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Abstract 
A recent review publication presented an extensive and comprehensive as-
sessment of the phenomenological relations of Poisson’s ratios (PRs) to the 
behavior and responses of contemporary materials under specific loading 
conditions. The present review and analysis paper is intended as a theoretical 
mechanics complement covering mathematical and physical modeling of a 
single original elastic and of six time and process (i.e. path and stress) depen-
dent viscoelastic PR definitions as well as a seventh special path independent 
one. The implications and consequences of such models on material characte-
rization are analyzed and summarized. Indeed, PRs based on experimentally 
obtained 2-D strains under distinct creep and/or relaxation processes exhibit 
radically different time responses for identical material specimen. These re-
sults confirm the PR’s implicit path dependence in addition to their separate 
intrinsic time reliance. Such non-uniqueness of viscoelastic PRs renders them 
unsuitable as universal material descriptors. Analytical formulations and ex-
perimental measurements also examine the physical impossibility of instan-
taneously achieving time independent loads or strains or their rates thus 
making certain PR definitions based on constant state variables, while ma-
thematically valid, physically unrealistic and unachievable. A newly developed 
theoretical/experimental protocol for the determination of the time when 
loading patterns reach stead-state conditions based on strain accelerations 
demonstrates the capability to measure this time from experimental data. Due 
to the process dependent PRs, i.e. stress and stress history paths, the non-exi- 
stence of a unique viscoelastic PR and of a universal elastic-viscoelastic cor-
respondence principle or analogy (EVCP) in terms of PRs is demonstrated. 
Additionally and independently, the required double convolution integral  

 

 

*Professor Emeritus of Aerospace Engineering and Senior Academic Lead for Computational Struc-
tural/Solid, Mechanics at NCSA. Fellow of the American Institute of Aeronautics and Astronautics 
(AIAA) and Fellow of the American Society for Composites (ASC).  

How to cite this paper: Hilton, H.H. 
(2017) Elastic and Viscoelastic Poisson’s 
Ratios: The Theoretical Mechanics Pers-
pective. Materials Sciences and Applica-
tions, 8, 291-332. 
https://doi.org/10.4236/msa.2017.84021 
 
Received: January 31, 2017 
Accepted: April 27, 2017 
Published: April 30, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/msa
https://doi.org/10.4236/msa.2017.84021
http://www.scirp.org
https://doi.org/10.4236/msa.2017.84021
http://creativecommons.org/licenses/by/4.0/


H. H. Hilton  
 

292 

construction of linear viscoelastic constitutive relations with the inclusion of 
PRs is cumbersome analytically and computationally needlessly highly CPU 
intensive. Furthermore, there is no theoretical fundamental hint as to what 
loading path is required to produce a unique universal viscoelastic PR defini-
tion necessary for formulating a PR based constitutive relation or an EVCP 
protocol. The analysis associated with an additional Class VII viscoelastic PR 
establishes it as a universal representation which is loading path and strain 
independent while still remaining time dependent. This Class PR can be the 
one used if it is desired to express constitutive relations in terms of PRs, sub-
ject to the caveat applying to all PR Classes regarding the CPU intensiveness 
in the time space due to triple product and double convolution integral con-
stitutive relations. However, the use PRs is unnecessary since any set of ma-
terial behavior can be uniquely and completely defined in terms of only mod-
uli and/or compliances. The mathematical model of instantaneous initial 
loading paths, based on Heaviside functions, is examined in detail and shown 
to lead to infinite velocities and accelerations. Additionally, even if non-ins- 
tantaneous gradual loading functions are employed the resulting PRs are still 
load and load history dependent. Consequently, they represent specialized PR 
responses applicable and limited to those particular load and history combi-
nations. Although the analyses contained herein are generalized to non-ho- 
mogeneous linear viscoelastic materials, the main focus is on PR time and 
process dependence. The non-homogeneous material results and conclusions 
presented herein apply equally to homogeneous viscoelasticity and per se do 
not influence the results or conclusions of the analytical development regard-
ing viscoelastic PRs. In short, these PR analyses apply to all linear viscoelastic 
material characterization. 
 

Keywords 
Elastic and Viscoelastic Poisson’s Ratios (PRs), Transient Load Build up,  
Viscoelasticity, PR Nonlinearities, PR Categories, Loading History PR  
Dependence 

 

1. Introduction 

A recent review publication [1] presented an extensive and comprehensive asse- 
ssment of the phenomenological relations of Poissons ratios (PRs) [2] [3] to the 
behavior and responses of contemporary materials under specific loading con- 
ditions. The present review and analysis paper is intended as a theoretical me-
chanics complement covering mathematical and physical modeling of a single 
original elastic and of six time and process (i.e. path and stress) dependent vis-
coelastic PR definitions as well as a seventh special path independent one. 

Viscoelasticity had its origins with the seminal studies of Kelvin, Maxwell, 
Voigt, Boltzmann and Volterra during the period of 1865 to 1913 [4]-[11]. 
However, it did not start to flourish until the mid 1940s when general constitu-
tive relations and elastic/viscoelastic correspondence principles (EVCP) were 
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starting to be developed [12]-[17]. These works were followed by the works in 
the partial listings of Refs. [18]-[78]. There remain two major contentious issues 
regarding viscoelastic PRs [79]-[104] and both, while summarized in this sec-
tion, are analyzed and discussed in detail subsequently.  

1) PR dependence on time and on stress and/or strain history 
These are two separate phenomena. For instance, in linear viscoelasticity 
moduli, compliances, relaxation and creep functions are only time depen-
dent, while all PRs except Class VII are both implicitly time dependent and 
stress history (path) dependent. The time dependence of viscoelastic PRs 
was firmly established experimentally over twenty years ago [79] and yet 
archival journals continue to publish analyses based on constant viscoelastic 
PRs. See [85]-[91] for a partial list of such references. For over half that pe-
riod, it has been analytically established that these same viscoelastic PRs are 
not only time dependent but also functions of stresses and stress histories. 
Thus making them non-unique quantities unsuited for viscoelastic material 
descriptors [85]-[91]. Additionally, as has been analytically proven that 
some PR classes fail to produce expressions in terms of PRs leading to 
comprehensive elastic-viscoelastic correspondence principles (EVCPs) [14] 
[16]. Also see Table 1. This is in contrast to isotropic and anisotropic linear 
viscoelastic constitutive relations based on moduli or compliances, but 
without PRs, which under the same conditions and for identical materials 
indeed rise to produce EVCPs in their own right. 

2) Contributions of the loading phase in determining material properties 
The importance of starting loading phases on subsequent viscoelastic res-
ponses and consequently on material characterization (moduli/com- 
pliances) has been demonstrated through analytical simulations in [95], 
[96] and through experimental investigations in [97]-[104]. Less restrictive 
conclusions based on the “en-times-rule” have been reached in [105] [106] 
[107] [108] based on comparisons of strain responses. While such approxi- 
mations may be satisfactory for long time stress analyses, the neglect of 
loading phases produces significant errors in viscoelastic characterizations 
[95] [96]. In [53] it is stated that measurements of the loading times 1t  are 
subject to errors with larger errors corresponding to shorter 1t  times. The 
analysis is based on constant stress loadings without inclusion of loading 
cycles in the data analysis. 

In [109] and [110] the loading cycles are taken into account when experi- 
mentally determining Class I PRs. References [111] [113] [114] [115] are recent 
examples of experimental viscoelastic PR characterizations. These references, as 
well as [1] and [87] [88] [90], include extensive bibliographies that are not re-
peated here. However, these publications as well as others do not take into ac-
count the significant contributions and specializations of PR loading path de-
pendences. 

Finally, it is important to note that experimental determinations of viscoe-  
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Table 1. Viscoelastic Poisson’s ratios and the EVCP. 

Class Name Viscoelastic 
Path  

Dependent 
EVCP 

  Poisson’s Ratio ( ), 1≠ ≠i j j  pendent  

I Original [2] [3] ( )
( )
( )

,
, def

,
jjI

ij
ii

x t
x t

x t
ν −




 YES NOI 

II ( )ii x  only ( )
( )
( )

,
, def

,
jjII

ij
ii

x t
x t

x t
ν −




 YES 

YES, but  
limited 

 1-D [29] [64] ( ), 1≠ ≠i j j   
to ( )11 x  

onlyII 

III 
LT or FT [29] 

[87] 
( )

( )
( )

,
, def

,
jjIII

ij
ii

x
x

x
ω

ν ω
ω

−



 YES YES & NOIII 

IV Hencky [75] ( )
( )
( )

log 1 ,
, def

log 1 ,
jjIV

ij
ii

x t
x t

x t
ν

 + −
 + 




 YES 

NO,  
nonlinearIV 

V Velocity [76] ( )
( )

( )

,
,

def
,

jj
V
ij

ii

x t
x t t

x tt
t

ν
∂

∂ ∂−
∂∂

∂




 YES NOV 

VI ( )11 xσ  only ( )
( ) ( )
( ) ( )

11 11

1
11

,
, def

,
jjVI

j

C x t x
x t

C x t x
σ

ν
σ

−  YES 
YES, but li-

mited 

 1-D [90] See Note VI below.  
to ( )11 xσ  

onlyVI 

VII 
pseudo  
PR not 

( ) ( )
( )

11

1

,
, def

,
jjVII

j

C x
x

C x
ω

ν ω
ω

−  NO YESVII 

 
based on 
strains 

   

NOTES: All PRs depend on time, stresses and stress-time histories, and these results apply equally to ho-
mogeneous and nonhomogeneous media. None of the PRs represent universal material properties as they 

are path dependent, i.e. ( ) ( ), , , ,  ij i j iix t x t x t i jν ν σ ≡ ≠   
I Not in proper form in FT space for EVCP. See 

Table 3. II See the Section “The physics of time invariant stresses, etc.” for the physical difficulties associated 

with achieving constant strains or stresses or constant rates for 0 t≤ ≤ ∞ . III Inverse FT has double convo-
lution integral in t  space. See Eqs. (32) for some physically unattainable forms, which do not lead to 
EVCP. IV Based on natural strains and, therefore, nonlinear. V Similar EVCP difficulties as Case I. VI If and 

only if ( ) ( )* , d ,
t

ijkl ijklC x t t t C x t
−∞

′ ′− =∫ . See Section “The physics of time invariant...” VII The Class VII PRs 

are path and strain independent and only functions of time. 

 
lastic PR time functions are based on specific loading or strain histories and, 
consequently, are limited to those conditions and are non-exportable to other 
loadings, since viscoelastic PRs are path dependent and hence non-unique as 
seen in Figure 1. In this figure, distinct PRs are displayed that were obtained 
from experimental strain data under different loading conditions on identical 
material specimen. Similar multiple PR time functions were reported in [113].  

