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Abstract 
The internal energy U  of the real, neutral-gas particles of total mass M  in 
the volume V  can have positive and negative values, whose regions are 
identified in the state chart of the gas. Depending on the relations among gas 
temperature T , pressure p  and mass-specific volume v V M= , the mass 
exists as a uniform gas of freely-moving particles having positive values U  
or as more or less structured matter with negative values U . In the regions 

0U >  above the critical point [ ], ,c c cT p v  it holds that ( ), cp T v p>  and 

cv v> , and below the critical point it holds that ( ), cp T v p<  and vv v> , 
where vv  is the mass-specific volume of saturated vapor. In the adjacent 
regions with negative internal energy values 0U <  the mean distances 
between particles are short enough to yield negative energy contributions to 
U  due to inter- particle attraction that exceeds the thermal, positive energy 
contributions due to particle motion. The critical isochor cv  is the line of 
equal positive and negative energy contributions and thus represents a line of 
vanishing internal energy 0U = . At this level along the critical isochor the 
ever present microscopic fluctuations in energy and density become 
macroscopic fluctuations as the pressure decreases on approaching the critical 
point; these are to be observed in experiments on the critical opalescence. 
Crossing the isochor cv  from 0U >  to 0U < , the change in energy 

0U∆ >  happens without any discontinuity. The saturation line vv  also 
separates the regions between 0U >  and 0U < , but does not represent a 
line 0U = . The internal-energy values of saturated vapor vU  and 
condensate lU  can be determined absolutely as functions of vapor pressure 
p  and densities ( )vM V  and ( )lM V , repectively, yielding the results 

0l vU U< < , 0l vU U U= + <  for cT T<  and 0l vU U U= = =  at the 
critical point. Crossing the line vv  from 0vU U= >  to 0v lU U U= + <  
requires the energy 0lU U∆ = − >  to be removed from the particle system. 
The ther- modynamic and quantum-mechanical formulations of the internal 
energy of a particle system only agree if both the macroscopic and 
microscopic energy scales have the same absolute energy reference value 0. 
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Arguments for the energy reference value 0U =  in the state of transition 
from bound to freely- moving particles in macroscopic classical and 
microscopic quantum particle systems are discussed. 
 

Keywords 
Energy Reference Value Zero in Microscopic and Macroscopic Particle  
Systems, State of Transition from Bound to Freely-Moving Particles, Internal  
Energy Regions in the State Chart of Gas, Critical Point and Critical Isochor  
Loci of Vanishing Internal Energy, Critical Opalescence, BEC, Calculation of 
Internal Energies of Saturated Liquid and Vapor 

 

1. Introduction 

Investigated here are thermodynamic properties of a real single-component gas 
of mass M  in the volume V . In accordance with Gibbs [1], the internal 
energy U  is assigned to the gas, composed of a very large number of particles, 
and the entropy S  to its distribution in V . It is not the total energy of M  in 
V  that is considered, i.e. not the contributions from relativistic or kinetic and 
potential energies of a mass system moving in external fields, but only the 
contributions resulting from all time-independent kinetic and potential energies 
in V  averaged over all particles. The sum of energies exchanged between the 
particles can take a positive, negative or else vanishing value U , depending on 
the conditions to which the gas is subjected. 

2. Dependence of the Sign of the Internal Energy of the Real  
Gas on the Aggregate State of Its Mass 

Phenomenologically, a distinction is to be made between three thermodynamic 
conditions under which the gas is in equilibrium. Thermodynamic equilibrium 
states that the fluid particles are homogeneously distributed in the particular 
phase volumes and satisfy there the Boltzmann equation, i.e. the equation of 
kinetic theory. By means of variation of the external parameters, temperature 
and pressure, the mean distance d  between fluid particles, which are 
continually in motion, can be varied; this distance determines the statistical 
mean value of both the thermal energy and the attractive energy of the particles 
in each phase volume and is thus related to the aggregate state of the particular 
fluid mass. In the following, the ratio of the mean distance between fluid 
particles at given temperature, pressure and volume to that assumed at the 
critical state, is denoted as ( )1 3

, , , ,c c cT p v T p v cr d d v v= = . 
1) Above the critical point for pressures cp p≥  and volumes  

cV M v v= >  and below the critical point for pressures cp p<  and volumes 

vv v> , where vv  is the mass-specific volume of vapor, the mass M  exists as a 
gas homogeneously distributed in V . For values 1r > , the averaged kinetic 
energies of all freely moving particles exceed their mutual bindings, which as 
potential attractive energy contributions are to be regarded as negative, so that  
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( ) ( )0 for gaseous mass 1 .U M r> >               (2.1) 

