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Abstract 
Oxidation kinetics of fluorene (Fl) and its halogenated derivatives, namely, 
2,7-dichlorofluorene (Fl-Cl), 2,7-dibromofluorene (Fl-Br) and 2,7-diiodoflu- 
orene (Fl-I), by permanganate ion in both perchloric and sulfuric acid media 
have been investigated using conventional spectrophotometric technique. In 
both acidic media, the reactions manifested first order kineticsin [permanga-
nate] and less than unit order each in [reductants] and [acid]. Increasing ionic 
strength had no effect on the oxidation rates. Oxidation rates of fluorenes in 
perchloric acid were higher than those in sulfuric acid and the order of the 
oxidation rates was: Fl > Fl-I > Fl-Br > Fl-Cl. Final oxidation products were 
identified by GC/MS and FT-IR analyses in all cases as 9H-fluorenone deriva-
tives. Reaction constants as well as activation parameters of the second order 
rate constants were also evaluated. 
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1. Introduction 

Fluorenes (FLs) are an exclusive family of aromatic hydrocarbons. They are 
amongst products from the burning of gasoline [1] [2]. Fluorene moiety is fre-
quently engaged in the growing of a variety of visual devices with dormant ap-
plications in some electronic devices such as solar cells [3], polymer based light- 
emitting diodes [4] [5] and electroemitting resources [6]. Furthermore, fluorene 
founded systems enjoy solitary photophysical properties since they exposed 
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pronounced high fluorescent quantum yield, countless optical nonlinear proper-
ties, photo-stability, and outstanding hole-transporting possessions [7] [8]. For 
these inserting and multi-addressable properties, fluorenes have been used ex-
tensively as focused constituents for organic light-emitting diodes, dye-sensi- 
tized solar cells, photosensitizers, emission microscopy [9] [10]. Furthermore, 
fluorene and its substituted derivatives are shown some effective and noticeable 
precursors for the synthesis of the sounding and promising photochromic di and 
tetrahydroindolizines [11] [12] [13]. 

Potassium permanganate is considered as the most powerful multi-electron 
oxidant employed in the kinetic studies of oxidation of various compounds in 
different media [14]-[22]. The mechanism of oxidation by this eco-friendly oxi-
dant depends not only on the reductant but also on the reaction medium. 
Throughout permanganate oxidation, manganese (VII) species in permanganate 
is reduced to various oxidation states in different media [23]-[28]. However, no 
work has been reported on the kinetics and mechanism of oxidation of fluorene 
or its derivatives as well. In view of the above arguments, we tend to investigate 
the kinetics and mechanism of oxidation of fluorine and its halogenated deriva-
tives with permanganate ion in both perchloric and sulfuric acids media in order 
to establish the optimum conditions affecting such oxidations and to elucidate a 
plausible oxidation mechanism. 

2. Experimental 
2.1. Materials 

Fluorene and its derivatives, 2,7-dichloroflourene, 2,7-dibromoflourene and 2,7- 
diiodoflourene were synthesized as reported [29] [30] and the synthesized fluo-
rene derivatives were characterized by both spectroscopic and analytical tools. 
For example, the 1H NMR (400 MHz, CDCl3) spectrum of 2,7-dibrom-fluorene 
showed the flowing signals (δ = 7.66 (s, 2H, 1,8-CH-arom.), 7.55-7.59 (dd, J = 
7.6, 1.5 Hz, 2H, 3.6-CH-arom.), 7.50-7.52 (dd, J = 7.6, 2.4 Hz, 2H, 4,5-CH-arom. 
A fresh solution of permanganate was prepared and was standardized as re-
ported earlier [31] [32]. All other chemicals were of Aldrich grade. 