The Class VII PR definition avoids loading path dependence problems, but 
still leads to double convolution integrals in the time space that are extremely 
CPU intensive. 

A recent paper [114], while not directly related to elastic PRs, analyzes the ef-
fects of geometry on changes in stress directions and demonstrates how usual  
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Figure 1. Case I Poisson’s ratios based on creep and relaxation experiments [102]. 

 
tension strains can reverse direction, a phenomenon which the authors denote 
by “negative stiffness.” 

In [94] an analysis is presented on how to interpret loading over-and under- 
shoots when extracting viscoelastic material properties from experimental data. 
An ancillary benefit is provided by demonstrating the importance of including 
loading phases in any analysis to determine viscoelastic material properties. 
Thus reinforcing the theoretical quasi-static and dynamic analysis results of [95] 
[96] that detail analytically the important effects of loading start-up phases on 
material characterizations. 

However, as it is shown in [97]-[104] the entire issue of viscoelastic PRs can 
be by-passed by formulating 3-D analytical and experimental material chara- 
cterizations in terms of 1-D loadings, and shear and bulk relaxation moduli or 
creep compliances. These characterizations are accomplished in either real time 
or Fourier or Laplace integral transform spaces and specifically include the asso-
ciated loading cycles and totally steer clear of viscoelastic PR use. They are based 
on measurements of time, the 1-D stress and the 2-D strains and lead to univer-
sal viscoelastic material characterizations.  

Comment 1. Aside from Poisson’s great native genius, what made his na-
mesake ratio universally accepted and most useful is that for all but seven 
decades of its two century existence the application were limited to elastic 
materials where for each of them it is a distinct constant. Unfortunately, 
nature was significantly less kind and far less magnanimous when it comes 
to viscoelasticity.  

Detailed analyses and discussions of the above topics are presented in subse-
quent sections.  
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2. Linear Analysis 
2.1. General Considerations 

Elastic and viscoelastic constitutive relations based on moduli and/or compli- 
ances are derived from fundamental principles, i.e. the thermodynamic laws 
pertaining to energy and entropy [17]. Thus, moduli and compliance parameters 
are thermodynamic derivatives in the same manner as for instance specific heats, 
etc. 

In linear elastic materials moduli and compliances are time, path and stress 
independent and stress-strain relations involving PRs must be and are derived 
from these basic equations. Furthermore, in elasticity where PRs are constants 
and constitutive relations are algebraic, PRs are unique material properties and 
derivations are a straight forward matter. 

In viscoelastic media where PRs are time, stress and stress history (path) de- 
pendent and where stress-strain relations involve time integrals multiple com- 
plications arise. For one, numerous PR definitions are possible and derivations 
may be carried out in either time space or in the integral transform space yield-
ing in some instances mutually exclusive results and PR definitions. Secondly, 
since viscoelastic media dissipate energy loading histories take on prime impor-
tance and must be considered [95]-[104].   

Figure 2 is a schematic representation of a loading path and moduli at various 
temperatures. The indicated times represent the following: 0t  is the time when 
relaxation begins, 1t  the time time when loading reaches the desired steady- 
state condition and t∞  the beginning time when the fully relaxed modulus 
starts. Clearly, the time at which the same loading path intercepts the modulus 
varies with temperature thereby eliciting distinct responses. Secondly, and 
equally importantly, if the buildup loading path from 10 t t≤ ≤  is altered or if 

1 0<t t , then the viscoelastic responses will change accordingly [95]-[104]. In 
[105] it is stated that transient rise times do not influence characterization if data 
is collected after ten times the rise time 1t . However, such an approximation 
ignores the relation of the rise time to the time 0t  when relaxation and/or creep 
begin-see Figure 2 and is not born out by either the subsequent exact analytical 
simulations of [95] and [96] or the experimental results presented in [97]-[104]. 
The rise time phenomenon is analyzed in detail in a later section. 

The PR analyses and formulations are generalized to non-homogeneous linear 
viscoelastic materials, however the main focus is on PR time and process depen-
dence. The results apply equally to homogeneous viscoelastic media and PRs are 
path dependent for either homogeneous or non-homogeneous viscoelastic me-
dia. 

Table 1 and Table 2 depict the various PR definitions of the six listed catego-
ries (classes) in real time space or in integral transform space. All are implicitly 
path (stress history) dependent, while Classes II and VI are implicitly so being 
respectively functions of constant strain and of constant stress loadings. Class IV 
involves a nonlinear definition involving natural strains and thus inapplicable to 
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linear viscoelasticity. 
Thus, while some of the viscoelastic PR models are defined in terms of con- 

sistent mathematical transient loading models, which are physically unattaina-
ble, they fail to translate into realistic and observable physical entities. 

It will be shown that PRs, although extremely important in elastic material 
characterizations because there they are constants for each material, are not 
fundamental viscoelastic quantities in the same sense as relaxation moduli and 
creep compliances. Instead, they are multiply defined process dependent quan- 
tities as detailed in Table 1 and Table 2 and not interchangeable between divers 
loading conditions. Consequently, viscoelastic material characterizations are best 
expressed in terms of moduli or compliances [87] [88] [89] [90].   

2.2. Elastic PRs and Constitutive Relations 

Since elastic conditions form the ICs of any viscoelastic formulation and to 
properly establish EVCPs, it is necessary to first review pertinent elastic PR de-
velopments. Consider a Cartesian system with coordinates ix , with 1,2,3i =  
and where { }1 2 3, ,x x x x= . The Einstein tensor notation is applied with pairs of 
repeated indices indicating summation and underlined ones signifying no sum-
mations. Isotropic and anisotropic elastic material behavior may be characte-
rized in terms Young's moduli EE , moduli E

ijklE , shear EG  and bulk EK  
moduli, compliances E

ijklC  and PRs E
ijν  [117] [118] [119] [120] [121]. In linear 

homogeneous elasticity each of these parameters are constants uniquely asso-
ciated with elastic material behavior. The PRs in question are the original legacy 
Class I ones  
 

 
Figure 2. Schematic of typical viscoelastic moduli and loading pattern. 
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Table 2. Viscoelastic Poisson’s ratio definitions in time and Fourier transform (FT) [116] 
spaces. 

Class Time Space PR ( )( ), ,≠ ≠ijν x,t i j i j  FT Space PR ( )( ), ,≠ ≠ijν x,ω i j i j  

I ( ) ( )
( )
( )

,
, , , , def

,
jjI

ij kk ij
ii

x t
x t x t x t

x t
ν σ ν  = − 




 ( )

( )
( ) ( )

,
, exp d

,
jjI

ij
ii

x t
x t t

x t
ν ω ιω

∞

−∞

= − ∫



 

II ( )
( )
( )

,
, def jjII

ij
ii

x t
x t

x
ν −




 ( )

( )
( )
,

, jjII
ij

ii

x
x

x
ω

ν ω = −



 

 ( ) [ ], 0,ii x t∈ ∞  mathematically OK, 
but step function physically  

unachievable 

III ( )
( )
( )

( ),
, e d

,
jj tIII

ij
ii

x
x t

x
ιω

ω
ν ω

ω

∞
−

−∞

= − ∫



 ( )

( )
( )

,
, def

,
jjIII

ij
ii

x
x

x
ω

ν ω
ω

−



 

 alternate equivalent definition (67) - (74): see Eqs. (36) for lack of proper 

 ( ) ( ) ( ), def , , d
t

III
jj i j iix t x t t x t tν

−∞

′ ′ ′− −∫   
equivalent physical relation in t  

space 

IV ( )
( )
( )

log 1 ,
, def

log 1 ,
jjIV

ij
ii

x t
x t

x t
ν

 + −
 + 




 ( )

( )
( )

( )
log 1 ,

, e d
log 1 ,

jj tIV
ij

ii

x t
x t

x t
ων ω

∞

−∞

 + = −
 + 

∫



 

V ( )
( )

( )

,
,

def
,

jj
V
ij

ii

x t
x t t

x tt
t

ν
∂

∂ ∂−
∂∂

∂




 ( )

( )

( )
( )

,
d, e

,

jj

tV
ij

ii

x t
ttx

x t
t

ιων ω
ιω

∞

−∞

∂

∂= −
∂

∂

∫




 

VI ( )
( )
( )1

1111

,
, def

,
jjVI

j

C x t
x t

C x t
ν −  ( )

( )
( )

( )

1111

,
, e d

,
jjii tVI

ij

C x t
x t

C x t
ιων ω

∞

−∞

= − ∫  

 for ( )11 xσ  only, all other 0ijσ =  same physical restriction as Class II 

 for [ ],t∈ −∞ ∞  or [ ]0,t∈ ∞  
plus 11σ  must be time independent 

over 
  the entire time interval t−∞ ≤ ≤ ∞  

VII ( ) ( ) ( )11 1, , , dVII
jj jC x t x t t C x t tν

∞

−∞

′ ′ ′= − −∫  ( ) ( )
( )

11

1

,
, def

,
jjVII

j

C x
x

C x
ω

ν ω
ω

−  

 this Class should be the PR of choice as it 
is path independent and hence  

universal 

 
defined1 in [2] and [3] as the ratio of two isothermal orthogonal strains2 or  

( )
( )

,
def with   , 1, 2,3  and   

,
jjI

ij ij
ii

x t
i j i j

x t
ν ν= − = ≠




         (1) 

The anisotropic homogenous elastic constitutive relations read   

( ) ( ) ( ) ( ) ( ) ( )

thermal
strain

, , , and , , ,E E E E E E
ij ijkl kl ij ij ijkl kl ijx t C x t x t x t E x t x tσ α ϑ σ α ϑ = + = − 

�������

  (2) 

with ( ) ( ) ( )0, , ,x t T x t T x tϑ = −  where 0T  is a reference temperature when the 
thermal trains are zero. In the isothermal cases ( ), 0x tϑ = . 