2) Starting from the condition at the critical point [ ], ,c c cT p v , at temperatures 

cT T<  and pressures cp p< , the mass M  disintegrates into a vapor mass 

vM  with particle volume ( )v v v cV M v v= >  and a condensed mass lM  with 
( )l l l cV M v v= < . Under the equilibrium condition 1r <  one has the relations 

v lV V V= +  and v lM M M= + , where v l vM M M M< = −  or  
2v lM M M< < . The internal energy of all freely moving vapor particles is 

positive, i.e. ( ) 0vU M > , and that of the more closely bound, not freely moving, 
condensed particles is negative, i.e. ( ) 0lU M < . The internal energy of the gas 
mass M  is likewise negative owing to the excess of more closely bound 
condensed particles. From ( ) ( ) 1l vU M U M >  one obtains  
( ) ( ) ( ) 0v lU M U M U M= + < . It then follows that  

( ) ( ) ( )0 for vapor mass 1 and condensate mass 1 .U M r r< > <    (2.2) 

3) At the critical point the masses vM  and lM  are equally large, i.e.  
2v lM M M= = . The internal energies are likewise equally large, i.e.  

( ) ( ) ( )2v lU M U M U M= = . Under the condition 1r =  the energy contribu- 
tions of motion and binding cancel out in sum, making it impossible to 
distinguish between positive and negative values, so that ( ) ( ) 0v lU M U M= = . 
At the critical point, however, not only do the values of the internal energies of 
vapor and condensate vanish but, since ( ) ( ) ( )v lU M U M U M= + , the energy 
value of the total fluid mass does as well. The result is  

( ) ( )0 for mass under critical conditions 1 .U M r= =          (2.3) 

The sign of the internal energy U  of the real gas depends on the aggregate 
state of its mass M . The aggregate state, on the other hand, is determined by 
the mean distances d  between fluid particles, which are qualitatively described 
by the value of the relative number , , , ,c c cT p v T p vr d d= . 

3. Macroscopic Energy and Density Fluctuations in the Fluid  
on Approaching the Critical Point 

In a fluid, macroscopic density fluctuations are observed in a narrow temperature 
range before the critical temperature is reached [2]. Andrews discovered these 
for the first time in 1869 when he irradiated a gas (CO2) with visible light 
(wavelengths [ ]7 74 10 ~ 7 10 mλ − −= × × ) and found that the previously tran- 
sparent gas became opaque (within ( ) 310c cT T T−− ≈ ); this phenomenon has 
since been known as critical opalescence. Macroscopic fluctuations of mass 
indicate instability of the gas as the consequence of the vanishing internal energy 

0U =  on approaching the critical point. 
In the following, the physical processes occuring when the gas approaches the 

critical point are investigated. In the course of cooling the kinetic energy of all 
gas particles decreases and at the same time their binding energy increases. This 
also raises the probability that particles with diameters of the order 10−10 [m] 
aggregate to more voluminous mass conglomerations with diameters of light 
wavelengths. From their surfaces the light is reflected and scattered proportionally 
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to 4λ  in different directions. The deflection intensity increases in the course of 
cooling with the number and size of the scattering centres [2]. The illuminated 
fluid appears opaque and does not become transparent again till the critical 
point is reached because there a single aggregate with about 10−2 [m] diameter 
and vapor particles with diameters of less than 10−9 [m] exist from which visible 
light is no longer diffusely scattered. 

The reason why there are mass fluctuations in the scattering range between 
10−6 [m] and 10−4 [m] [2] is associated with the macroscopic fluctuations of the 
internal energy of the real gas at the critical point. The deviation of the 
fluctuating quantity is considered, U U− ; its mean value vanishes owing to 
equally large positive and negative deviations from U , i.e. 0U U− = . As a 
convenient measure of the amount of scatter of the value U  is the mean value 
of the always positive quadratic deviation ( )2

U U− . Because one has 0U = , 
the mean value of the square of the energy fluctuations occurring is [3]  

( ) ( )2 2
0.U U U− = >                    (3.1) 

The square root ( )2
U  gives the standard deviation of U  near the 

critical point. The fluctuations of energy are thermodynamically associated with 
fluctuations of mass. These spread out in the fluid on approaching the critical 
point, becoming stronger and slower because under the condition of decreasing 
pressure in the fluid there is an increasing volume for fluctuations disposable.  

In a Bose gas the phenomenon of critical opalescence is also observed. The 
shining of the gas cloud illuminated by laser light appears immediately before its 
condensation at the critical temperature. 

Cooling of a Bose gas from room temperature to values of the critical 
temperature of 10−6 [K] within minutes occurs through interaction between laser 
light and gas atoms. By virtue of the fact that the ensuing aggregating 
high-energy particles are immediately removed from the available volume V  
there is no coexistent liquid phase. As soon as the low-energy gas particles 
remaining in V  have on average the separation at which attractive and 
repulsive interatomic forces balance one another, the state of vanishing internal 
energy sets in. The enhanced macroscopic energy and particle density 
fluctuations show critical opalescence in the laser light. On the assumption that 
the fluctuations occur above the critical value BECT  at a temperature difference 
of ( ) 3

BEC BEC10T T T−− ≈ ⋅  there is spontaneous condensation of the total gas 
mass at a temperature of just 10−9 [K] before the transition temperature BECT  is 
reached. 