2.2. Kinetic Measurements 

Kinetic runs were carried out under pseudo-first order conditions where the 
concentration of fluorine derivatives, [S] >> [permanganate]. The reactions tem- 
perature (25˚C) was controlled within ±0.1˚C and the ionic strength was ad-
justed to 0.5 mol∙dm−3. Kinetics of the oxidation reactions were followed spec-
trophotometrically within the UV-Vis spectral range by recording the disap-
pearance of permanganate absorbance with time at λ = 526 nm. These mea-
surements were performed on a thermostatted Shimadzu UV-VIS-NIR-3600 
double-beam spectrophotometer. Fluorene derivatives were confirmed by both 
spectroscopic and analytical tools. NMR was recorded on a Bruker Advance 400 
MHz and GC-Mass spectra were recorded on a Shimadzu GCMS-QP1000 EX 
mass spectrometer at 70 eV. The observed-first order rate constants (kobs) were 
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calculated as slopes of the plots of ln(absorbance) versus time plots, which were 
straight for about 75% of the oxidation reactions and the such rate constants 
were reproducible to within 3% - 4%. 

3. Results and Discussion 
3.1. Stoichiometry and Product Analysis 

Various sets of the reactions mixtures containing different ratios of permanga-
nate to fluorine derivatives were mixed at [H+] = 0.3 and I = 0.5 mol∙dm−3 for 
about 24 hours. Estimation of the remaining permanganate indicate that stoi-
chiometry of the reactions was 5:4 (fluorine:permanganate) as illustrated by the 
following equation. 
 

 
Fluorenederivative                          9H-fluorenone derivative 

 
This stoichiometric equation is consistent with products characterization 

(Head-space GC/MS revealed [M+, 100%] at 180 related to the 9H-fluoren-9-one 
[M+, 100%] at 249 related to the 2,7-dichloro-9H-fluoren-9-one, [M+, 100%] at 
338 related to the 2,7-dibromo-9H-fluoren-9-one and [M+, 100%] at 432 related 
to the 2,7-diiodo-9H-fluoren-9-one. The mass spectrometry fragmentation pat-
tern for 2,7-dichloro-9H-fluoren-9-one (as an example) showed the following 
signals: m/z: 247.98 (100.0%), 249.98 (64.1%), 248.98 (14.1%), 251.97 (10.2%), 
250.98 (9.1%), 252.98 (1.5%). Furthermore, FT-IR spectra for both 2,7-dichloro- 
9H-fluorene (Fl-Cl) and its oxidation product 2,7-dichloro-9H-fluoren-9-one (as 
an example) are shown in Figure 1. The product 2,7-dichloro-9H-fluoren-9-one  
 

 
Figure 1. FT-IRs spectra of 2,7-dichloro-9H-fluorene (red line) and the oxidized product 
2,7-dichloro-9H-fluoren-9-one (black line). 
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showed a very strong signal at 1712 cm−1 related to the (C=O) group which is 
absent in the 2,7-dichloro-9H-fluorene (Fl-Cl). In addition, the finger prints of 
the product were different from that of the corresponding substrate.  

3.2. Spectral Changes 

Figure 2(a) and Figure 2(b) shows the spectral changes throughout oxidations 
of fluorene by potassium permanganate in: a) perchloric, and b) sulfuric acid 
media (as an example). The figure showed gradual disappearance of permanga-
nate band at λ = 526 nm. 

3.3. Order of Reactions 

The orders of the oxidation reactions regarding to the reactants concentrations 
have been evaluated from the plots of log kobs versus log (conc.). 

The order with respect to [MnO4
−] was investigated by changing its concen-

tration from 1.0 × 10−4 to 8.0 × 10−4 mol∙dm−3 at constant concentrations of other 
reactants. The order was found to be unity as first order plots were linear for 
 

Table 1. Effect of variation of 4MnO−   , [S], [H+] and I on the observed first order rate constants (kobs) in the oxidations of fluo-

rene and its derivatives by permanganate ion in perchloric and sulfuric acids media at 25˚C. 

104 4MnO−    

(mol∙dm−3) 

103 [S] 
(mol∙dm−3) 

102 [H+] 
(mol∙dm−3) 

I 
(mol∙dm−3) 

105 kobs (s−1) 

