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Abstract 
The Heston model is one of the most popular stochastic volatility models for 
option pricing to measure the volatility of different parameters in the financial 
market. In this work, we study the statistical analysis of Heston Model by par-
tial differential equations. The model proposed by Heston takes into account 
non-lognormal distribution of the assets returns, leverage effect and the im-
portant mean reverting property of volatility. We have assayed on the return 
distribution on the basis of different values of correlation parameter and vola-
tility, then we measure the effects of parameters ρ (correlation coefficient) and 
σ (standard deviation) for different situation such as ρ > 0, σ > 0, ρ = 0, σ = 0, ρ 
< 0, σ < 0 etc. On return distribution of Heston Model which indicates market 
condition for buyers and sellers to buy and sell options. All solvers used in 
this analysis are implemented using MATLAB codes and the simulation re-
sults are presented graphically. 
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1. Introduction 

In 1970, Fischer Black, Myron Scholes and Robert Merton derived the “Black- 
Scholes model” (sometimes known as “Black-Scholes-Merton”) which changed 
the way and impact the world of pricing derivatives using stocks as the underly-
ing asset [1] [2]. For this great contribution to study and analyze the financial 
market, Scholes and Merton were awarded the Nobel Prize in economics in 1997 
(Fischer Black died in 1995). It is then easy to understand the significant impact 
and necessity of this formula in studying the market price in the economics and 
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finance. Since then many researchers have been aptly used to describe Black and 
Scholes’ model to option pricing theory. Despite subsequent development of op-
tion theory, the original Black-Scholes (BS) formula for a European call option 
remains the most successful and widely used application. This formula is partic-
ularly useful because it relates the distribution of spot returns to the cross-sectional 
properties of option prices. 

Another great obtainment in the financial market is Heston’s stochastic vola-
tility model, which helps to resolve a shortcoming of the BS model. More pre-
cisely, we can say that models based on BS assume that the underlying volatility 
is constant over the life of the derivative and unaffected by the changes in the 
price level of the underlying security. Howsoever, these models cannot explain 
long-observed features of the implied volatility surface like as volatility smile and 
skew, which indicate that implied volatility does tend to vary with respect to 
strike price and expiry. By assuming that the volatility of the underlying price is 
a stochastic process rather than a constant, it becomes possible to model deriva-
tives more accurately. 

Now-a-days, Heston model is considered as one of the most popular stochas-
tic volatility option pricing models, which is motivated by the widespread evi-
dence that volatility is stochastic and that the distribution of risky asset returns 
has tail (s) longer than that of a normal distribution [3]. A Stochastic volatility 
model which has correlation of price and volatility innovations can address both 
empirical stylized facts. The Stochastic volatility option pricing model was de-
veloped by the contributions of many researchers. Among them, Johnson and 
Shanno [4] showed the option pricing for the changing of variance, Wiggins [5] 
presented a numerical solution of the call option valuation problem given a fair-
ly general continuous stochastic process for return volatility, Hull and White 
gave an analysis of the bias in option pricing caused by a stochastic volatility in 
[6] and the pricing of options on assets with stochastic volatilities in [7]. Scott 
[8] developed an option pricing model when the variance changes randomly. 
Stein and Stein studied the stock price distributions that arise when prices follow 
a diffusion process with a stochastically varying volatility parameter in [9] and 
Heston showed a closed solution for the options with stochastic volatility in [3]. 
Also a semi-closed form solution was derived based on characteristic function of 
the price distribution [3]. All of the authors used a mathematical model to ex-
plain the option pricing model because of mathematical modeling can play a 
significant role to discuss different types of real phenomena which lead to design 
better prediction. As a result many authors use mathematical modeling in dif-
ferent spheres. For example, Biswas et al. [10] studied the potential impacts of 
Global Climate Change in Bangladesh. Mondal and Biswas [11] developed a 
mathematical model to describe the transmission of Nipah virus between bats 
and human. Neilan and Lenhart [12] showed the application optimal control 
strategy in disease modelling. Biswas and Haque [13] discussed the necessity of 
nonlinear dynamical system to control the infectious disease. We also refer 
readers to [1] [14] [15] [16] and the references within for the study of more ap-
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plications of mathematical modeling in real life problems. 
The real issue was whether the ideal behavior was defensible in the derivation 