The values of M , V , U  and S  of both the gas and condensate are 
needed to describe the real Bose-Einstein gas. These values are thermodynamically 
defined by the experimental conditions and are given by Equation (7.3) in 
Section 7.  

In 1925 condensation was previously predicted by Einstein for Bose particles: 
in the lowest quantum mechanical state these assume vanishing entropy and take 
up equal, lowest possible energy. The first macroscopic quantum phenomenon, 
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which was interpreted in 1938 by H. London as Bose-Einstein-condensate, is 
suprafluid helium. In 1995 Wieman, Cornell and Ketterle succeeded in the first 
experimental realisations of heavier alkali atoms. The laboratory conditions for a 
Bose-Einstein-condensate (BEC) call for temperatures in the range of 10−6 [K] 
and particle densities of 1020 [part/m3]. The particles are isolated from vessel 
walls in a magneto-optical trap (diameter 10−2 [m]) and then cooled by means of 
laser light ( [ ]75 10 mλ −≈ × ) to get BEC [4]. 

4. Thermodynamic Verification of the Value U = 0 for the  
Internal Energy at the Critical Point 

In accordance with the thermodynamic theory of Willard Gibbs [1] it is possible 
to calculate every thermodynamic property of a real gas. The quantities uniquely 
determining the gas are the absolute values of mass M , volume V , internal 
energy U  and entropy S , which represent the external or extensive 
parameters of the gas system. The likewise absolute quantities, temperature T , 
pressure p  and chemical potential µ , are referred to as intensive parameters. 
They are defined by ( ) ,M VT U S= ∂ ∂ , ( ) ,S Mp U V= − ∂ ∂ , ( ) ,V SU Mµ = ∂ ∂ . By 
measuring the three function values [ ], ,T p µ  one knows the equilibrium state 
of the gas in V , which is also described by Gibbs’s fundamental equation [3]  

0.U Vp ST Mµ+ − − =                    (4.1) 

Although Gibbs’s theory [1] was already known in the scientific world at the 
end of the 19th century and the question of absolute values of U  and S  had 
been posed, apparently few scientists were interested in tackling it. It was Nernst, 
Planck, Boltzmann and physicists in quantum mechanics who solved the 
problem of the thermodynamic reference point for S . The corresponding 
problem for U , on the other hand, remained unsolved [2] [5]. Instead, it 
sufficed to present determinations of arbitrary zero points, e.g. with  

( ) 0l l tS M T =  and ( ) 0l l tU M T =  at the triple point of a liquid without ever 
taking thermodynamic conditions into account. Consequently, inconsistencies 
cropped up; in particular, the free energy U ST−  and the chemical potential 
U ST Vp− +  were indeterminable functions owing to the missing thermody- 
namic reference points, so that the fundamental equation could not be applied to 
every thermodynamic question. Meanwhile the situation has been changed by 
the proof of 0U =  found at the critical point [6]. 

The theory provides the Gibbs-Duhem equations as the sum of the products 
of the extensive parameters and the differentials of the corresponding intensive 
parameters [3]. By enlisting the fundamental equation one then obtains the 
explicit expressions for the internal energy and entropy [3]:  

( )
( )

( )
( ) , ,, ,

and .
1 1 M V M VM V M V

T p T pU M V S M V
T T T T

µ µ∂ ∂ ∂ ∂
= − = − +

∂ ∂ ∂ ∂
 (4.2) 

For the saturated fluid, whose two phases vapor and condensate have the same 
values ( )p p T=  and ( )Tµ µ=  everywhere in V , it is immediately possible 
to give the temperature dependence of the heat capacity:  
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( ) ( ) ( )2 2 2 2, , d d d d d d d d .C M V T U T S T T M T T V p T Tµ= = = − +   (4.3) 

This relation states that in the case of the saturated fluid there is no difference 
between a heat capacity at constant volume and one at constant pressure. 

In the following, it is to be proved once again that the zero value of U  is 
thermodynamically fixed by Gibbs’s theory as 0U =  at the critical point.  

We consider a saturated fluid which according to Gibbs’s phase rule has one 
thermodynamic degree of freedom fewer than the single phase gas and is thus 
theoretically simpler to treat. The saturated fluid with the two phases, vapor and 
condensate, then has the critical density ( )cM V  and the mass-specific critical 
volume ( )c cv V M= . As the fluid values [ ], ,T p µ  in V  are locally equal in 
each of the particular volumes, the two phases can only be distinguished by the 
densities or mass-specific volumes v v vv V M=  and l l lv V M= . In the 
temperature range below the critical point [ ], ,c c cT p v  one has the relations  

( ) ( ) ( ) ( ), ,v l v lM M T M T V V T V T= + = +            (4.4) 

( ) ( ) ( ) ( ) ( ) ( ) 0 for .v v v c c l c l l cv T v T v T v v T v T v T T T T′ ′ ′> > = = > > > < < (4.5) 

The relative mass distributions with the value 1
2

 at the critical point are  

( ) ( )
( ) ( )