Perchloric acid Sulfuric acid 

Fl Fl-Cl Fl-Br Fl-I Fl Fl-Cl Fl-Br Fl-I 

1.0 5.0 0.2 0.5 166.2 101.2 113.9 129.2 139.3 86.2 98.7 121.0 

2.0 5.0 0.2 0.5 165.7 98.3 117.4 135.6 135.7 87.9 97.8 115.2 

4.0 5.0 0.2 0.5 168.1 99.7 116.9 133.1 137.2 88.0 99.3 117.6 

6.0 5.0 0.2 0.5 172.1 100.7 115.2 132.2 141.1 85.9 103.2 118.1 

8.0 5.0 0.2 0.5 169.3 97.3 118.2 134.1 133.2 89.2 98.2 116.2 

4.0 1.0 0.2 0.5 79.8 39.2 48.4 59.7 50.1 32.8 36.3 41.7 

4.0 3.0 0.2 0.5 127.3 74.1 85.3 97.2 96.9 62.3 73.1 87.2 

4.0 5.0 0.2 0.5 168.1 99.7 116.9 133.1 137.2 88.0 99.3 117.6 

4.0 7.0 0.2 0.5 201.0 120.2 139.9 161.0 175.9 108.7 125 145.0 

4.0 9.0 0.2 0.5 232.4 141.5 166.2 189.8 204.9 128.2 152 175.4 

4.0 5.0 0.1 0.5 105.3 63.1 70.3 81.9 81.6 48.5 55.8 68.9 

4.0 5.0 0.2 0.5 139.9 84.7 95.3 111.2 112.0 71.8 83.3 95.2 

4.0 5.0 0.3 0.5 168.1 99.7 116.9 133.1 137.2 88.0 99.3 117.6 

4.0 5.0 0.4 0.5 195.3 115.0 134.9 158.0 159.3 102.1 115.8 134.3 

4.0 5.0 0.5 0.5 216.0 124.9 148.0 181.0 185.0 113.9 132.2 155.0 

4.0 5.0 0.2 0.5 168.1 99.7 116.9 133.1 137.2 88.0 99.3 117.6 

4.0 5.0 0.2 0.6 169.7 98.3 119.4 135.6 135.7 87.9 101.2 115.2 

4.0 5.0 0.2 0.7 171.2 102.7 116.9 134.4 139.2 91.2 99.3 121.6 

4.0 5.0 0.2 0.8 172.1 105.7 121.2 137.2 141.1 85.9 103.2 118.1 

4.0 5.0 0.2 0.9 167.3 97.4 118.1 134.1 139.2 87.2 104.3 122.2 

Ex Experimental error ±3%. 
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(a) 

 
(b) 

Figure 2. Spectral changes during the oxidations of fluorene by permanganateion in: (a) 
perchloric, and (b) sulfuric acid media. [S] = 5.0 × 10−3, 4MnO−    = 4.0 × 10−4, [H+] = 

0.3 and I = 0.5 mol∙dm−3 at 25˚C. Scanning time = 1.0 min. 
 

about 75% of the oxidation reactions. Furthermore, the non-variation of the 
values of kobs at different initial 4MnO−   , as listed in Table 1, confirmed the 
unit order dependence of the reactions in 4MnO−   . 

The values of kobs were measured at various concentrations of fluorine deriva-
tives (S) at fixed other reactants concentrations. The values of kobs were found to 
increase with increase [S] as listed in Table 1. The plots of kobs versus [S] in both 
acids were linear with positive intercepts suggesting that the orders of the reac-
tions regarding to [S] were less than unity as shown in Figure 3. 

The orders of reactions with respect to [H+] were investigated by measuring 
the oxidation rates at various [H+] (0.1 - 0.5 mol∙dm−3) and at fixed other va-
riables. The rate constants were increased as [H+] increased in both acidic media 
as listed in Table 1 with less than unit order dependences as the plots of kobs 
versus [H+], Figure 4. 

3.4. Effect of Ionic Strength 

At constant concentrations of the reactants and with other conditions constant,  
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(a) 

 
(b) 

Figure 3. Plots of the observed first order rate constants (kobs) versus substrate concentra-
tions, [S], in the oxidations of fluorene and its derivatives by permanganate ion in: (a) 
perchloric, and (b) sulfuric acid media. 4MnO−    = 4.0 × 10−4, [H+] = 0.3 and I = 0.5 

mol∙dm−3 at 25˚C. 
 

