ˆMSE .
M

i
k k

iM
ϕ ϕ

=

= −∑                     (35) 

In studies of simulation, the researchers assume that the population parameter 
rates ( )0.5, 1.5, 0.1pα β= = = , various sample values n, different effected sam-
ple size m and different censored scheme R . For computing Bayes estimators, 
without loss of generality using non-informative priors, ( 0.0001a = , 0.0001b = , 

0.0001c = , 0.0001d = ). Under function of squared error loss, the researchers 
calculate the Bayes estimations. The estimations of Bayes and 95% credible in-
tervals using 11,000 sets of MCMC are also calculated. The mean Bayes estima-  
 
Table 1. Show the parameters estimation of WG distribution. 

Procedure 1.5α =  2.0β =  0.6p =  

(.)ML 1.6178 1.9614 0.4566 

(.)Boot 1.8122 2.2451 0.7724 

(.)MCMC 1.6299 1.9787 0.4727 

 
Table 2. Show the CIs using Bootstrap, Bootstrap-t and MLE according to 500 times. 

Procedure 1.5α =  2.0β =  0.6p =  

(.)ML (1.1424, 2.0931) (1.3282, 2.5946) (0.4654, 0.9210) 

(.)Boot (1.0004, 2.3599) (1.1012, 2.5840) (0.4655, 0.8821) 

(.)Boot-t (1.1235, 2.0147) (0.8561, 2.6523) (0.1361, 0.8111) 

(.)MCMC (1.1444, 1.9440) (0.9569, 2.5709) (0.0361, 0.7768) 
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tions, MSEs, coverage percentages, and average lengths of confidence interval 
based on 500 times are reported. 

Comparatively, the MLEs with the 95% confidence intervals are calculated 
based on the observation of Fisher information matrix and two bootstrap confi-
dences. Table 3 and Table 4 report the outputs based on MLEs and the Bayes 
estimations utilizing both the Gibbs sampling algorithm and MH algorithm: 

1) From Table 3 and Table 4, in parts of MSEs and credible intervals lengths, 
the estimators of Bayes depend on non-informative implement more effective 
than the MLEs and bootstrap. 

2) From Table 3 and Table 4, comparing the models, the MSEs, average con-
fidence interval lengths of the MLEs, and Bayes estimators for parameters are less 
significant for censored models ( ), 0, , 0n m− ⋅ ⋅ ⋅ . 

3) The MSE and average confidence interval lengths nearly reduce the estima-
tors in whole situations when the performance sample rate n m  raises. 

8. Conclusion  

Several algorithms of estimation of WG distribution, based on the progressive 
Type II censored sampling plan, are discussed. The joint confidence intervals for 
the parameters are also studied. The approximate confidence regions, percentile 
bootstrap confidence intervals, as well as approximate joint confidence region  
 
Table 3. Show the various estimators average values and the identical MSEs when 

0.5, 1.5α β= =  and 0.1p = . 

m (scheme) 
MLE  Boot  ( )Bayes MCMC  

α  β  p  α  β  p  α  β  p  

15 (15, 140) 
0.6245 1.6664 0.1021 0.7241 1.4217 0.1539 0.5241 1.4399 0.1597 

0.1234 0.4736 0.0664 0.2235 0.4840 0.1021 0.1200 0.1914 0.1056 

15 (151) 
0.6754 1.6828 0.1016 0.6788 1.4027 0.1482 0.5751 1.4194 0.1533 

0.2101 0.5398 0.0614 0.2479 0.5438 0.0906 0.1101 0.4530 0.0936 

15 (140, 15) 
0.5364 1.7667 0.1001 0.5388 1.3614 0.1554 0.5064 1.3977 0.1621 

0.2351 0.7337 0.0707 0.3331 0.8748 0.1069 0.1111 0.5925 0.1105 

20 (10, 190) 
0.6200 1.6165 0.1023 0.7070 1.4327 0.1432 0.5205 1.4424 0.1471 

0.1088 0.3890 0.0623 0.1282 0.3347 0.0874 0.0988 0.3389 0.0596 

20  
(1, 0, ···, 1, 0) 