( )
( ) ( )

( )10 1.
2

v c l v c l

v l v l

M T v v T v T v M T
M v T v T v T v T M

− −
≤ = ≤ ≤ = ≤

− −
    (4.6) 

In accordance with the masses the values of the internal energy and entropy in 
the partial volumens vV  and lV  are divided as follows:  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,v l v lU M V T U T U T S M V T S T S T= + = +    (4.7) 

where we abbreviate by putting, for example, ( )vU T  instead of 
( ), ,v v vU M V T . The mass-specific quantities are  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,
, , , , , .

v v v l l l

v v v l l l

u v T U M V T M u T U T M T u T U T M T
s v T S M V T M s T S T M T s T S T M T

= = =
= = =

(4.8) 

Whereas u  is a function of the variables v  and T , the quantities vu  and 

lu  are pure temperature functions since, for example, it holds that  
( ) ( ) ( )( ) ( ), , 1, , 1, ,v v v v v v v v v vU M V T M u V M T u v T T u T= = = . 

The quantity ( ),cu v T  can be represented by the quantities ( )vu T  and 
( )lu T  as follows:  

( ) ( )
( )

( )
( )

( ) ( )d d
, .

d 1 d 1
c l v v c lv l

c c v l
v l

v v u v v uT p T M Mu v T v u u
T T M M v v

µ − + −
= − = + =

−
(4.9) 

This representation is possible if, by analogy with Equation (4.2) for U , also 
the functions v v vU M u=  and l l lU M u=  are expressed as  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

d d
,

d 1 d 1

d d
,

d 1 d 1

d d
.

d 1 d 1

v v v

l l l

T p T
U M V

T T

T p T
U M V

T T

T p T
U M V

T T

µ

µ

µ

= −

= −

= −

                 (4.10) 
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The system of Equation (4.10) provides three relations for determining the 
reference value for the internal energy. Discussion of this is conducted through 
the mass-specific quantities u , vu  and lu , whose temperature dependences 
are described as follows:  

( ) ( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )

d d
, ,

d 1 d 1

d d
,

d 1 d 1

d d
.

d 1 d 1

c c

v v

l l

T p T
u v T v

T T

T p T
u T v T

T T

T p T
u T v T

T T

µ

µ

µ

= −

= −

= −

               (4.11) 

The difference ( )v lu u−  yields the Clapeyron-Clausius equation:  

( ) ( ) ( )d d 1 .v l v lu u v v p T T− = − −               (4.12) 

From 0v lv v− ≥  and ( ) ( )d d 1 d d 0p T T p p T T= − <  it follows that  
0v lu u− ≥  and v lu u≥ . At the critical point one has v lu u= , i.e. the value of 

the evaporation energy ( ) ( )v lu u T−  is always positive and vanishes at cT . As 
( ) ( ) ( ) ( ) ( ) ( )d d 1 d d 1v v c l c lu u v v p T T u v v p T T= + − = − − , the value of  

( ),cu v T  is smaller than that of vu  and larger than lu  and at cT  takes the 
value v lu u= , which is denoted here as cu . This gives the relations  

( ) ( ) ( ), for 0 .l c c v cu T u v T u u T T T≤ ≤ ≤ ≤ ≤           (4.13) 

It is now to be shown that 0cu =  is valid. Because the stated extensive and 
intensive parameters are absolute quantities, cu  has an absolute value. It is 
certainly reasonable to assume this to be zero for the time being since otherwise 
choosing a positive or negative value should be physically justified so as not to 
appear arbitrary. With the choice 0cu =  it follows from the three Equation 
(4.11) that  

( )
( )

( )
( )

d d
0 for .

d 1 d 1c c
c c

T p T
v T T

T T
µ

= < =             (4.14) 

This relation can be enlisted as definition of the critical volume,  
( ) ( ) ( ) ( )d d 1 d d 1 0cc c

T T p T T vµ = > . Relations (4.13) then read  

( ) ( ) ( ) ( )d d 1 d d 1l lu T T v p T T uµ= − ≤  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d 1 d d 1 d d 1 d d 1 0
c c

u T T T T p T T p T Tµ µ= − ≤  

( ) ( ) ( ) ( )0 d d 1 d d 1 .v vT T v p T T uµ≤ − =           (4.15) 

If the volume function  

( ) ( )
( ) ( )

( )
( )

d d 1 d
0 for 0

d d 1 d c
T T T

v T T
p T T p T
µ µ

= = > ≤ ≤        (4.16) 

is introduced, one can give as upper and lower limits for v  the temperature  

functions ( )vv T  and ( ) ( )( )1
2 v lv T v T+ , which at cT  have the value cv  and  

with decreasing temperature increase monotonically. This shows that the 
differential quotient of the chemical potential ( ) ( )d d 1T Tµ  is a negative 
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temperature function which with increasing values T  monotonically increases 
to the negative value ( ) ( )d d 1c c

v p T T  at cT .  
The mass-specific energies can thus be put in the simpler form:  