In particular, for a 1-D loading 11 0σ ≠  and all other 0ijσ =   

 

 

1For definitions of five other PR Classes or Categories see [88], [90] and Table 1 and Table 2. 
2For example in a 1-D stress field with 11 0σ ≠ , the strain 11  is the one in the loaded direction and 

22  is the transverse strain component.  
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( )11 11
1 11

1111

  with   2,3 for  , 0, all other 0
E E
jj jjE

j ijE E

C C
j x t

C C
ν σ σ= − = − = ≠ =    (3) 

with the E
ijklC  equal to constants that are specific to each elastic medium. Gen- 

erally 11
E E
jjC C≠  except when 1E

ijν = − . 
However, for non-homogeneous elastic materials the usually constant 1-D 

PRs become spatial functions with values depending still on distinct material 
properties but also additionally on the position { }1 2 3, ,x x x x=  within the elas- 
tic body, such that Eqs. (3) turn into [85]   

( )
( )
( )

( )11
1 11

1111

with   2,3   for 0, all other 0
E
jjE

j ijE

C x
x j x

C x
ν σ σ= − = ≠ =    (4) 

For linear homogeneous elastic media, it can be readily proven that  
1 0.5E

ijν− ≤ ≤  see [117] to [121]. However, in non homogeneous elastic bodies 
no such restrictions apply [85]. Nor is the PR an absolute constant for each iso- 
tropic isothermal non-homogeneous elastic medium, but rather varies spatially 
in a manner similar to the corresponding moduli and compliances [85]. 

Table 3 and Figure 3 display the various moduli for the isotropic isothermal 
homogenous elastic media based on Hooke’s law. These are seen to vary from an 
incompressible material at 0.5Eν =  to a rigid one in shear with only tension or 
compressive strains at a PR of 1. Parenthetically, one must add that these limits 
do not apply in linear viscoelasticity, except at 0t =  for those viscoelastic me-
dia that have elastic initial conditions.  

It can be further demonstrated that for linear elastic media, the following hold 
true  

( ) ( )
( ) ( )

3
1

E
E

E E

G x
E x

G x K x
=

+
                    (5) 

( ) ( )
( )

( ) ( )
( )

and
1 2 2 1

E E
E E

E E

E x E x
K x G x

x xν ν
= =

−  + 
           (6) 

and similar relations for the Lamé parameters (constants)  

( ) ( ) ( )
( ) ( )

( ) ( )and
1 1 2

E E
E E E

E E

x E x
x x G x

x x
ν

λ µ
ν ν

= =
   + −   

        (7) 

Alternate elastic constitutive relations are obtained by inverting the set (2) 
which yields  

( ) ( )
( ) ( )

( ) ( )(

( ) ( ) ( ) ) ( ) ( )
( )

11 11

22 33

, 1 ,
1 1 2

,
              ,

1 2
1with 1
2

E
E E E

E E

E
E E E

E

E

E x
x t x x t

x x

E x x t
x x t x

x

σ ν
ν ν

αϑ
ν

ν

ν

 = −    + −   

 + + +  −

− ≤ <



          (8) 

( ) ( ) ( )12 12, 2 , etc.E E Ex t G x x tσ =                   (9) 
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Table 3. Relations between isotropic linear elastic moduli and Poisson’s ratios. 

PRE KE EE GE 

0.5 ∞  3 EG  3EE  

0 2E EE G=  2 E EG K=  2 2E EK E=  

−0.5 2 2E EE G=  2 E EK G=  2 E EK E=  

−1 3EE  3 EK  ∞  

 

 
Figure 3. Elastic moduli and Poisson’s ratio. 

2.3. 3-D Hooke’s Law and Poisson Ratio Induced Nonlinearities 

In linear 1-D elasticity, the isotropic isothermal Hooke’s law simplifies to  

( ) ( )
( )

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )

11
11 11

11

11

1122 11

,
, ,

,
,

,

, 1

E
E E E

E

E E
E
jj E

E E E

E E

x t
x t C x x t

E x

x x t
x t

E x

x C x x t

C x x t j

σ
σ

ν σ

ν σ

σ

= =

= −

= −

= ≠



                (10) 

where EC  is the elastic compliance. 
Furthermore, in conservative linear systems Maxwell's reciprocal theorem 

[117] [118] [119] applies and the loading order is immaterial for linear elastic 
media. Therefore, in 2 or 3-D linear isotropic elasticity the strain 11

E  is deter- 
mined by assuming or prescribing that 11

Eσ  is applied first and then followed by 
the other two normal stresses. As derived in [118], geometric considerations re-
veal the inherent PR nonlinearities based on a linear elastic Hooke’s law  



H. H. Hilton 
 

301 

( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

22 3311 11
11

longitudinal transverse stress contributions, longitudinal stress
linear term linear term influence,

nonlinear term

, ,, ,
, 1

E E EE E
E

E E E

x x t x tx t x t
x t

E x E x E x

ν σ σσ σ

= = =

 +   = − + 
  ������� ��������������������� � �



( )
( )

( ) ( ) ( )
( )

( )
( )

22 3311 11

linearization term

, ,, ,
for 1

E E EE E

E E E

x x t x tx t x t
E x E x E x

ν σ σσ σ + ≈ −

���� �����

���������

�

   (11) 

Taking the FT of these linearized isotropic elastic constitutive relations yields  

( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )

22 3311 11
11

linearization term

1111 11 1122 22 33

, ,, ,
, for 1

, , ,

E E EE E

E E E

E E E E E

x x xx x t
x

E x E x E x

C x C x x

ν σ ω σ ωσ ω σ
ω

σ ω σ ω σ ω

 + ≈ −

 ≈ + + 

���������

�
 (12) 

Comment 2. It should be noted that in most current viscoelastic materials, 
such as high polymers, rubbers, etc., the inequality (linearization term) in 
(11) and (12) is often violated because of low EE  and ( )E t values com-
parable to and sometimes smaller than 11

Eσ . The inclusion of this approxi-
mation is crucial to linear PR elasticity and the admissibility of the EVCP 
based on PRs. On the other hand, constitutive relations in terms of moduli 
and/or compliances are formulated from fundamental deviatoric and volu-
metric laws deformation without the need to invoke the linearization as-
sumption.  

The net effect of this linearization term is that linear elastic materials possess 
linear modulus/compliance constitutive relations, but potentially nonlinear ones 
when PR formulations are included. 

However, the above linearization must be enforced since the EVCP depends 
on integral transforms, which can only be applied to linear systems. Additionally 
and separately, in order to formulate the EVCP in terms of PRs it is necessary to 
find a term by term and parameter by parameter viscoelastic match in the FT 
space to the elastic transformed relations (12), with a corresponding valid and 
plausible viscoelastic set of constitutive relations in the time space. 

Alternately, the troublesome nonlinearity can be totally avoided if Hooke’s 
law is derived from fundamental deviatoric (shape change) and volumetric (vo-
lume changes) constitutive relations and by applying the three normal stresses 
simultaneously, to whit 

11 11
1deviatoric

3 32

E E
E Eii ii

EG
σ

σ
 

⇒ − = − 
 


           (13) 

volumetric
E

E ii
ii EK

σ
⇒ =                   (14) 

Substitution of (14) into (13) yields   

( )
11111111 1122

11 11 22 33

1

1 1 1=
3 3 6
E E E

E E
E E E E

E E E

E C C

G K
G K G

σ σ σ

= = =

 +
+ − + 
 ����� �������

          (15) 
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and one equation for each of the other two normal strains. Eq. (15) and its other 
two cousins are unambiguously linear and do not suffer from the nonlinearities 
of the PR relations (11). Furthermore in the latter formulation all three normal 
loads are applied simultaneously which is of prime importance in dissipate sys-
tems such as viscoelastic or plastic media. 

2.4. Viscoelastic PRs and Constitutive Relations 

Whereas in isotropic isothermal homogeneous linear elasticity the PR values are 
constants and material specific, the circumstances are far different for their vis- 
coelastic cousins under the same specifications. 

Consider the general linear anisotropic isothermal viscoelastic relations [29]- 
[75], which are the counterparts to Eqs. (2)  

( ) ( ) ( )

( )
( )

,
, , , , , d

,
 , , , , d

t
kl

ij ijkl

t
T
ij

x t
x t C x t t T x t t

t

x t
C x t t T x t t

t

σ
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−∞

−∞

′∂
′ ′ ′=    ′∂

′∂   ′ ′ ′+    ′∂

∫

∫



            (16a) 

( ) ( ) ( )

( )
( )

,
, , , , , d

,
 , , ,' , d

t
kl

ij ijkl

t
T
ij

x t
x t E x t t T x t t

t

x t
E x t t T x t t

t

ε
σ

αϑ
−∞

−∞

′∂
′ ′ ′=    ′∂

′∂   ′ ′−    ′∂

∫

∫
           (16b) 

Consequently, the Class I viscoelastic PR for an isothermal process when 
0T =  becomes  

( ) ( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

*

,
, d

, ,
,

, d

, , d
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I

ij ij t
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iimn

t

jjkl kl

t

iimn mn
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C x t t t

t
x t x t

x t
C x t t t

t

C x t t x t t
i j i j

C x t t x t t

σ

ν ν
σ

σ

σ

−∞

−∞

−∞

−∞

′∂
′ ′−

′∂
= = −

′∂
′ ′−

′∂

′ ′ ′−
= − ≠ =

′ ′ ′−

∫

∫

∫

∫

    (17) 

Note that even in the simplest 1-D isotropic problem when only one stress de-
rivative is present and if it is equal to a constant value3 for 0 t≤ ≤ ∞  and if the 
material is homogeneous, then the viscoelastic PR is still a time function, i.e. 

( ) ( )12 13t tν ν= . This is due to the fact that for an isotropic homogeneous ma- 
terial   

( ) ( ) ( ) ( )1111 1122 1133 11and 0 4,5,6mmC t C t C t C t m≠ = = =     (18a) 

( ) ( ) ( ) ( )
( ) ( )1111 2222 3333 2

1and 4,5,6
2

mmmmC t C t C t C m
G

ω
ιω ω

= = = = (18b) 

 

 

3See the Section “The physics of time invariant stresses, strains and their derivatives” on the physical 
aspects and implications of time invariant stresses, strains or their time derivatives, particularly dur-
ing actual loading phases.  
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( ) ( ) , 1, 2, ,6kkll llkkC t C t k l= = �                (18c) 

Comment 3. In other instances when the stress or strain derivatives are 
time functions, they are “trapped” in the integrals and the PRs become 
time, stress and stress history dependent, i.e. process dependent [87] [88] 
[89] [90]. Therefore, the viscoelastic PRs are no longer pure unique material 
property characterizations in the sense of moduli and compliances, and are, 
therefore, unsuitable as material descriptors. This applies to Classes I throu- 
gh VI. ClassVI (1-D constant stress) and Class II (1-D constant strain) are 
special limited cases, and in reality none of the PRs are exportable from one 
loading condition or from one Class to another including time independent 
loadings.  