 
(a) 
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(b) 

Figure 4. Plots of the observed first order rate constants (kobs) versus acids concentrations 
in the oxidations of fluorene and its derivatives by permanganate ion in: (a) perchloric, 
and (b) sulfuric acid media. 4MnO−    = 4.0 × 10−4, [S] = 5.0 × 10−3 and I = 0.5 mol∙dm−3 

at 25˚C. 
 
the ionic strength of the reactions media was varied (0.5 - 0.9 mol∙dm–3) using 
sodium perchlorate in perchloric acid and sodium sulfate in sulfuric acid me-
dium. The results listed in Table 1 indicated that variation of ionic strength had 
no significant effect on the oxidation rates. 

3.5. Effect of Temperature 

To calculate the activation parameters, the observed rate constants were meas-
ured at four temperatures, namely 288, 298, 308 and 318 K, at fixed other va-
riables. The observed rate constants were found to increase with raising tem-
perature and the activation parameters of the second order rate constants, k2, (k2 
= kobs/[S]) were evaluated using Arrhenius and Eyring plots (Table 2). 

3.6. Polymerization Study 

Known quantities of acrylonitrile monomer were added to the reactions mix-
tures in both acidic media and were kept in an inert atmosphere for about 6 
hours. When the reactions mixtures were diluted with methanol, progressive 
white precipitates were formed suggesting intervention of free radicals during 
these reactions. 

3.7. Reaction Mechanism 

It was reported [33] [34] that permanganate ion in acidic medium combines 
with H+ ion to form a more stronger oxidant called permanganic acid as illu-
strated by the first step in Scheme 1. This was supported by increasing oxidation 
rates with increasing acid concentration. On the other hand, many investigators 
[17]-[24] reported that, most oxidation reactions using permanganate oxidant 
proceed through formation of intermediate complexes between substrate and  
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Scheme 1. Mechanism of oxidations of fluorenes by permanganate ion in acid media. 
 
Table 2. Activation parameters of the second order rate constant, k2, in the oxidations of 
fluorene and its derivatives by permanganate ion in perchloric and sulfuric acids media. 

4MnO−    = 4.0 × 10−4, [S] = 5.0 × 10−3, [H+] = 0.3 and I = 0.5 mol∙dm−3. 

Acid Substrate ∆S≠, J∙mol−1 K−1 ∆H≠, kJ∙mol−1 ∆G≠
298, kJ∙mol−1 Ea

≠, kJ∙mol−1 

Perchloric 

Fl −123.22 30.01 66.73 28.61 

Fl-Cl −133.35 26.03 65.79 26.33 

Fl-Br −149.01 29.51 73.91 29.52 

Fl-I −113.34 31.47 65.25 29.92 

Sulfuric 

Fl −148.41 26.55 70.77 36.72 

Fl-Cl −131.07 23.33 62.39 33.50 

Fl-Br −134.27 25.19 65.20 37.36 

Fl-I −157.81 24.29 71.32 39.07 

Experimental error ±4%. 
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oxidant. This was also evidenced [34] by linear plots of 1/kobs and 1/[S] as shown 
in Figure 5. The observed insignificant influence of the ionic strength on the 
oxidations rates indicated that the reactions were between two neutral molecules 
[35] [36] [37], i.e. between fluorene derivative and acid permanganate. 

In the light of the above aspects, the following reactions mechanism, illu-
strated in Scheme 1, can be suggested. The mechanism involves reaction of 
permanganic acid oxidant with fluorene derivative to form a complex (C) and 
the later decomposes to yield manganate (VI) and fluorene free radical. The free 
radical is attacked by Mn(VI) forming the secondary alcohol (fluorenol) as an 
intermediate product and manganese (V) intermediate. In a further fast step, 
Mn(V) reacts with the intermediate product fluorenol to give the ketone (fluo-
renone) as the final oxidation product and an intermediate Mn (III) species. 
This step is followed by other fast steps including reactions of fluorene deriva-
tives with acid permanganate species to form also fluorenone and Mn (III) spe- 
 

 
(a) 

 
(b) 

Figure 5. Verification of equation (4) for the oxidations of fluorene and its derivatives by 
permanganate ion in: (a) perchloric, and (b) sulfuric acid media. 4MnO−    = 4.0 × 10−4, 

[H+] = 0.3 and I = 0.5mol∙dm−3. 
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cies. The last step is the attack of Mn(III) species on another fluorene molecule 
to give fluorenone and Mn(II), satisfying the observed stoichiometry. 