0.6151 1.6173 0.1024 0.6999 1.4234 0.1404 0.5151 1.4322 0.1439 

0.1901 0.4028 0.057 0.2220 0.4500 0.0793 0.1102 0.3543 0.0511 

20 (190, 10) 
0.6164 1.6782 0.0968 0.7162 1.4204 0.1400 0.5146 1.4375 0.1443 

0.2225 0.5091 0.0577 0.2335 0.6194 0.0813 0.1325 0.4272 0.0537 

30 (30, 290) 
0.5777 1.7881 0.0974 0.7357 1.4828 0.1297 0.5577 1.4934 0.1320 

0.1100 0.7534 0.054 0.2102 0.7296 0.0707 0.0985 0.6377 0.0518 

30 (130) 
0.6360 1.9606 0.094 0.5399 1.5464 0.1233 0.6355 1.5575 0.1254 

0.1840 1.0418 0.0447 0.1990 0.9999 0.0570 0.1000 0.8539 0.0480 

30 (290, 30) 
0.6321 2.1049 0.0950 0.6355 1.4381 0.1320 0.6333 1.4661 0.1351 

0.2114 1.5074 0.0548 0.2554 1.5381 0.0741 0.2000 1.2615 0.0758 
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Table 4. Show the coverage percentages and average confidence interval, when 
0.5, 1.5α β= =  and 0.1p = . 

m (scheme) 
MLE  Boot  ( )Bayes MCMC  

α  β  p  α  β  p  α  β  p  

15 (15, 140) 
0.90 0.923 0.87 0.892 0.933 0.86 0.9021 0.916 0.936 

0.7502 1.6373 0.2507 0.9840 1.8201 0.3503 0.7001 1.5616 0.3504 

15 (151) 
0.901 0.923 0.874 0.9011 0.963 0.894 0.910 0.952 0.952 

0.8821 1.9465 0.2358 0.9991 2.012 0.4458 0.8111 1.8784 0.3231 

15 (140, 15) 
0.880 0.908 0.886 0.874 0.918 0.896 0.891 0.933 0.939 

0.9921 2.5915 0.3571 1.001 2.5313 0.4574 0.8821 2.4269 0.3695 

20 (10, 190) 
0.911 0.945 0.883 0.933 0.947 0.890 0.924 0.943 0.936 

0.7001 1.4041 0.2222 0.8801 1.3331 0.3332 0.3001 1.3522 0.2932 

20  
(1, 0, ···, 1, 0) 

0.905 0.962 0.895 0.915 0.920 0.905 0.932 0.958 0.943 

0.7721 1.5183 0.2133 0.8723 1.6683 0.2442 0.7028 1.4749 0.2778 

20 (190, 10) 
0.891 0.963 0.857 0.901 0.980 0.889 0.901 0.968 0.965 

0.9823 1.9051 0.2237 0.9977 1.9352 0.2299 0.7023 1.8133 0.302 

30 (30, 290) 
0.933 0.943 0.855 0.906 0.955 0.921 0.935 0.945 0.946 

0.6002 2.4938 0.1935 0.6880 2.8888 0.1991 0.5001 1.4563 0.2011 

30 (130) 
0.925 0.946 0.873 0.933 0.920 0.913 0.965 0.959 0.975 

0.7522 3.4213 0.13 0.7588 1.4211 0.118 0.6122 1.4142 0.223 

30 (290, 30) 
0.901 0.945 0.855 0.921 0.944 0.952 0.933 0.956 0.956 

0.7923 1.1995 0.1061 0.8925 1.1997 0.1880 0.6982 1.0515 0.260 

 
for the parameters are expanded and developed. Some numerical examples with 
actual data set and simulated data are used to compare the proposed joint confi-
dence regions. The parts of MSEs and credible intervals lengths, the estimators 
of Bayes depend on non-informative implement more effective than the MLEs 
and bootstrap. Comparing the models, the MSEs, average confidence interval 
lengths of the MLEs, and Bayes estimators for parameters are less significant for 
censored models.  
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