of this formula, Heston made several simplifying assumptions [3]. The theoreti-
cal models may tell us, ultimately the prices of financial instruments such as op-
tions are determined by the market. One of the key pricing parameters in the 
Heston model is the volatility or the expected standard deviation of the under-
lying assets assuming that asset price follows a geometric Brownian motion with 
constant volatility consequently the options on the same asset, but with different 
strike prices and maturity dates. Since this number varies across different op-
tions with the same underlying, and when plotted on a graph against the strike 
price of these options formed smile characteristic. But this does not appear ac-
ceptable as the volatility should only depend on the underlying asset. This event 
suggests that the original Black-Scholes model is not structurally able to accu-
rately describe option prices and their dynamics. Prior solution can be catego-
rized in two situations where the assumption made by Black-Scholes that volatil-
ity be constant had been relaxed in both cases. Heston models add an additional 
source of randomness to the model. On the other hand, local volatility models 
make use of a surface which describes the volatility over different maturities and 
underlying asset prices. Only key solution of local volatility is to determine local 
volatility function by calibration observed market prices. The famous Heston 
model has been intensively studied and used as the foundation for almost any 
option pricing formula in today’s financial markets. But we introduced an in-
terpolators approach called finite difference. Finite difference is a function of the 
distance of the point to the origins which are particularly useful in interpolating 
data and are widely used in both pattern recognition and surface investigation. 
This investigation helps investor to know price options more accurately. It fo-
cuses on the reconstruction of unknown functions from known data by scientific 
way. Generally finite difference method is multivariate and they may be solu-
tions of partial differential equations satisfying certain additional conditions. 
However, the reconstruction of multivariate functions from data can only be 
done if the space furnishing the trial functions and makes function sets as inter-
polators. Finite difference methods also provide interpolation of function values 
given at irregularly positioned points for any value of observation index. 

The main goal of this paper is to measure true volatility and experimental vo-
latility as well as compare them to examine the present situation of the share 
market. We want to measure the effect of different parameters of Heston model 
on return distribution and effect on implied volatility surface with strike and 
maturity as well as discuss the pricing through the Partial Differential Equation. 
This work is actually a statistical analysis of option price Heston model and a 
calculation of different error measurement to test the consistency of different 
functions. 

2. Black-Scholes Equation 

Black and Scholes [17] first proposed this equation bringing a huge change in 
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the financial market, and it was the first time when people knew how to make a 
price for an option. The model was developed under the following assumptions: 

A1. The stock price follows the stochastic process ,ds Sdt SdWµ σ= +  with 
fixed µ  and σ ; 

A2. Unrestricted short-selling of stock, with full use of short-sale proceeds; 
A3. No transactions costs and taxes; 
A4. No dividends are paid during the life of the option; 
A5. There are no riskless arbitrage opportunities: 
A6. It is based on European options; 
A7. The risk-free rate of interest r is constant and same for all maturities; 
A8. Continuous trading; 
In order to make a price for a call option on a non-dividend paying stock with 

the BS Equation, we need to know current stock price, strike price, risk-free in-
terest rate, volatility and time to maturity. It is easy to get all above inputs va-
riables in the market except the volatility. For the price of a non-dividend paying 
call option, the BS equation is described as: 

( ) ( ) ( ) ( )1 2, e r T tC S t SN d K N d− −= −  

where, 
( )

( )

2

1

ln
2

s r T t
k

d
T t

σ

σ

   + + −  
   =

−
 and ( )2 1d d T tσ= − −  

Here, S is the stock price at time t, T is the maturity date, K is the strike price, 
( )2N d  is the cumulative normal distribution, σ  is the volatility. Although 

Black-Scholes equation is still widespread used in the market, much evidence has 
shown that the assumption of fixed volatility is not suitable for actual data. Con-
sequently, in this dissertation, we consider the volatility following a stochastic 
process rather than a constant during the life of a call option. 