[ ] ( ) ( ) [ ] ( ) ( )d d 1 d d 1 0,l l cu v v p T T u v v p T T= − ≤ = − ≤  

[ ] ( ) ( )0 d d 1 .v vv v p T T u≤ − =                 (4.17) 

It can be shown that the volume function v  can be explicitly represented by 
the following thermodynamic expression [7]:  

( ) ( ) ( ) ( ), ln , .v l v l v l v l l v cv v v v v v v v v v v v v v= = + − − = ≥       (4.18) 

The symmetric occurrence of the variables vv  and lv  in v  marks the 
phase independence of the volume function ( ) ( )d dT p Tµ . The internal 
energies can now be expressed in terms of the measurable quantities p  and 

,v lv :  

( ) ( ) ( ) ( )ln d d 1 ,l v v l v lu v v v v v p T T u = − − ≤   

( ) ( ) ( ) ( )ln d d 1 0,v l v l v l cu v v v v v v v p T T = + − − − ≤   

( ) ( ) ( ) ( )0 ln d d 1 .v l v l v lu v v v v v p T T ≤ = − −          (4.19) 

Energies as extensive parameters can be added and subtracted. From  
( ) ( ) ( ) ( ) ( )2 2 2 lnv v l l v l v l v l v l v lu u u u u u u u v v v v v v − − = + − = + = − − −    

( ) ( )( ) ( ) ( ) ( ) ( )( )d d 1 ln d d 1 0v l v l cp T T u v v v v v p T T − = + − − − ≤   it 
follows in addition to relations (4.13) and (4.19) that  

( ) ( ) ( )1 10 .
2 2v l l v l v v lu u u u u u u u u− − ≤ ≤ ≤ + ≤ ≤ ≤ −        (4.20) 

Particularly interesting is the ratio of vu  to lu , which as a function of the 
volume ratio v lz v v=  assumes universally for every gas values between −1 at 
the critical point and 0 at absolute zero:  

( ) ( )
( ) ( )

ln 1 ln1 0 for 1.
ln 1 ln

l v l v lv v

l v v l v l l

v v v v vu vz z z
u v v v v v z z z v

− − − −
− ≤ = = ≤ = ≥

− − − −
 (4.21) 

From this it follows that the ratio of the phase-specific energies to the 
evaporation energy is likewise universal:  

( )
( )

( )
( )ln 11 ln 10 1.

1 ln 2 1 ln
lv

v l v l

uz z zu z z
u u z z z z u u

−− −− −
≤ = ≤ ≤ = ≤

− − − −
      (4.22) 

It can readily be shown that the internal energy of the saturated fluid  

l vU U U= +  is not positive. Equations (4.4), (4.6), (4.12) and (4.19) yield  
( ) ( )

( ) ( ) ( ) ( ) ( )ln d d 1 0
v l v v l v v l

v v l v l c l

U M M u M u Mu M u u
M v v v v v v v p T T Mu

= − + = + −

 = − − − − = ≤ 
. From this  

one obtains  

( ) ( ) ( ) ( )2 ln d d 1 0,v l v l v l v lu u v v v v v v p T T + = + − − ≤       (4.23) 

( ) ( ) ( ) ( )ln d d 1 0,v l v l v l v l cU U M v v v v v v v p T T Mu + = + − − − = ≤   

1 0 for 0 and 1 0.v v v v v
c

l l l l l

u U u M MT T
u U u M M

− ≤ ≤ = ≤ ≥ ≥ ≥ ≥  
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The above mentioned relations (4.14)-(4.23) are a consequence of fixing the 
critical value 0cu = . If, on the other hand, the assumption 0cu = ∆ ≠  were 
correct, relations (4.13) would read l vu u u+ ∆ ≤ + ∆ ≤ ∆ ≤ + ∆  and a unique 
transformation between thermodynamic parameters would no longer be given; 
one need only think of the functions, free energy and chemical potential, which 
would then remain undetermined because of the constant 0∆ ≠ , whereas it is 
just these functions, which regulate all processes in nature, that should be 
determinable.  

0∆ ≠  is not compatible with the extensivity of U  formulated by Gibbs, but 
it holds that ( ), , 0cU M V T = . This then also means that the absolute tempera- 
ture value ( ), ,U M V T  can be measured. If a cooling process starts at cT  and 
ends at cT T<  and the energy decrease is measured in the form of the heat 
removed from the system by the amount Q∆ , ( ), ,U M V T  is negative and is 
determined from  

( ) ( ) ( )0 , , , , , , .cQ U M V T U M V T U M V T< ∆ = − = −        (4.24) 

( ), ,U M V T  can also be calculated from the heat capacity ( ), ,C M V T . Both 
functions ( ), ,U M V T  and ( ), ,C M V T  have a discontinuity at the triple point 
and increase monotonically as T :  

( ) ( ) ( )

( )

, , d , , d , , d

, , d 0 for 0 .

c c

c

U T

U T
T

cT

U M V T U M V T U M V T T dT

C M V T T T T

= − = −

= − ≤ ≤ ≤

∫ ∫

∫
    (4.25) 

The value of the internal energy of the saturated fluid is negative for cT T< . 