In the very special case when ( ) ( ) ( )1111 1122 1133C t C t C t= = , the shear modulus 
( )G t  is related to the bulk modulus ( )K t  through a constant multiplier with 

the requirement that their relaxation times are equal [86]. Real materials gene- 
rally exhibit ( ) ( )K t G t�  except for the auxetic ones where the inequality re-
versed. In either instance Eq. (18a) is satisfied. 

The relaxation moduli and creep compliances are as a matter of convenience 
generally represented by Prony series [122] of the type  

( )
( )

( )
( )

( )
( ) ( )

*
*

1

,
exp

,

ijkln
N

ijkl
ijkln

nijkl ijkln
ijkln

C x
C x t C x t

C x
C x t C x xτ

τ

∞

=∞

 
            = − −                

  

∑      (19) 

with similar expressions for ( ),ijklE x t  and ( )* ,ijklE x t . 
Fourier transform (FT) [15] are introduced in preference to Laplace trans- 

forms (LT) as they are more inclusive and extends from −∞ , where all state va-
riables are at rest, to the current time t  at which the solution is sought. Con- 
sequently, in general analyses such as those presented here ICs at 0t =  need 
not be included and need not be specified until solutions of particular problems 
are undertaken. FTs were first introduced to viscoelasticity in order to derive the 
integral EVCP in Ref. [16] and are defined here as  

( ){ } ( ) ( ) ( ), , , exp df x t f x f x t t tω ιω
∞

∞

= = ∫F          (20) 

The FTs are equivalent to the two sided LTs as stated by the Rodrigues for-
mula and provided all integrals exist these transforms are related to each other 
by [116] [123]   

( ) ( ) ( ) ( ) ( ) ( )
0

0

, , , exp d , exp d
p pFT LT p

f x f x p f x t pt t f x t pt t
ιω ιωιω

ω
∞

−∞ =− =−= = =−

= = − + −∫ ∫������� �������

 
(21) 

Application of FTs converts the convolution integral isothermal constitutive 
relations (16) to  

( ) ( ) ( ), , ,ij ijkl klx C x xω ιω ω σ ω=              (22a) 
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( ) ( ) ( ), , ,ij ijkl klx E x xσ ω ιω ω ω=               (22b) 

Class VI PR expressions are derived in [90], while all other Categories have 
defined expressions as seen in [87]. The Class VII PRs have their genesis in a de-
finition starting in the FT space, based on a form of the constitutive relations 
that can be interpreted as supporting an EVCP. However, they are devoid of 
physical meaning and the stress-strain relations do not transform into a form in 
time space that can be derived independently from thermodynamic first prin- 
ciples. They represent a group of material property time functions independent 
of stress and strain histories. Nevertheless, their utility is far less than the relaxa-
tion moduli and creep compliances that define them because they are specific to 
a limited 1-D loading condition from which one cannot generalize the PR func-
tions. 

The Elastic-Viscoelastic Correspondence Principle or Analogy (EVCP)4  
The EVCP, when applicable, is a powerful protocol for solving linear visco- 

elastic problems based on similarities between integral transform (IT) elastic and 
viscoelastic formulations and solutions. EVCP comes in two varieties: separation 
of variables [14] and the considerably less restrictive one based on integral 
transforms [16]. The IT EVCP consists of substituting complex viscoelastic 
moduli/compliances for their elastic equivalences in Laplace (LT) or Fourier 
(FT) transforms elastic solutions. This means that any analytical and some nu-
merical elastic solutions are easily convertible to their equivalent viscoelastic so-
lutions. In those instances where material properties do not conform to con- 
volution integral constitutive relations, approximate EVCPs have been derived 
that are based on piecewise convolution integral representations [124] [125].   

The EVCP can be formally stated as:   
1) Given an elastic body with the FT of its general solution  

( ) ( ) ( ) ( ) ( )
stress & displacement thermalelastic
boundary conditions strainsmoduli

, , , , , , , , , , etc.E E E
ij ij ijklx x E x X x U x xσ ω σ ω ω ω αϑ ω

 
 

=  
 
  

������������� ��������������
   (23) 

2) Then for viscoelastic convolution5 integral constitutive relations given by 
(16) and with identical boundary conditions, the viscoelastic solution is  

( ) ( ) ( ) ( ) ( )
viscoelastic stress & displacement thermal

moduli boundary conditions strains

, , , , , , , , , ,E
ijklij ijx x E x X x U x xσ ω σ ω ω ω ω αϑ ω

 
 

=  
 
 

��������� ������������� �������
    (24) 

and  

( ) ( ) ( ) ( ) ( )
viscoelastic stress & displacement thermal
compliances boundary conditions strains

, , , , , , , , , ,E
ijklij ijx x C x X x U x xω ω ω ω ω αϑ ω

 
 

=  
 
 

��������� ������������� �������
       (25) 

 

 

4Also see the section “The physics of time invariant stresses, etc.” 
5The EVCP is inapplicable if the material property are considered temperature dependent and if the 
temperature is a time function, i.e. ( ) ( ) or ,T T t T x t= . 
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are universally valid provided the transforms and their inverses exist. 

Comment 4. The EVCP protocol [16] for rigorously establishing Eqs. (23) 
to (25) is to first derive the pertinent viscoelastic governing relations and 
their generalized constitutive relations and solutions in the time space and 
then take their FT and compare these transforms to the FTs of the corres- 
ponding elastic solutions.  

In order to properly highlight the difficulties of generating an EVCP involving 
viscoelastic PRs, it is necessary to first review the process by which Eqs. (2), the 
3-D general Hooke’s law with PRs is derived. Elasticity is a conservative system 
and its constitutive relations are algebraic. Whereas the viscoelastic system is a 
dissipative one with memory leading to integral differential constitutive relations 
in time, such as (16).  

However, the linearization described in Section 3.3 must be enforced since the 
EVCP depends on integral transforms, which can only be applied to linear sys-
tems. Additionally and separately, in order to formulate the EVCP in terms of 
PRs it is necessary to find a term by term and parameter by parameter viscoelas-
tic match in the FT space to the elastic transformed relations (12), with a cor-
responding valid and plausible viscoelastic set of constitutive relations in the 
time space. 

In a non-conservative system such as a linear viscoelastic body, the luxury of 
choice of free sequencing of loads is no longer available, as different loading 
schedules result in distinct responses, i.e. Maxwel’s reciprocal theorem is inapp- 
licable. This is due to the material's memory, and consequent energy dissipation, 
which is expressed by integral type constitutive relations rather than the elastic 
algebraic ones. The viscoelastic ones also do not allow for the legitimate types of 
elastic algebraic approximations and manipulations of Eqs. (10) and (11), thus 
dictating the need for different approaches [90].  

Since the correspondence principle has been proven inapplicable when PRs 
are involved [87] [88] [89], the usual elastic relations for shear and bulk moduli 
have no viscoelastic counterparts in terms of PRs, i.e.  

, ,
1 22 1 II

E EG K
νν

≠ ≠
  −+ 
 

 

( ) ( ) ( ) ( ) ( ) ( )
boundary conditions thermal strains

, , , , , , , , , , , , , etc.e I
iij ij ijkl ix x E x x X x U x xσ ω σ ω ω ν ω ω ω αϑ ω

 
 ≠
  

��������������� �������

(26) 

but without PRs, the expressions  

( ) ( )
( ) ( )
3 ,

, ,
1 , ,

G x
E x

G x K x

ω
ω

ω ω
=

+
               (27) 

and Eqs. (25) are valid.  
However, if IIIν  is substituted for Iν  in (26) then the resulting relations  
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( ) ( )

( )
( ) ( )

( )

, ,
, , , ,

1 2 ,2 1 , IIIIII

E x E x
G x K x

xx

ω ω
ω ω

ν ων ω
= =

  −+  

  

( ) ( ) ( ) ( ) ( ) ( )
boundary conditions thermal strains

, , , , , , , , , , , , , etc.e III
ijkl i iij ijx x E x x X x U x xσ ω σ ω ω ν ω ω ω αϑ ω

 
 =
  

��������������� �������

(28) 

are valid subject to the limitations of the non-uniqueness of the viscoelastic PRs 
due to their stress and path (stress history) dependence. Difficulties with gen- 
erating a proper EVCP in terms of PRs stem from the following concepts, which 
will be established below in detail, see Eqs. (32).  

1) The time and separate stress history dependence of the viscoelastic PRs, i.e. 
experimental conditions do not necessarily reflect in-service situations. 

2) The inherent assemblage of individual material contributors in the elastic 
constitutive relations when PRs are involved calling for a triple product of ma- 
terial property parameters and stress tensors. 

3) The viscoelastic PR triple product while obligatory in the Fourier transform 
space for establishing an EVCP has limited physical counterparts in the real time 
space nor any relation to the Boltzmann superposition principle [6], except for 
one model (32b). 