3. The Heston Stochastic Volatility Model 

The crude assumption of constant volatility in the Black-Scholes formula causes 
problem. One model where the volatility is a stochastic process is the Heston 
Stochastic Volatility Model [3], which is an extended version of the Black- 
Scholes stochastic differential equations (SDE) with a volatility. The Heston 
Model takes the non-log normal distribution of the assets returns and the leve-
rage effect into account, the correlation between the two Wiener processes. The 
Heston Model defined by following stochastic processes: 

1
t t t t tdS S dt V S dWµ= +                     (1) 

( ) 2
t t t tdV V dt V dWκ θ σ= − +                 (2) 

and where 1
tW  and 2

tW  are correlated Wiener processes with ρ, i.e. 
1 2

t tdW dW dtρ=                       (3) 

where, µ  is the drift coefficient of the stock price, θ  is the long term mean of 
variance, κ  is the rate of mean reversion, σ  is the volatility of volatility, ts  
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and tv  are the price and volatility process respectively, where { } 0t t
v

≥
 is a 

square root mean reverting process, first used by with long run mean θ , and 
rate of reversion κ . To take into account the leverage effect, stock returns and 
implied volatility are negatively correlated, 1

tw  and 2
tw  are correlated wiener 

process and the correlation coefficients is ρ. All the parameters , , , ,µ κ θ σ ρ  are 
the time and state homogeneous. 

4. Analysis of Heston Model 
4.1. Partial Differential Equation Approach of Heston Model 

For some stochastic volatility models, one can find a partial differential equation 
(PDE), the value of any option must be satisfied by such a PDE. For Heston’s 
Stochastic Volatility model, a PDE exists, but calculation is quite complicated 
due to the difficult estimation of the market price of volatility risk. In order to 
price options in the SV model, we can apply no-arbitrage arguments, or use the 
risk-neutral valuation method. First we discuss the no-arbitrage method. The 
riskless portfolio is constructed as in the Black-Scholes model. But the construc-
tion method is different. In the SV option pricing model, there is only one 
traded risky asset S but two random sources 1

tdW  and 2
tdW . So the market is 

incomplete. We cannot perfectly replicate the option solely with the underlying 
stock. No-arbitrage arguments are not enough to give the option price. We need 
additional assumptions. In the following derivation, equilibrium arguments are 
also employed. We know that the market can be completed by adding any op-
tion written on stock S. Simply, the market is complete when we have two traded 
assets, the underlying asset S and a benchmark option 1V . Then all other op-
tions can be replicated by these two traded assets. 

To proceed, consider a self-financing/risk-less portfolio with value ∏  con-
sisting of an option with value ( ), ,V S v t  which we want to price, −∆  units of 
the underlying asset S and, in order to hedge the risk associated with the random 
volatility, 1−∆  units of benchmark option with value ( )1 , ,V S v t . 

Hence, 

1 1V S V∏ = −∆ −∆                        (4) 

The portfolio is self-financing i.e. for risk-less portfolio, so that 

1 1d dV dS dV∏ = −∆ −∆                     (5) 

By applying two dimensional form of Ito’s formula, we have 
2 2 2

2 2
2 2

2 2 2
2 21 1 1 1 1

1 12 2

1
1

1 1
2 2

1 1
2 2

V V V V V Vd vS Sv v dt dS dv
t S v S vS v

V V V V VvS Sv v dS
t S v SS v

V dv dS
v

ρσ σ

ρσ σ

 ∂ ∂ ∂ ∂ ∂ ∂
∏ = + + + + + 

∂ ∂ ∂ ∂ ∂∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ −∆ + + + − ∆ 
∂ ∂ ∂ ∂∂ ∂  

∂
−∆ − ∆

∂

 (6) 

Now, we can rewrite it by collecting the terms of dS, dt and dv 
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2 2 2
2 2 1