5. Thermodynamic Verification of the Value S = 0 for the  
Entropy at Absolute Zero 

In the context of quantum theory the known Planck form of the Nernst postulate, 
viz.  

0 for 0,S T= =                        (5.1) 

is interpreted as a macroscopic entropy state of a particle system whose value is 
proportional to the logarithm of the number of its realized microstates. At the 
temperature absolute zero the particle system is in the ground state of lowest 
energy, at which it assumes just a single microstate. In the context of the 
thermodynamic theory of Willard Gibbs the result (5.1) can likewise be derived. 

From sT u vp µ= + −  and ( ) ( ) ( ) ( )d d 1 d d 1cu T T v p T Tµ= −  it 
follows in agreement with Equation (4.2) that  

( ), d d d d ,c cs v T v p T Tµ= −                  (5.2) 

where ( ),cs v T  is an integrable temperature function. Integration between 
0T =  and cT T=  with the values 0s  and cs  yields  

( )
( ),

0 ,0 0

d d d d dd d ,
d d d d d

c c c

c

s v T T
c c c cs v

c c

p ps s s v T v s
T T T T T

µ µ − = = − = − =  ∫ ∫    (5.3) 

because the differential quotients d dp T  and d dTµ  vanish at absolute zero, 

0 0lim d d d d 0T p T p T→ = =  and 0 0lim d d d d 0T T Tµ µ→ = = . One therefore 
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gets  

( ) 0 0, , 0 d d d d 0.S M V V p T M Tµ= − =              (5.4) 

The entropy relation analogous to Equation (4.25) is  

( ) ( ) ( )

( )
0 0

0

, , d , , d , , d d

, , d 0 for 0 .

S T

T
c

S M V T S M V T S M V T T T

C M V T T T T T

= =

= ≥ ≤ ≤

∫ ∫

∫
       (5.5) 

6. Relation between the Internal Potential and Thermal  
Energies of the Particle System 

By definition, at a given configuration of a particle system the internal energy 
U  of the system is the sum of the binding or potential energy potU  and the 
kinetic or thermal energy thU  of all interacting particles, i.e. 

, where 0, 0.pot th pot thU U U U U= + < >              (6.1) 

For a certain particle configuration the sum pot thU U+  thus expresses the law 
of internal energy conservation. In turn, with the internal energy value given the 
particle arrangement in the system is fixed and stable. From relations (6.1) it 
follows that  

and .pot th th potU U U U U U U U= − < = − >           (6.2) 

According to relations (2.1)-(2.3) the value of U  depends on the mean 
inter-particle separation r :  

0 for 1, 0 for 1, 0 for 1.U r U r U r< < > > = =         (6.3) 

Relations (6.2) and (6.3) are represented, for example, in Figure 2 of ref. [8] 
for the two-phase water fluid. In this special case it holds that  

0, where 0, 0l v l vU U U U U= + ≤ ≤ ≥             (6.4) 

and  

0 .pot l l v v thU U U U U U U< ≤ = + ≤ ≤ <             (6.5) 

Relations (6.3) and (6.5) are plotted in the volume-vs.-pressure chart of water 
in Figure 3 of ref. [8]. The statement reported there that the isotherm cT  is a 
line 0U =  has to be corrected; instead the isochor cv  is the line with 0U = ; 
this is shown in the following section.  

7. The Conditions U = 0 and S = 0 

As the mass M  in V  can assume both positive and negative values of the 
internal energy, the question of the course of the line 0U =  in the state chart 
arises. In the case 0U =  the mass M  has the entropy value  
( ) ( )v vV p T M T S Vp T M Tµ µ∂ ∂ − ∂ ∂ = = − . These equations yield not only 

the already known relation (4.14) valid at cT T= , but they are also valid along 
the critical isochor ( )cV M , where we have the following relation between 
specific volume V M  and the other intensive parameters, temperature, 
pressure and chemical potential:  
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( ) ( )( ) if 0.cv
T p T V M v v Uµ∂ ∂ = = = =            (7.1) 

This relation can immediately be derived from Equation (4.2). For cp p<  
one has either 0U <  or 0U > . In the case of the saturated fluid it holds that 

0l vU U< <  and relations (4.16) and (4.18) are valid. 
If, on the other hand, the mass M  in V  has the entropy value 0S = , then 

it has the internal-energy value  
( ) ( )( ) ( ) ( )( )1 1

v v
M T T V p T T U M Vpµ µ∂ ∂ − ∂ ∂ = = − . This, in turn, yields 
the Nernst relations (5.4) valid at 0T = :  

( ) ( ) ( )0 , 0 , d d d d if 0.v v vT p T T p T V M Sµ µ− ∂ ∂ = ∂ ∂ = − = =  (7.2) 

The arrows of µ  in Figure 9.4 and Figure 9.5 of ref. [3] have to be put in the 
opposite direction to get the correct relation d d 0pµ < , since for cT T<  the 
chemical potential µ  is a negative and concavely curved function of pressure 
p  [6]. 