In terms of moduli/compliances the 3-D Hooke’s law and the corresponding 
linear viscoelastic constitutive relations are both derivable from first principles 
[17] to read for elastic media  

( ) ( ) ( ) ( ), , , .E E E
ij ijkl kl ijx t C x x t x tσ δ αϑ = +              (29) 

However, when the isotropic Hooke’s law is assembled with elastic PRs, it is in 
an almost ad hoc manner of one direction at a time to yield6 [120]   

( )
( )
( )

( ) ( ) ( ) ( )( ) ( )12
1, , , , , .E E E E E

jj jj ii kkE

EC x

x t x t x x t x t x t i j k
E x

σ ν σ σ αϑ

=

 = − + + ≠ ≠ 
�����

 (30) 

Specifically, the pitfalls in producing a coherent EVCP arise from the triple 
product elastic combinations and their FTs7  

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )12
12 12

,
, ,

E E
ii E E E E E E

ii iiE

x x t
C x x x t C x x x

E x
ν σ

ν σ ν σ ω= ⇒     (31) 

that requires a viscoelastic triple FT product counterpart  
( ) ( ) ( )*

12, , ,D
iiC x x xω ν ω σ ω , which is generated in the integral transform space 

(FT or LT). However, in order to achieve any physical and mathematical cre-
dence this triple product needs to be generated from real time combinations to 
conform with its prescribed FT inversions. Therefore, starting with the need- ed 

 

 

6cf. Eq. (11). 
7This is but one of the two triple products in the constitutive relations. The other one involves kkσ  

and kk  and it experiences an identical formulation in the constitutive relations for volume chan- 
ges. 
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triple PR FT product, the required isotropic isothermal constitutive relations in 
the time space must be the inverse FT  

( ) ( )
( )

( )

( )

( )

FT combination needed to
produce an EVCP

1 *
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        (32) 

where ( ) ( )21 12, ,D Dx t x tν ν=  represent any class PR for which the FT triple pro- 
duct can be generated8. The above four expressions indicate how the constitutive 
relations must be formulated in the real time space so that the desired FT triple 
products can be realized. If the isotropic 1-D elastic protocol of Eqs. (10) is used 
in assembling equivalent viscoelastic PR constitutive relations, then the constru- 
ction becomes  

( ) ( ) ( )

( ) ( ) ( )
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∫
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
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  (33) 

It then follows from this inverse heuristic approach that  

( )
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( ) ( ) ( ) ( )
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1112
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   (34) 

 

 

8Eqs. (36) apply equally to linear homogeneous viscoelastic media. 
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There are three Classes of PRs that can produce the form (34), namely Class 
II, III and VI. However, neither Class II or VI produce a physically valid expre- 
ssion in the real time space. Class III, as pointed out in earlier, has only one 
convolution form out three possible ones that produce a physical counterpart 
(32b). 

The definition of the Class VI viscoelastic PR leads to  

( ) ( ) ( )
( ) ( )

( ) ( )1122 11
112212

11

,
, def , ,

, )
VI C x x

x C x E x
C x x

ω σ
ν ω ω ω

ω σ
− = −  

( ) ( )11 11with , only and all other 0ijx t xσ σ σ= =           (35) 

and  

( ) ( ) ( ) ( ) ( )12 1122 1122, , , d , , d .
t t

VI x t C x t t E x t t E x t t C x t tν
−∞ −∞

′ ′ ′ ′ ′ ′= − − = − −∫ ∫    (36) 

Note that for the Class VI PRs the loading path is defined by prescribing it as 
( )11 xσ . However, it must be remembered the this Class is based on the absolute 

neglect of the loading cycle and that a time independent stress is not realistically 
achievable for all times t . 

Some of the ambiguities arising from the Class III PRs can be resolved, i.e. 
removed, by defining a Class VII PR as   

( ) ( )
( )

( ) ( ) ( ) ( )11
1 11 1

,
, def , , , d    1

,

jjVII
j jj j

C x
x C x t x t t C x t t j

C x

ω
ν ω ν

ω

∞

−∞

′ ′ ′− ⇒ = − − ≠∫

(37) 

It is the only PR class that is entirely free from strain, stress and path restri- 
ctions since its definition is not based on the legacy Class I [2] [3], formulation 
or on any of its derivative definitions of Classes II to VI. 

Comment 5. The Class VII is an artificially defined isothermal viscoelastic 
PR devoid of strain or stress associations and hence path independent while 
still remaining a time dependent universal martial property. It obeys the 
construction mandated by Eqs. (32) necessary for the existence of EVCPs. 
This Class PR should, therefore, be the one used if it is desired to express 
constitutive relations in terms of PRs. However, since this PR form nece- 
ssitates a priori knowledge of two compliances that completely characte- 
rize the isotropic viscoelastic medium, it is fair to ask why bother with the 
PR. Furthermore, since Class VII PRs do not involve strains they are not 
experimentally measurable.    

At least three more than rhetorical questions remain:  
1) What, if any, is the physical meaning of the Class VI PRs, 12

VIν ? 
2) What is their relation to the strains?  
3) What is the physical meaning, if any, of the double convolution integrals of 

Eqs. (32a) and (32c)?  
The answers to all three questions are “none” indicating that they cannot be 



H. H. Hilton 
 

309 

obtained directly through experimentally determined strains and stresses. Fur- 
thermore, due to the presence of a triple product in the above constitutive rela- 
tions these PRs are not a portal to EVCP formulations. Even though the Class VI 
PRs appear as pure universal material property descriptors their utility function 
is less than that of its parts, i.e. the compliances, since these PRs are first and 
foremost process dependent and, therefore, restricted and limited in scope in 
this case to time independent 1-D stresses 12

VIν . (See the next Section on starting 
loading sequences to achieve time independent stresses, strains, their time rates, 
etc., in a dissipative material with memory effects.) 

There is a certain irony accompanying the creation of the Class VI PR based 
on a time independent 1-D stress field  

( ) ( ) ( )
( )

11 11

11

, all other , 0 0

and , 0 0
ijx t x x t t

x t t

σ σ σ

σ

= = ≤ ≤ ∞

= −∞ ≤ ≤
       (38) 

The intent is to produce a viscoelastic look alike to the structure of the elastic 
constitutive relations containing a mixture of moduli, stresses and the original 
Class I elastic PR [3]. What emerges as a Class VI PR is a function independent 
of strains and their history and one that is only dependent on certain moduli and 
compliances. Of course, in the elastic case the same path following Eqs. (31) 
leads to for ( )11 0xσ ≠  and all other9 0ijσ =   

( )

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( )

11

original PR
Class I

1122 1122 11 22
12 12

11 11
1 D loading only

Class VI elastic , all other 0

, ,
, ,

E E
ij

E E E E
EVI EI

E E E E

x t

C x C x x t x t
x x

C x C x x t x t

σ σ

σ
ν ν

σ
−

= ⇒

= − = − = − =
�����

�����������������������������




   (39) 

For a viscoelastic medium, 12
VIν  can be similarly interpreted as  

( )

( ) ( )
( )

( )
( )

( )
( ) ( )

( )

( )

11

special 1 D case
for only 11

1122 1122 11 22
12 12

1111

1 D loading only with 11

Class VI viscoelastic all other 0

, , ( ) ,
, ,

,, , ( )

ij

x

VI III

x

x

C x C x x x
x x

xC x C x x

σ

σ

σ σ

ω ω σ ω
ν ω ν ω

ωω ω σ

−

−

= ⇒

= − = − = − =
�������

���������������������������������




 (40) 

with the real time convolution integral property  

( ) ( ) ( ) ( )22 12 11 11, , , d with 0 and  0  for 1.
t

VI
jjx t x t t x t t x jν σ σ

−∞

′ ′ ′= − − ≠ = ≠∫ 

(41) 

It should be noted that the Class VI PR is a special case of the general Class III 
PR with ( )11 0xσ ≠  and 22 33 0σ σ= = . Neither Class III nor Class VI PRs 
have a physical definition whose values could be measured experimentally in the 

 

 

9For non-auxetic elastic materials, 0
1122 0C <  and ( )1122 , 0C x t <  while ( ) ( ), , 0E x t G x t> > . For 

auxetic materials the reverse inequalities hold and the elastic PR’s are in the range 121 0Eν− ≤ < . 
However, viscoelastic PRs have no such restrictions except at 0t = , since the ICs are elastic condi-
tions. 
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time domain. While it is certainly possible to measure the strains ( ),ij x t  in 
real time, the time functions associated with this PR class are complicated and 
the evaluation of the integral in (41) is difficult. The second integral of (32) 
clearly represents the proper form of the triple FT product involving PRs in the 
time domain. The character of the time function defining ( )12 ,VI x tν  can be de-
duced from the inversion of the FTs, Eq. (36). Since the Prony series for 1122C  
and C  are known expressions determined from generalized Kelvin or Maxwell 
models. However, since Eq. (36) requires the a priori determination of the com-
pliances, one can justifiable inquire why bother with 12

VIν  when the characteri-
zation is complete with the knowledge of either set of the ijklC  or ijklE . Partic-
ularly, since detailed knowledge of these non-universal PRs still does not pro-
duce a useful EVCP and either the moduli or the compliances do so handily. 

In the viscoelastic constitutive relations there appears to be no clear protocol 
to derive directly in real time space either of the first two versions of double 
convolution integrals displayed in (32) that can be based on thermodynamic first 
principles or any mechanical or electrical simulation model generated under the 
three fundamental thermodynamic laws or on the Boltzmann superposition 
principle [6]. Only through mimicking Hooke’s law in the FT space can Eqs. 
(32) be so postulated in an inverse fashion. In a larger sense then, the intro- duc-
tion of PRs into viscoelastic stress-strain relations can be interpreted as an artifi-
cial act of faith not based on first principles, i.e. with PRs related to thermody-
namic derivatives, or even to achievable physical characterizations and experi-
ments, as will be seen subsequently. 

Comment 6. None of the five PR categories defined in [87] [88] [89] fit 
these needed real time prescriptions, nor does the sixth class fit the cons- 
traints imposed by (32). Consequently, it would appear that no universal 
EVCP based on PRs can be rationally deduced or justified.  

The expressions (26) are valid in a very limited sense for Class II PRs 
( ),II xν ω , but are only applicable there and cannot be exported to the general 

Class I expressions (24) with ( ),xν ω  and, therefore, are of no use beyond the 
one and only case of a time independent strain component, say ( )11 ,x  (see 
next Section). Additionally, any expressions for G  and K  derived from (30) 
based on Class II PRs IIν  apply only to conditions of time independent strains 

0
11  or ( )11 x  and cannot be generalized to any other strain field. Their com-

plete lack of universality makes such modulus expressions useless from a prac-
tical point of view. Similar universal compliance (and modulus) relations may be 
found in Refs [97]-[102].   