12 2

2 2 2
2 21 1 1 1

1 2 2

1
1

1 1
2 2

1 1
2 2

VV V V V Vd vS Sv v dt dv
t S v v vS v

V V V VvS Sv v dt
t S vS v

VV dS
S S

ρσ σ

ρσ σ

  ∂∂ ∂ ∂ ∂ ∂ ∏ = + + + + − ∆   ∂ ∂ ∂ ∂ ∂∂ ∂   

 ∂ ∂ ∂ ∂ −∆ + + + 
∂ ∂ ∂∂ ∂  

∂∂ + − ∆ − ∆ ∂ ∂ 

 (7) 

To make the portfolio riskless, we choose 

1
1 0

VV
v v

∂∂
− ∆ =

∂ ∂
                        (8) 

1
1 0

VV
S S

∂∂
− ∆ − ∆ =

∂ ∂
                     (9) 

To eliminate the terms dS and dv, we solve the Equation (8) and (9) as 

1
1

V
v
V
v

∂
∂∆ =
∂
∂

                                    (10) 

1 1
1

1

V
V VV V v

VS S S S
v

∂
∂ ∂∂ ∂ ∂∆ = − ∆ = −

∂∂ ∂ ∂ ∂
∂

                (11) 

The portfolio is risk free if we rebalance the Equation (7) according to (10) 
and (11). On the other hand, the riskless portfolio must earn a risk free rate, i.e. 
the return of this risk-free portfolio must equal the (deterministic) risk-free rate 
of return. Otherwise, there would be an arbitrage opportunity. 

2 2 2
2 2

2 2

2 2 2
2 21 1 1 1

1 2 2

1 1
2 2

1 1
2 2

V V V Vd vS Sv v dt
t S vS v

V V V VvS Sv v dt
t S vS v

ρσ σ

ρσ σ

 ∂ ∂ ∂ ∂
∏ = + + + 

∂ ∂ ∂∂ ∂ 

 ∂ ∂ ∂ ∂ −∆ + + + 
∂ ∂ ∂∂ ∂  

 

( )1 1r dt r V S V dt= ∏ = −∆ −∆  (by using Equation (7)) 

( )1 1d r V S V dt∴ ∏ = −∆ −∆                   (12) 

Using above two equations we have, 
2 2 2

2 2
2 2

2 2 2
2 21 1 1 1 1

12 2

1

1 1
2 2

1 1
2 2

V V V V VvS Sv v rS rV
t S v SS v

V
v

V V V V VvS Sv v rS rV
t S v SS v

V
v

ρσ σ

ρσ σ

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂∂ ∂
∂
∂

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂∂ ∂=
∂
∂

    (13) 

Notice that the left-hand side is a function of V only and the right-hand side is 
a function of V1 only. The only way that this equation holds is that both sides are 
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equal to some function, i.e. g only depends on the independent variables ,S v  
and t. Setting ( ) ( )( ), ,g V S v t Vκ θ σ= − −Λ  yields a special case of a so- 
called affine diffusion process. For this class of processes, the pricing PDE is 
tractable analytically. In this case we have, 

( ) ( )( )

2 2 2
2 2

2 2

1 1
2 2

, ,

V V V V VvS Sv v rS rV
t S v SS v

VV S v t V
v

ρσ σ

κ θ σ

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂∂ ∂
∂

= − −Λ
∂

       (14) 

Now replacing V by ( ), , ,U S V t T  and v  by V, we have 

( ) ( )( )

2 2 2
2 2

2 2

1 1
2 2

, , 0

U U U UVS SV V rS rU
S V SS V

U UV S v t V
t V

ρσ σ

κ θ σ

∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂∂ ∂
∂ ∂

+ + − −Λ =
∂ ∂

        (15) 

( ), ,S v tΛ  is called the market price of volatility risk. According to Heston’s 
assumption, the market price of volatility risk is proportional to volatility i.e. to 
the square root of the variance. 