The thermodynamically established result 0U =  states that the statistical 
mean value of the internal energy of a particle system vanishes under the 
condition of equal energy contributions of binding and repulsion. The same 
result must be afforded by quantum mechanical calculation of stationary energy 
states of a particle system because thermodynamics and quantum mechanics are 
based on the same suppositions when treating a particle system, viz. the 
conservation of energy and momentum and application of statistical laws [3] [9]. 
Cohesion of all system particles is accomplished by interatomic interaction of 
the particles, which are continually in motion. Quantum mechanical calculation 
of the stationary and stable energy states provides as result the revealing picture 
of discrete energy steps arranged above one another. The lowest energy step 
constitutes the ground state of the particle system and the energy levels above 
specify the particle system completely. A particle system is then in the ground 
state of lowest energy when its cohesion by binding energy is maximal and the 
kinetic energy components are minimal. A particle system may consist of a 
single atom or a multitude of particles. For example, a Bose-Einstein- 
condensate. From a statistical point of view, bosons are to be treated as 
undistinguishable particles; consequently, the sum of the lowest particle energy 
of N condensed bosons, viz. Nuboson < 0, yields the zero-momentum, ground 
state energy of the particle system BEC, which is negative and denoted by BECU . 
If thermal energy is supplied to a structured particle condensate which can 
absorb it in discrete energy quanta and step by step can then change the 
arrangement of its particles, with sufficient excitation energy the energy level is 
reached at which the binding and excitation energies have equal values and 
particle cohesion is no longer given. This energy level is assigned the internal 
energy zero. Above this level system particles move freely and have positive 
internal energy.  

The energy zero of a particle system, 0U = , is determined by the transition 
from the bound state particles to freely moving particles. In relation to the 
number N  of a particle system, the negative energy value of the condensate is 
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low for a quantum system with 1 100N = → , which may be quantum 
mechanically calculated, and high for a macroscopic system with N  of order 
Avogadro numbers, which can only be treated by thermodynamic methods. In 
other words, the energy reference value 0U =  is the same for both the 
microscopic and macroscopic energy scales. 

Thermodynamically, the decisive energy transitions in the case BEC can be 
described as follows: The cold gas mass M  of critical temperature BECT  is 
contained in the volume gasV  and has the critical density gas gasM Vρ = . The 
presence of critical opalescence indicates the state gas 0U = . Under this 
condition M  condenses into the volume BEC gasV V< . The BEC state is denoted 
by the density BEC BEC gasM Vρ ρ= > , lowest energy BECU  and vanishing 
entropy BEC 0S = . BECT  is the lowest, experimentally attainable temperature 
value. At BECT  the state of the condensate is more stable than that of the cold 
gas because in thermodynamic equilibrium the free energy BECF  is lower than 

gasF . From [ ]BEC gas BEC BEC BEC gas gas BEC0 F F U S T U S T > − = − − −   it follows that 

BEC gas BEC 0U S T< − < , i.e. the internal energy of the condensate BECU  is 
negative and, because BEC gas0U U< = , gives the lowest energy value of the Bose 
gas. Conversely, the evaporation energy ( ) gas BEC 0U M U U∆ = − >  has to be 
provided to bring M  from the condensed to the gaseous state. In thermody- 
namic terms the experimental conditions at BECT  are as follows:  

( ) gas gas critical0 if is gaseous and ,U M U M V M v= = =        (7.3) 

( ) ( )BEC 0 if is a condensate and 0,U M U M S M= < =  

( ) gas BEC 0 if the condensate mass evaporates.U M U U M∆ = − >  

Exact knowledge of all properties of the real Bose-Einstein condensate is a 
prerequisite to its experimental realisation. This can only be gained on a 
quantum statistical basis. The value BECT , for example, is quantum mechanically 
calculated as [4]:  

( )

2 2 3

BEC 2 3
2π
3 2

nT
mkζ

=
  

                   (7.4) 

with ( ) ( )3 2 2.612, , particle mass,n M V m mζ = = =  

( )2π Planck constant, Boltzmann constant.h k=  

Relations (7.3) give the signs of the energy of the condensate (BEC) and of the 
energy expended on evaporation. 

8. Results and Discussion 

Gibbs formulated (1873) the Thermodynamic Theory on the properties of 
matter [1] just a few years after Andrews’s pioneering observations (1869) and 
prior to the development of quantum physics (as of 1900). Enlisting statistical 
laws, the theory allows correct description of macroscopically perceived matter, 
a system composed of a very large number of atomic or molecular particles. 