2.5. Comments on PR’s Dependence on Time 

The following is a partial list of the cardinal difficulties that are directly attribu- 
table to their time dependence and that are associated with the use of viscoelastic 
PRs: 

1) At least seven mutually independent PR definitions are available. 
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2) Difficulties stemming from the improper assembly of constitutive relations 
containing PRs in the time space resulting in combinations   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

* *
1 1122 22 11

*
11

d d d

d d

t t t
III

t t
III

INT t E t t t t t s E s s t t t

s E t s s t t t

ν

ν

′

−∞ −∞ −∞

′

−∞ −∞

 
′ ′ ′ ′ ′ ′= − = − − − 

 
 

′ ′ ′= − − − 
 

∫ ∫ ∫

∫ ∫

 



 (42) 

for which no integral transform can obtained that leads to a proper EVCP ex-
pression. See Eqs. (33) for proper time space forms required to realize the 
needed double integral transform products and triple time function products  
(32).   

3) Conversely independent assemblies in the integral transform space (FT and 
LT) lead to some combinations displayed in Eqs. (32) such that the triple pro- 
ducts have no physical counterpart in the real time space. 

4) Additionally and separately viscoelastic PRs are also stress and stress histo-
ry (i.e. path) dependent. 

2.6. The Physics of Time Invariant Stresses, Strains and of Their 
Derivatives 

The Influence of Constant Stress/Strain Models on PRs 
The Class II and VI PR formulations are predicated on the mathematically cor-
rect prescription of constant 1-D strain (II) or constant 1-D stress (VI), such that  

( ) ( )
( ) ( )

11 11

11 11

Class ,   0
Class , 0

o

o

II x t H t t
VI x t H t tσ σ

⇒ = ≤ ≤ ∞
⇒ = ≤ ≤ ∞
           (43) 

where ( )H t  is the Heaviside step function with defined properties [106]  

( )
0 0
1 0

t
H t

t
≤

=  ≥
                     (44) 

The special ( )H t  function has a discontinuity at 0t = , but possesses a de-
rivative i.e. another special function-the Dirac delta function or impulse fun- 
ction [126]  

( ) ( ) ( )0

1 0d lim  with d 12
d

0 0
a

tH t
t t ta

t
t

δ δ
∞

→

−∞

  
→ ∞ =  = = =  

 ≠

∫       (45) 

Consequently the Class II and VI mathematical models are well defined but 
loading (path) dependent. Unfortunately the actual physics of this loading prob-
lem are considerably less forgiving, as shown analytically in [93] [94] and expe-
rimentally in [97]-[104]. An instantaneous displacement requires an infinite ac-
celeration and an associated infinite force in zero time with similar physically 
unattainable conditions for constant stress and strain rates. Further as analyti-
cally proved in [127], even the analytical modeled application of Dirac delta 
function loads lead to singularities in time derivatives of displacements for linear 
and nonlinear elastic and viscoelastic media. 

In addition, testing machine crossheads have inertia and require finite times 
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to develop displacements and loads as demonstrated in [103]. In Section 4 data 
is displayed for experimental loading cycle results of high polymer tension cou-
pons obtained from four different INSTRON machines. The detailed analyses 
show that the rise times to constant strain rates actually occur considerably after 
creep and relaxation have begun at 0.001 to 0.01 sec, consequently rendering the 
mathematical model of Class II and VI physically unrealizable and, therefore, 
making the associated PR functions physically unachievable and, therefore, un-
acceptable. Furthermore, in [95] [96] analytical studies clearly show the heavy 
influence of various loading protocols on the accuracies of viscoelastic material 
characterization. 

2.7. Penalties Associated with Instantaneous Loading Models 
2.7.1. Dynamic Loadings 
The instantaneous loading concept can be modeled mathematically [27] through 
the use of Dirac delta ( )tδ  and Heaviside ( )H t  functions [106] and [127] 
while the gradual loading process to achieve a steady or time dependent loads 
requires more than one functional representation For instance, consider the case 
of dynamic loadings leading to wave propagations. Figure 4 illustrates the expe-
rimentally measured 1-D effects of an impact load on a bar at (0,t). In particular 
note the green curve which is the impact force. The other two curves represent 
accelerometer readings at two distinct points at 1 0x > . The impact loading, 
then, can be represented schematically as in Figure 5 and by Eqs. (46) to (48)  

( ) ( )0
11 11

instantaneous loading,
0, 0

mathematical model
t t tσ σ δ


⇒ = ≤ ≤ ∞


     (46) 

 

 
Figure 4. Impulse force and accelerometer responses [104]. 
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Figure 5. Initial instantaneous and gradual loading phase schematic. 

 

( ) ( )0
11 11 2

2

0 0
gradual loading,

0, 0
physical model

0

t
t f t t t

t t
σσ σ

≤
 ⇒ = ≤ ≤ 
  ≤ ≤ ∞

      (47) 

with four conditions on ( )f t    

( ) ( ) ( ) ( )
2

0 2

0 0
d d

t t t

f t f t
f f t

t t
σ σ

σ σ
= =

= = = =              (48) 

The inherent difficulties associated with the ( )tδ  and ( )H t  functions are 
due to the latter's double values and hence discontinuities at 0t = . Consider 
their troublesome properties   

( ) ( ) ( )

( ) ( ) ( )
0

0

d
lim , ( 1) ! ,

d
d d1, lim

d d

n
n

n nt

t

t t
t n

t t
H t t

t dt
t t t

δ δ
δ

δ
δ

→

∞

→
−∞

→ ∞ = −

= →∞∫
             (49) 

plus those of (45) and the more beneficial finite one   

( )
0

lim d 1
t

t tδ
∞

→
∞

→∫                        (50) 

This effectively means that for the mathematical model, if the IC properly 
consists of an instantaneous impulse force   

( ) ( )0
11 11 0

0,0
t

tσ σ δ
=

= → −∞                  (51) 

then it will propagate into the linear and nonlinear elastic and viscoelastic dis-
placement solutions, such that ( ) ( )1 ,u x t H t∝  making the temporal deriva- 
tives that determine velocities ( )1 ,u x t�  and accelerations ( )1 ,u x t��  unbounded 
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at 1 ct x=  when physically both are finite [127].  
In view of consistency requirements one should expect no less than an infinite 

acceleration to produce an instantaneous impulse force ( )11 0,0σ . 

2.7.2. Quasi-Static Loadings: Creep, Relaxation, “Constant” Strain Rate, 
SHM 

By contrast the quasi-static models differ from that dynamic ones essentially in 
the fact that after the completion of the time dependent loading cycle they re- 
main at a constant value. Let ( ),x tSV  represent the set of state variables, such 
that { }, , , ,ij ij ij iuσ= ⋅⋅⋅�SV   . Then the model representation become   

( ) ( )0instantaneous loading,
0, 0

mathematical model
t H t t

⇒ = ≤ ≤ ∞


SV SV       (52) 

( ) ( )
( )

0
1

0
1 1

0 0
gradual loading,

0, 0
physical model SV

t
t f t t t

H t t t t

≤
 ⇒ = ≤ ≤ 
  − ≤ ≤ ∞

SV SV
SV

      (53) 

With the mathematical model, one is again faced with a discontinuity due to 
the double valued Heaviside function at the temporal origin resulting in   

( )
( )

0 0

0,
lim lim

dt t

t
t

t
δ

→ →

 ∂     = → ∞ 
  

SV
                 (54) 

Similar conclusions to those enunciated in Section 3.7.1 apply here as well.  

Comment 7. In the final analysis the impulsive loading and sudden displa- 
cement initial problems are reminiscent of the non-existing sharp edged 
gusts, instantaneous penetration of atmospheric disturbances and zero time 
lift and drag buildups encountered in aeroelasticity. All such aerodynami-
cally improbable physical models have been effectively corrected by the in-
troduction of the three distinct delay functions of Theodorsen, Küssner and 
Wagner [128]. In equal measures, the solid mechanics physical aspects 
command that no less be done for the preceding ICs and possible subse-
quent changes in loading functions. 

2.8. Analysis of Time Dependent Experimental Ramp Loadings 

Refs. [92] and [93] contain analytical simulations that show the various regions 
of viscoelastic moduli, and conversely of compliances. The simulation studies 
proved that the ratio 0E E∞  and the extent as well as the slope of Region   
are the most important contributors to optimum viscoelastic material damping 
properties as seen in Figure 6. Of course, the shape and regions of the relaxation 
modulus curves are directly dependent on the sensitivity of the experiments that 
are used to determine such modulus properties. Furthermore, since PRs are re-
lated to moduli as seen in Eqs. (28) and (32) they exhibit similar sensitivities. 

In Ref. [95] a systematic analysis of starting transients influence on constitu-
tive relations is undertaken by analytically investigating simulation models for 
simple tension experiments. Since numerical values of material parameters are  
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Figure 6. Viscoelastic modulus regions [92]. 

 
sought, meaningful experiments need to be devised which can be solved analy- 
tically with symbolic values for the as yet unknown material parameters. Consi- 
der a “simple” 1-D tension or compression (without buckling) creep experi- 
ment (Figure 4). In a Cartesian coordinate system ix x=  with 1,2,3i =  and 

1x  the loaded direction. Whether or not shear is present at 1 0x =  in the 2x
direction has no bearing on the loading function formulation, but, of courses, 
influences internal stress distributions.  

The loading function ( )F t  is defined in three time domains as  

( )
( )

( ) ( )
( )

0 1

0 1 1

0 0 Initial Conditions ICs
0 loading path with ramp function

steady state loading

t
F t F f t t t f t

F H t t t t

≤
= ≤ ≤
 − ≥

  (55) 

where 0F  is a constant amplitude, i.e. 0
11�  or 0

11σ�  of (43), and ( )f t  is one of 
the following functions  

( )
( )

( )

1

1 1 1

1 1 1

0 and 0 Loading Case 1
0 Loading Case 2

0.5 1 cos π 0 Loading Case 3

H t t t
f t t t t

t t t
τ
τ

 = ≥


= <
 − <  

�
�

   (56) 

with ( )H t  the Heaviside unit step function. While mathematically all three 
functions are admissible, the only physically “reasonable” function is the third 
one, although other similar forms are equally acceptable, as it properly defines a 
gradual load rise from 0 to unity with physically required vanishing slopes at 

0t =  and 1t t= . 
The time 1t  necessary to achieve the constant load 0F  is dictated by labo- 

ratory equipment used to induce loadings. While 1t  has no predetermined re-
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lation to 0t , the time when relaxation begins, i.e. the relaxation modulus 
( )0

EE t E=  (the instantaneous elastic Young’s modulus) for ot t<  and 
( ) EE t E<  for 0t t> , the determination of moduli values are strongly influ-

enced by the relative position of 0t  and 1t . 
The next two figure from [95] present creep functions determined by solving 

the governing relations including the loading phase for a given load case and 
different values of the loading time 1t . For illustration purposes the strain cur- 
ves were established prescribing that the material characteristics are known. The 
results obtained following the proposed procedure were compared to this refe- 
rence curve. Times 1t  were chosen here by evaluating the increase in ( )1tψ  
compared to 0ψ  and are indicated as percentages in the plot legends. Since the 
values 1t  are not significant on their own, they will be identified on the plots by 
the relative increase in ( )1tψ  from 0ψ . 