( ) ( ), , , ,S v t V S v t k VαΛ ⇒ Λ = ,              (16) 

where k is the proportional constant. 
Multiplying both sides of Equation (16) by Vσ , then we have, 

( ), ,S v t V k Vσ σΛ =  

Thus Equation (16) becomes, 

( )( )

2 2 2
2 2

2 2

1 1
2 2

0

U U U UVS SV V rS rU
S V SS V

U UV V
t V

ρσ σ

κ θ λ

∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂∂ ∂
∂ ∂

+ + − − =
∂ ∂

      (17) 

Therefore ( ), ,S V tλ  represents the market price of volatility risk. The price 
of volatility risk ( ), ,S V tλ  is independent of particular asset. It can be obtained 
theoretically from any asset depending on volatility risk. Assume the strike price 
to be K and expiring time T. The price is considered in rectangular area of 
[ ] [ ]0, 0,∞ × ∞  and on horizontal time [ ]0,T . Then For European call option 
the option price obeys Equation (4.14) with boundary, 

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( )

, , max 0,

0, , 0

, , 1

,0, ,0, ,0, ,0, 0

, ,

U S v t S k

U v t
U v t
S

U U UrS S t S t rU S t S t
S V t

U S t S

κθ


= − 


= 

∂ ∞ = 
∂ 
∂ ∂ ∂ 

+ − + = ∂ ∂ ∂ 
∞ = 

   (18) 

This choice of market price of volatility risk gives us analytical advantages. 
The drift term of the specified process (4) is an affine function of the state varia-
ble itself. The affinity makes the model easier to solve. Since the diffusion of the 
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variance process is also proportional to the square root of the variance, the 
product of the market price of risk and the diffusion is proportional to variance 
itself. As a result, the drift term will remain affine under the Equivalent Martin-
gale Measure (EMM). This particular market price of volatility risk helps the 
model to have a closed-form solution. We can also apply the risk-neutral valua-
tion method to the SV model. The market is incomplete. But it is still free of ar-
bitrage. The equivalent martingale measure is not unique. We have to choose 
one of all these measures to price the options. So the price of the option is also 
not unique. It will depend on which equivalent martingale measure we use. 

4.2. The Effect of Parameters on Return Distribution 

There are many economic, empirical, and mathematical reasons for choosing a 
model with such a form for a detailed statistical/ empirical analysis).Empirical 
studies have shown that an asset’s log-return distribution is non-Gaussian. It is 
characterized by heavy tails and high peaks (leptokurtic). There is also empirical 
evidence and economic arguments that suggest that equity returns and implied 
volatility are negatively correlated (also termed ‘the leverage effect’). This de-
parture from normality plagues the Black-Scholes-Merton model with many 
problems. In this work, we will show effect of effects of ρ and σ on return distri-
bution. 

4.3. Effects of ρ on Return Distribution 

Consider that ρ denotes the correlating factor between the sources of random-
ness for the underlying and the volatility. ρ can be interpreted as the correlation 
between the returns and the volatility of the asset. Therefore it captures the leve-
rage effect, affecting the heaviness of the tails, thus the skewness of the return 
distribution. Intuitively, if ρ < 0, then volatility will increase as the asset price 
return decreases, this will spread the left tail and squeeze the right tail of the dis-
tribution creating a fat left-tailed distribution. Conversely, if ρ > 0, then volatility 
will increase as the asset price/return increases. This will spread the right tail and 
squeeze the left tail of the distribution creating a fat right-tailed distribution and 
if ρ = 0 the skewness is close to zero. As a result ρ, affects the skewness of the 
distribution. Figures 1-5 show the effect ρ for different values. However, Fig-
ures 4-12 are similar to those presented in [18], but in this study we have inves-
tigated the behaviors of the volatility by changing the values of the parameter ρ 
and σ. The simulation results have been shown in Figures 4-12 respectively. 

4.4. Effects of σ on Return Distribution 

The σ affects to the kurtosis (peak) of the distribution. When σ is zero the vola-
tility is deterministic, because the diffusion process in dVt will be dropped and 
hence the returns will be normally distributed as in the BSM-model. Increasing σ 
will increase the peak (kurtosis), creating heavy tails on both sides, i.e. the in-
crease in σ represents the market volatility is more volatile and higher σ shows 
higher peaks than less one. 
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Figure 1. Probability plot, when ρ is smaller than zero asset returns is left skewed. 

 

 
Figure 2. Probability plot, when ρ is greater than zero asset returns is right skewed. 
 