Owing to the suggested mechanism, rate of oxidation reaction can be ex-
pressed by the following rate law: 

[ ]4
1

d MnO
Rate C

d
k

t

− −  = =                  (1) 

The relationship between the oxidation rate and the oxidant, substrate and 
hydrogen ion concentrations is deduced (See Appendix A) to give the following 
equation: 

[ ]
[ ]

1 1 2 4

+ +
1 1 2

MnO S H
Rate

1 H S H

k K K

K K K

− +      =
   + +   

             (2) 

Under pseudo-first order condition, 

4
obs 4

d MnO
Rate MnO

d
k

t

−
−

 −    = =                (3) 

From Equations (2) and (3), 

[ ]
1

obs 11 1 2

1 H1 1 1
SH

K
k kk K K

+

+

  +   = +
    

                (4) 

[ ] [ ]obs 1 1 2 1 2 1

1 1 1 1 1
S SHk k K K k K k+

   
= + +           

          (5) 

Regarding to Equations (4) and (5), plots of 1/kobs versus 1/[S] at constant 
[H+] and 1/kobs versus 1/[H+] at constant [S] should be linear with positive inter-
cepts on the 1/kobs axes as were obtained, Figure 5 and Figure 6, respectively. 
The slopes and intercepts of such plots lead to calculation of the values of k1, K1 
and K2 (Table 3). 
 
Table 3. Values of k1, K1 and K2 in the oxidations of fluorene and its derivatives by per-
manganate ion in perchloric and sulfuric acid media. 4MnO−    = 4.0 × 10−4, [S] = 5.0 × 

10−3, [H+] = 0.3 and I = 0.5 mol∙dm−3. 

Acid Substrate 
Constant 

103 k1, s−1 102 K1, dm3∙mol−1 10−3 K2, dm3∙mol−1 

Pechloric 

Fl 2.51 29.41 5.24 

Fl-Cl 1.80 28.80 3.26 

Fl-Br 2.12 28.32 3.31 

Fl-I 2.43 29.53 3.18 

Sulfuric 

Fl 2.41 28.90 4.90 

Fl-Cl 1.73 27.61 3.15 

Fl-Br 2.21 28.84 3.10 

Fl-I 2.34 28.53 3.34 
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(a) 

 
(b) 

Figure 6. Verification of equation (5) for the oxidations of fluorene and its derivatives by 
permanganate ion in: (a) perchloric, and (b) sulfuric acid media. 4MnO−    = 4.0 × 10−4, 

[S] = 5.0 × 10−3 and I = 0.5mol∙dm−3. 
 

On the other hand, the negative values of entropy of activation (∆S≠) listed in 
Table 2 supports formation of compacted intermediate complexes [38]. The 
positive values of both enthalpy of activation (∆H≠) and free energy of activation 
(∆G≠) indicates endothermic intermediate complexes and their non-spontanei- 
ties, respectively. 

4. Conclusion 

Oxidations of fluorene derivatives by potassium permanganate in acidic me-
dialed to formation of the corresponding ketones (9H-fluorenone derivatives) 
and the oxidations rate was: Fl > Fl-I > Fl-Br > Fl-Cl. Reaction constants as well 
as activation parameters were evaluated. 
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Appendix A. Derivation of the Rate-Law Expression 
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From Equations (A1) and (A3),  
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The total concentration of 4MnO−  is given by (where “T” and “F” stand for 
total and free), 

[ ] [ ]4 4 4T F
MnO MnO HMnO C− −   = + +             (A5) 

[ ]4 4 1 4 1 2 4T F F F
MnO MnO MnO H MnO S HK K K− − − + − +           = + +              (A6) 

[ ]
4 T

4 + +F
1 1 2

MnO
MnO

1 H S HK K K

−
−

    =     + +   
         (A7) 

Because of [H+] was high, 

T F
H H+ +   =                          (A8) 

Similarly 
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Substituting Equations (A7), (A8) and (A9) into Equation (A4) (and omitting 
“T” and “F” subscripts) gives: 
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Under pseudo-first order condition,  
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From Equations (A10) and (A11), 
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and with rearrangement of Equation (A12), 
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