Figure 7 and Figure 8 from Ref. [95] represent creep curves obtained through 
analytical simulations by assuming that the loading conforms to an ideal situa-
tion, i.e. by replacing ( ) ( )f t H t=  by other loading functions as detailed in 
(55) and (56). If the strain values used when solving the system of equations 
correspond indeed to Loading Case 1, the creep curve is recovered with good 
accuracy (less than 0.5% error for 33N =  terms in Prony series). However, if a 
more realistic situation is considered (Loading Cases 2 and 3), the material cha-
racteristics are determined with some error depending on 1t . In Figure 7 the 
strains were obtained from Loading Case 2 and all the points 1t t<  were left 
out of the computation. As expected, the largest deviation appears in the values 
of 0

0 Cψ = . Almost identical results were obtained using strains corresponding 
to Loading Case 3 and displayed in Figure 8. A number of additional examples 
may be found in [95]. The influence of testing machine cross head speeds is dis-
cussed in the next Section.   

2.9. The Influence of the Loading Phase on Constitutive Relations 
and PRs 

Starting with the linear anisotropic viscoelastic constitutive relations (16) and 
specializing them to 1-D loading isothermal isotropic conditions yields  

( ) ( ) ( ) ( )

( )

*
11 0 11 11

0instantaneous
elastic response viscoelastic response

11
10

Prony series representation

, , , d

exp , d

t

t N
n

n n n

x t C x t C t t x t t

C t t x t t

σ σ

σ
τ τ=

′ ′ ′− = −

 ′− ′ ′= − 
 

∫

∑∫

���������
�����������������

�������������������������



    (57) 

For a hypothetical constant stress 0
11σ  as defined by (43), Eq. (57) can be in-

tegrated to yield   

( ) ( )

( )

approx
11

00
111

0
11 11

1 exp

with for 0

N

n
n n

t tC C C t

t t

τσ

σ σ

=

  
= + − − =  

   
= ≤ ≤ ∞

∑


         (58) 

where 



H. H. Hilton 
 

317 

 
Figure 7. Loading Case 2 creep function determined assuming loading Case 1 [94]. 
 

 
Figure 8. Loading Case 3 Creep Function determined assuming loading Case 1 [95]. 

 

0
1

N

n
n

C C C∞
=

= + ∑                      (59) 

Eq. (58) is correct if and only if ( )11 0tσ =  for 0t ≤  and ( ) 0
11 11tσ σ=  and 

all other ( ) 0ij tσ =  for all 0t ≥ . Therefore, it does not apply when the loading 
phase (55) is taken into account since then Eq. (57) is no longer correct and 
must be properly interpreted. 

If the loading cycle (55) is taken into account then Eq. (57) transforms into 
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( ) ( ) ( ) ( ) ( ) ( )
1

1

* *
11 0 11 11 11

0instantaneous
elastic loading phase quasi static or dynamic phaseresponse

d d
t t
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t C t C t t t t C t t t tσ σ σ
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and 

( ) ( ) ( )*11
0
11

( )
with

C t tt C t C t t
tσ

′∂ −
′≠ − =

′∂


          (61) 

Therefore, the error in strain responses generated by disregarding the starting 
stress transients is given by   

( ) ( )
( )11

approx
11

11

err 1
t

t
t

= −




                  (62) 

and is shown in Figure 9 for experimental data obtained in [105]. These results 
show that the effects of the starting transients decay with time but that they also 
represent important contributions to inaccuracies over significant time periods 
in excess of 1t , the time to reach steady-state loading conditions. 

However, a much more compelling case can be made for the linear relaxa- 
tion/creep functions or moduli/compliances, which are more pervasive and uni-
versal properties than specific strain responses [95] [96].  

2.10. The Case III PR Caveat 

The Class III PR integral transform definition, Table 3, while lending itself more 
expeditiously to the formation of an EVCP has troublesome idiosyncrasies and a 
dichotomy of meanings in the time space. Note that for Case III PRs, for 1-D 
loadings and time independent temperatures the convolution integrals prevail 
and then and only then   
 

 
Figure 9. Error in viscoelastic strains by disregarding starting load transients for 
data from [105]. 



H. H. Hilton 
 

319 

( ) ( )
( )

( ) ( )
( ) ( )

( )
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1122 112222 11
12

11 1111 11

, ,
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III x t C C x
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x t C C x

ω σ ω ω
ν ω

ω σ ω ω
= − = − = − −



(63) 

which makes the expression independent of ( )11 ,xσ ω  but not of the 1-D load-
ing process (path) that specifically creates it. Eq. (63) does not apply to mul- 
tiple loadings where it becomes a function of all the pertinent normal stresses 

iiσ , i.e. 
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        (64) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( )1111 2222 3333 1122 1122 1133andC t C t C t C t C t C t C t= = = ≠ =   (65) 

for isotropic materials. 
The normal stresses ( ),ii x tσ  can be described by continuous time functions, 

provided the loading functions are not discontinuous. Then for multi-D load-
ings and general anisotropic linear viscoelastic media, the Class III PR is given 
by   

( )
( )
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, , ,
,

, , ,

jjkljj klIII
ij

ii iimn mn

x C x x
x t i j
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ω ω σ ω
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ω ω σ ω
= − = − ≠



       (66) 

Consequently, in all these instances the Class III PRs are also dependent on all 
non-zero stresses and on their histories as well as explicitly on time. Thus, dif-
ferent experimental determinations of PRs involving diverse stress and strain 
histories, lead to distinct PR functions for the same viscoelastic medium. 

The neglect of the loading cycle in the period 10 t t≤ ≤  leads to serious ina- 
ccuracies and discrepancies in response patterns particularly for slower loading 
rates as demonstrated analytically in [95] [96] and confirmed experimentally in 
[97]-[104]. See Eqs. (43)-(56) and Figure 2, Figure 7, Figure 8 and Figure 10, 
which are pertinent to the above discussion. 

Matching analyses for constant 0 0
11 11,  �   and 0

11σ�  for 0t ≥  can also be per- 
formed and similar conclusions can be reached for each of these loading cases. 

Additionally, Category III PRs and their similar cousins carry with them an 
implicit contradiction. Consider a 1-D loading ( )11 tσ , where this function is 
integrable for [ ],t∈ −∞ ∞ . See Table 1. Upon FT inversion one is lead to the li-
mited relation   

( ) ( ) ( )1122 1111 d 1 D loading only
t

IIIC t t t C t t tν
−∞

′ ′ ′= − − −∞ ≤ ≤ ∞ −∫   (67) 

when in fact it should read for t−∞ ≤ ≤ ∞ , cf. Eq. (36).  

( ) ( )
( )

( ) ( ) ( )

( )

* *
1122 11 1111 11

22 11

d d d
t t t

III

t t

C t t t t t t C t s s s tσ ν σ
′

−∞ −∞ −∞

= =

 
′ ′ ′ ′ ′ ′− = − − − 

 
∫ ∫ ∫
����������������� �������������������

 

   (68) 
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Figure 10. Time to reach constant strain rate of 50 mm/min [103]. 

 
or 

( ) ( ) ( ) ( ) ( )11 11
1122 1111d d d

t t t
IIIt s

C t t t t t C t s s t
t s

σ σ
ν

′

−∞ −∞ −∞

′∂ ∂  ′ ′ ′ ′ ′− = − − − ′∂ ∂  
∫ ∫ ∫   (69) 

Eqs. (67) to (69) are identical if and only if the loading is 1-D and the stress is 
limited to ( )11 xσ , i.e. a time independent stress component, which leads to sig-
nificant characterization errors [95] [96]. In either exact or approximate repre-
sentation Class III PRs are, therefore, also stress history (path, process) depen-
dent. 

Furthermore, if the constitutive relations are of the linear non-convolution 
type then for the 1-D loading   

( )
( ) ( ) ( )

( ) ( ) ( )

11
1122

21
11

,
, , d exp d
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,

, , d exp d
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x t
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ν ω
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−∞−∞

′∂
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′∂
= −

′∂
′ ′ −

′∂

∫ ∫

∫ ∫
      (70) 

and this PR is clearly implicitly stress and stress history (path) dependent, since 
generally ( ) ( ) ( )1111 1122C t C t C t= ≠ . The non-convolution phenomenon takes 
place under the frequent time dependent temperature conditions when ( ),T x t  
and then 
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( ) ( ), , , , ,ijkl ijklC x t t T x t C x t t′ ′ ′− =               (71) 

In summary, it is seen that   
1) Eq. (63) is needed for the constructions of an EVCP in the transform space 

and its 1-D form is stress independent  
2) Eq. (69) is the proper form of the constitutive relations in the real time 

space and is stress and stress history dependent  
3) Proper care must be exercised in using and interpreting Eqs. (63) and (69) 

since they represent contradictory representations  

Comment 8. While the preceding analyses establish Class III PR protocols 
that lead to the EVCP, they provide no clues as to what the proper accom- 
panying PR functions are. The PR analysis is built on the superposition of 
responses to 1-D loading(s) without specification as what it/they should be, 
i.e. constant stress, strain, their time derivatives, etc. It has been established 
that viscoelastic PRs, unlike moduli and compliances, are time, stress and 
stress history (path) dependent and hence non-unique. This ambiguity 
renders viscoelastic PRs unsuited for general material characterization. 
Consequently, constitutive relations and EVCPs based on universal path 
independent moduli and/or compliances remain the material descriptors of 
choice.   