Gibbs investigated the thermodynamic equilibrium of the particle mass M  
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in a volume V . The thermal properties of the system are characterised by 
introducing an internal energy U  and entropy S  (Equation (4.2)), and the 
temperature T , pressure p  and chemical potential µ  are defined by partial 
derivatives of U  and S . The fundamental equation ( ), ,V V M U S=  is 
solved by means of Equation (4.1) in the explicit form 0U Vp ST Mµ+ − − = . 
From this follow the negative sign of the free energy,  

0F U ST M Vpµ= − = − <  (because of 0T ≥ , 0p ≥ , 0µ < ), and the relation 
U ST< , which can be satisfied by the relations 0 U ST≤ <  or 0U ST< ≤ . 
For example, in the state chart [ ( ),p T v -vs.- v ] of a fluid, the ranges of existence 
of 0U <  and 0U ≥  are separated from one another, on the one hand, by the 
critical isochor cv  and, on the other hand, by the vapor volume line vv  at the 
boundary of the two-phase region; both lines meet at the critical point. In the 
regions of 0U ≥  with, respectively, [ ],c cp p v v≥ ≥  and 0U >  with  
[ ],c vp p v v< >  the mass exists as a gas, while in the adjacent regions of 0U <  
the mass shows more or less distinct structures. Along the line cv  the fluid has 

the mean energy value 0U U= =  and shows near the critical point large 

fluctuations ( )2
U , which become detectable as macroscopic density fluctu- 

ations. Crossing the line cv  from 0U >  to 0U <  occurs at a continuous 
change in energy 0U∆ >  to be removed and crossing the line vv  requires that 
the energy 0v lU U U U∆ = − = − >  be extracted from the fluid. The values of 
the internal energy of vapor v v vU M u=  and condensate l l lU M u=  on the 
saturation lines of the two-phase region can be given in acccordance with 
Equations (4.6) and (4.19) as functions of the measured values of the vapor 
pressure ( )p T  and densities of the condensate ( )1

lv T−  and vapor ( )1
vv T− , 

and can be calculated absolutely. One obtains 0l vU U< <  for cT T<  and 
0l vU U U= = =  for cT T= . For cT T< , the value of the internal energy of the 

two-phase fluid is always negative, 0l vU U U= + < . 

Because the ratio v lu u  can be given as an analytic function of the argument 

v lz v v= , its evaluation according to Equation (4.21) at the same z  is equal for 
every gas and yields the values −1 at the critical point and 0 at absolute zero. It 
thus follows that the energy ratios ( )0 1 2v v lu u u≤ − ≤ ,  

( )1 1 2l v lu u u− ≤ − ≤ −  and ( ) ( )1 0v l v lu u u u− ≤ + − ≤  can also be universally 
represented as functions of z  for every gas.  

The entropy values of the two-phase fluid can likewise be calculated absolutely 
in acccordance with Equations (4.3), (4.23) and (5.5) from the heat capacity data 
( ), ,C M V T .  
The following four observations are an indication of the thermodynamic zero 

of a real gas becoming evident: 1) above [ ], ,c c cT p v  macroscopic density 
fluctuations appear within a very narrow temperature range (critical opalescence), 
2) at [ ], ,c c cT p v  the mass decomposes into a vapor component with density 
lower than before and a condensate component with higher density, 3) at 
[ ], ,c c cT p v  any heat of evaporation vanishes, and 4) below [ ], ,c c cT p v  an 
interface layer between vapor and condensate appears where on approaching 
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cT T→  the surface tension of the condensate decreases asymptotically to 0. The 
relation ( ), , 0c c cU T p v =  is thus experimentally proved.  

The fundamental Equation (4.1) is valid not only for a gas conforming to the 
Maxwell-Boltzmann statistics, but also for a gas subject to the Bose statistics. The 
statement that the internal energy of a condensate is negative therefore also 
applies to the internal energy of the Bose-Einstein condensate. The quantum 
mechanical, microscopic and thermodynamical, macroscopic formulations of 
the internal energy are then only valid if the two energy scales have the common 
absolute energy reference value 0. The energy values above 0 are positive and 
those below 0 negative. A system whose particles are homogeneously distributed 
in the volume available has in the ground state the smallest interparticle distance 

mind , or equivalently, the number min 1r < , the smallest entropy and the lowest 
energy. By virtue of this most dense particle arrangement the contribution of the 
binding energy to the internal energy is maximal, and since binding energy is 
negative energy it constitutes the lowest energy of the system. In an excited state 
the corresponding discrete energy level is higher. As the energy level increases 
stepwise, the boundary to the continuum of positive energies is reached; this 
boundary is assigned the energy value 0, at which the energy contributions by 
attractive, binding inter-particle forces and repulsive forces are equal. The 
system is then in the critical state with the critical value 1r = . The critical value 

0U =  is the common boundary value 0 of the microscopic and macroscopic 
energy scales. In the case of a Bose gas, the energy values at the critical transition 
temperature BECT  are zero for the gas and negative for the Bose-Einstein 
condensate and above BECT  they are positive. A macroscopic system has the 
thermodynamically determined energy zero at the critical point [ ], ,c c cT p v . At 
the lowest temperature the lowest system energy is equal to the negative value of 
the heat of vaporization. 
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