 
Figure 3. Probability plot, when ρ is equal to zero asset returns is close to zero. 
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Figure 4. The effect of ρ on the skewness of the density function. 
 

 
Figure 5. The effect of ρ on the skewness of the density function near to zero. 
 

 
Figure 6. The effect of σ on the kurtosis of the density function. 
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Figure 7. The effect of σ on the kurtosis of the density function to zero. 
 

 
Figure 8. Implied Volatility; ρ = 0.0007; κ = 2; σ = 0.01; θ = 0.04; v0 = 0.04; r = 1%; s = 1 
strikes 0.06 - 1.2; maturities: 0.4 - 3.0 years. 
 

 
Figure 9. Implied Volatility; ρ = 0; κ = 2; σ = 0.01; θ = 0.04; v0 = 0.04; r = 1%; s = 1 strikes 
0.06 - 1.2; maturities: 0.4 - 3.0 years. 
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Figure 10. Implied Volatility; ρ = −0.0007; κ = 2; σ = 0.01; θ = 0.04; v0 = 0.04; r = 1%; s = 1 
strikes 0.06 - 1.2; maturities: 0.4 - 3.0 years. 
 

 
Figure 11. Implied Volatility; ρ = −0.7; κ = 2; σ = 0.01; θ = 0.04; v0 = 0.04; r = 1%; s = 1 
strikes 0.06 - 1.2; maturities: 0.4 - 3.0 years. 
 

 
Figure 12. Implied Volatility; ρ = 0.7; κ = 2; σ = 0.01; θ = 0.04; v0 = 0.04; r = 1%; s = 1 
strikes 0.06 - 1.2; maturities: 0.4 - 3.0 years. 
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In Figures 8-10, we investigate the effect of ρ on the implied volatility surface 
generated under Heston’s model. Here Maturity (years), Strike and Implied Vo-
latility are denoted by x-label, y-label and z-label respectively. In Figure 8 and 
Figure 9, ρ = 0.007 and ρ = 0. Away from the-money options have higher im-
plied volatilities than near-the-money options. This is consistent with the ‘smile’ 
shape of implied volatilities in some financial market, e.g. currency options 
markets. This observation can be explained by the fat-tailed distribution of re-
turns. We can also find that the “smile” flattens. When the time to maturity in-
creases. This is also consistent with the real financial markets. The BS model 
tends to work well for options with long maturities as a result of the corres-
ponding flattened smile. 

In Figure 11, ρ is negative. We can find that in-the-money calls have higher 
implied volatilities, whereas out-of-the-money calls have lower implied volatili-
ties. This is consistent with the phenomenon of ‘volatility skew’ in some finan-
cial markets, especially the equity options markets. 

In Figure 12, ρ is positive which can generate an opposite skew shape compared 
with Figure 11 such kind of volatility skew may appear in energy options markets. 

5. Conclusions 

Stochastic volatility models tackle one of the most restrictive hypotheses of the 
Black-Scholes model framework, which assumes that volatility remains constant 
during the option’s life. However, by observing financial markets it becomes ap-
parent that volatility may change dramatically in short time periods and its be-
havior is clearly not deterministic. Among stochastic volatility models, the Hes-
ton model presents two main advantages. First, it models an evolution of the 
underlying asset which can take into account the asymmetry and excess kurtosis 
that are typically observed (and expected) in financial asset returns. Second, it 
provides closed form solutions for the pricing of European options. 

The study made in this paper demonstrated a technique for constructing smile 
and skew consistent prices by violating one of the crude assumptions in the BS 
model, constant volatility. The result shows that the Heston approximation 
works really well and only face big problems when options with high time to 
maturity are to be priced. Another problem is that the approximation gives us 
incorrect prices when the moneyless is below one. To reduce this problem fur-
ther studies of the volatility smile could be done and were the skew of options 
that are not in the money could be compare to options that are in the money and 
trying to repair this. As one could observe from the results above is that the 
Heston approximation loses its accuracy as the time to maturity increases, but 
Black and Scholes is also facing the same type of problem. Since the Heston 
model was not built on the assumption on non-constant volatility, it showed an 
improvement of modeling stocks and receiving smile consistent option prices. 
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