3. Discussion 

In Figure 1, the Class I PRs for the same material are presented for four distinct 
experimental loading conditions (2 relaxation and 2 creep experiments) but with 
identical specimen, types of experimental loadings and boundary conditions 
[102]. Calculated from Eq. (1) and based on actual measured strains, the result-
ing PRs for these four different 1-D loadings exhibit time variations that are sig-
nificantly distinct to testify to the viscoelastic PR inability to be classified as a 
unique material property due to its strong dependence on loading histories even 
in relatively small strain and short time ranges. In the two relaxation experi-
ments and for over 95% of the operating time intervals, the viscoelastic PR val-
ues exceed 0.5, which is the positive upper limit for linear elasticity. In the creep 
experiment for the same material the PR values are all less than a half. The only 
difference is the loading rate and the PRs were computed directly from the 
measured strains, without regard to any a priori material property determina- 
tions. Similarly, the same experimental data from the four distinct loadings will 
yield four distinct curves of Class III PRs ( )IIIν ω . 

Similar differences in PR time function obtained in creep and relaxation were 
reported in [98].   

Attempts at determining the time time 1t  when steady-state loadings are 
reached based on examination of strains as seen in Figure 9 have been disap-
pointing and misleading [103]. This protocol produced physically indefensible 
results with erroneous trends [104]. On the other hand a new protocol based on 
strain accelerations ( )2 2

11 t t∂ ∂  calculated from measured strains ( )11 t  
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produce physical results Figure 11 and Figure 12. However, the determination 
of moduli and/or compliances without PRs avoided any 1t  problems by num- 
erically integrating the governing over the entire time range while specifically 
including the actual loading phases and measured strains [102] [103] [104].  

Comment 9. The great universal utility of elastic Poisson’s ratios due to 
their characteristically constant values for each homogeneous elastic mate- 
rial at a given temperature is lost in viscoelasticity. Conclusive experi- 
mental and analytical evidence undisputedly indicates that viscoelastic PRs 
are time, stress and stress history dependent and, therefore, not unique ma-
terial descriptors. Consequently, they are not exportable or interchangeable 
from one loading condition to another. 

Furthermore, the analysis demonstrates that the elastic-viscoelastic corres- 
pondence principle can only be expressed in terms of relaxation moduli or creep 
compliances and does not involve PRs. The equivalent triple product of Fourier 
transforms of PRs, moduli/compliances and strains/stresses necessary for the es-
tablishment of the EVCP, while mimicking Hooke's law, does not invert to a 
proper set of constitutive relations in the time space and, therefore, no EVCP 
involving PRs is possible. 

Additionally and separately, analyses and experiments show that starting 
loading build ups, including achievable testing machine cross head speeds, are of 
significant importance to mandate their inclusion in material characterization 
protocols. Their neglect in the definitions of Class II and VI PRs, while mathe-
matically defensible, are physically unattainable and unrealistic. Consequently, 
Class II and VI definitions only exist as idealized mathematical models but 

 

 
Figure 11. Dynamic experimental impulse force/acceleration [104]. 
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Figure 12. Time to reach steady-state strain rates ( )11 t t∂ ∂  based on acceleration 

( )2 2
11 t t∂ ∂  measurements [104]. 

 
cannot be duplicated physically for 0 t≤ ≤ ∞  as evidenced by the typical expe-
rimental results shown in Figure 10. On the other hand, if the cross head acce-
lerations are used then reasonable times 1t  to reach steady-state strain rates can 
be calculated, as seen in Figure 12. Consequently, the latter should be the pro-
tocol of choice for the determination of 1t . 

Even if these two mathematical models were physically reproducible, the PRs 
so determined would only be applicable to the particular loading conditions un-
der which they were experimentally determined. Consequently, the inherently 
specialized Class II and VI behaviors cannot be generalized and/or extended to 
any other loading processes since they produce process specific PRs as evidenced 
by Figure 1. For that matter, nor can any of the viscoelastic PR Classes I through 
VI be generalized as they are process specific and not universal material descri- 
ptors such as relaxation moduli and creep compliances or relaxation and creep 
functions. 

The pervasive advantages and disadvantages of viscoelastic PRs vis-à-vis the 
EVCP and their lack of universality are summarized in Table 4. 

4. Conclusions 

For linear elastic and viscoelastic media: 
1) Elastic PRs are of fundamental importance as linear material descriptors 

because they are constants for each material without regard as to what experi- 
mental protocol is used to determine their value. However, such is not the case 
of their linear viscoelastic counterparts as they are time, stress and stress history 
(path, process) dependent. Hence they have distinct values and functionality for 
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each and every process. Consequently, experimentally obtained viscoelastic PRs 
do not match more complicated service loading conditions.  

2) Elastic and viscoelastic PRs are inherently nonlinear, cf. (11) and (12). 
Their linear use is based on the explicit approximation of their linearity as go-
verned by the ratio 11 1E EEσ � . 

3) All viscoelastic PRs are time dependent. Additionally, by definition PRs of 
all Classes, except VII, are time, stress and stress history (path, process) depen- 
dent and, therefore, non-unique, i.e. dependent on loading history. All consti- 
tutive relations involving PRs written in the time space are very computationally 
intensive compared to expressions involving only moduli or compliances. 

4) The principal difference between PRs and moduli/compliances is that the 
former in all Classes except VII are an algebraic ratio of mutually perpendicular 
tension and/or compression strains, whereas the latter are ratios of stresses to 
their responding strains. This renders the PRs nonlinear functions of the two 
strains. 

5) Unlike elastic PRs and whether in a homogeneous or non-homogeneous 
medium, all of the six Classes of viscoelastic Poisson’s ratios are represented by 
functions of time, stresses and stress histories. Due to their process dependency 
they are non-unique material descriptors and as such unsuitable for general ma-
terial characterizations. Therefore, characterizations in terms of relaxation mod-
uli and/or creep compliances are the characterization vehicles of choice as they 
represent universal functions with parameters specific to each material and while 

 
Table 4. Summary of viscoelastic PRs and moduli advantages and disadvantages. 

Class ADVANTAGES DISADVANTAGES 

I none does not lead to EVCP 

II EVCP for PR is restricted to process with 

 only ( )11 x  a single time independent strain 

III leads to EVCP equivalent PR in time space 

 for some cases must be properly defined 

  as PR is path dependent 

IV none nonlinear-no EVCP 

V none no EVCP 

VI material dependent no EVCP 

 but only for ( )11  xσ   

VII stress/strain independent Eq. (32) makes use of 

  all PRs very CPU intensive 

E, G, stress independent unique none 

K, C material property functions,  

 isothermal EVCP  

Note: All PRs are time dependent. Additionally, by definition PRs of all Classes, except VII, are time, stress 
and stress history (path, process) dependent and, therefore, non-unique. All constitutive relations involving 
PRs written in the time space are very computationally intensive compared to expressions involving only 
moduli or compliances. 
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time dependent they are process independent. 
6) The indisputable proof of the explicit time and path dependence of visco- 

elastic PRs can be found in experimental results, such as those of Figure 1, 
where PRs due to different 1-D “constant” loading conditions are displayed. The 
various PR functions obtained from creep, relaxation and prescribed strain rate 
experiments bear no relations to each other and are specific and distinct expre- 
ssions for each loading event. 

7) Instantaneous non-zero loads, although mathematically rigorously defin- 
able by Dirac delta and/or Heaviside step functions, are physically unattainable. 
Consequently, the mathematically acceptable Class II and VI PR models are 
physically nonexistent and experimentally non-producible since they are solely 
based on one time independent stress or strain tensor. 

8) Except in wave propagation problems, elastic loading histories are generally 
unimportant, since these are conservative materials without dissipation and 
memory. Viscoelastic materials, on the other hand, continuously dissipate ener- 
gy and loading histories are of prime significance to their responses. 

9) When the proper loading cycles that are physically necessary to achieve 
constant values of one or more state variables are included in the analyses, sub- 
stantially different viscoelastic responses are achieved when compared to instan- 
taneous loading cycles. 

10) Analyses establish that Class III PRs are capable to produce EVCP pro- 
tocols, on condition that physically acceptable double convolution integral con-
stitutive relations are established (32b). However, these analyses fail to provide 
directions for establishing the unique, proper and necessary viscoelastic Class III 
PR functions of time, stress and stress history. Consequently, what process is to 
define the PRs “constant” strain, stress, their time derivatives, etc.? Hence, this 
inherent ambiguity renders viscoelastic path dependent non-unique PRs un-
suited for general viscoelastic material characterization. 

11) If viscoelastic PRs are to be used, then they must be obtained experi- 
mentally by loading and time processes that are exact detailed duplicates of the 
desired field conditions. 

12) The Class VII is an artificially defined isothermal viscoelastic PR devoid of 
strain or stress associations and hence path independent while still remaining a 
time dependent universal material property descriptor. It obeys the construction 
mandated by Eqs. (32) necessary for the existence of EVCPs and does not suffer 
from the loading cycle problems associated with the other Classes. (See the next 
Item below.) However, its use in the time space is subject to intensive CPU use 
involving triple function products and double convolution integrals. 

13) Since the viscoelastic PRs are time, stress and stress history dependent, 
unless the experimentally determined history exactly matches the application 
loading path no correspondence in properties can be established. 

14) Some of the triple Fourier transform products, Eq. (32) necessary for es-
tablishing any PR based elastic viscoelastic correspondence principle have no 
physical real time counterpart constitutive relations, thus proving their nonexi- 
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stence of the EVCP based on these PRs. 
15) The evaluation of all the PR double convolution time integral constitutive 

relations stemming from the triple FT products of (32) are highly CPU intensive, 
thus impractical for use in analytical and/or finite element analyses. By contrast, 
constitutive relations without PRs but in terms of moduli or compliances lead to 
more efficient single convolution double product time integrals. 

16) The validity of EVCPs without PRs based solely on moduli/compliances or 
on relaxation/creep functions remains unaffected and should be considered the 
universal unambiguous material characterization of choice. 

17) If viscoelastic PRs are to be used in routine stress/strain analyses then 
their experimental determinations must exactly duplicate each and every actual 
service time and loading history. 

18) In any viscoelastic formulation there is no need for the inclusion of PRs as 
all constitutive relation material properties (isotropic and anisotropic, homo- 
geneous and nonhomogeneous, linear and nonlinear) can be unambiguously 
characterized by their moduli and/or compliances thus removing any contro- 
versial descriptions due to the viscoelastic PR’s time and loading history depen-
dence. 

19) Finally, elastic solutions that are heavily dependent on PRs, such as thin 
plates, shells [129], Timoshenko beams [130], are best recast in their viscoelastic 
reincarnations solely in terms of relaxation moduli or creep compliances. 
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