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Abstract 
According to the characteristics of the correlation of multiple wind farm out-
put, this paper put forwards a modeling method based on fuzzy c-means clus-
tering and the copula function, and correlation wind farms are inserted into 
IEEE-RTS79 reliability system for risk assessment. By the probabilistic load 
flow calculated by Monte Carlo simulation method, the probability of the ac-
cident is derived, and bus voltage and branch power flow overload risk index 
are defined in this paper. The results show that this method can realize the 
modeling of the correlation of wind power output, and the risk index can 
identify the weakness of the system, which can provide reference for the oper-
ation and maintenance personnel. 
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1. Introduction 

Safety is the key of the power system. With the development of wind power 
technology and large-scale wind power integration, the strong stochastic volatil-
ity is bound to bring more serious challenges to stable operation of the system 
[1]. Besides considering that the same area may have multiple wind farms, due 
to the similarity of factors such as geographical environment, its output will 
show some kind of relationship [2]. So it’s necessary to conduct the risk assess-
ment of electric power system considering wind power correlation to identify the 
system weak link, and then take the corresponding effective measures to ensure 
safety and steady operation. 

To consider output correlation of wind power and then conduct risk assess-
ment, modeling the correlation problem is the beginning. Copula function [3] is 
effective in correlation problem. [4] connects copula theory with Monte Carlo 
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simulation method for probabilistic load flow calculation. [5] [6] use a hybrid 
copula function for the modeling of input variables of correlation, and deter-
mined the weighting coefficient of each copula function through expectation 
maximization method and least square method, overcoming the deficiency of 
using only one copula function. In [8], the author established wind farm reliabil-
ity model considering the influence of uncertain factors, then proposed a risk 
assessment method for the composite generation and transmission systems in-
cluding wind farms based on dispersed sampling Monte Carlo algorithm. [9] es-
tablish adequacy evaluation model for composite generation and transmission 
systems which contain wind farms based on sequential Monte Carlo simulation 
method. Based on vulnerability of the risk theory evaluation system, the conse-
quences severity with linear function was quantified in [10], but shelter pheno-
menon exists. In [11], utility function was introduced to measure severity of 
consequences caused by element fault for the failure probability model of the 
overhead line. 

In this paper, the fuzzy C means clustering is applied to wind power output 
data firstly and copula function is modeled for each class. The probabilistic load 
flow of wind power is calculated by Monte Carlo simulation, so the probability 
of the accident was derived. The utility function and the risk theory is combined 
to quantify the risk indicators. Matlab simulation results show that the method 
can assess system risk accurately, and identify system weaknesses, which has sig-
nificance for power system planning operation, differentiation operation and 
maintenance. 

2. Wind Power Output Correlation Modeling 
2.1. Copula Function Theory 

Copula can joint distribution of multidimensional random variables with one- 
dimensional marginal. Take binary random variable as an example to introduce 
copula function. 

H(x,y) is a two joint distribution function with the edge distribution F(x) and 
G(y), Sklar Theorem points out that there exists the unique Copula function 
C(U,V) which meets: 

( , ) [ ( ), ( )]H x y C F x G y=                        (1) 

Copula function mainly include normal copula function and t-Copula func-
tion which belong to ellipsoidal copula function, and the Clayton Copula func-
tion, Gumbel Copula function, which are the memberships of Archimedes Co-
pula functions. There are differences among different copula functions when 
they describe the correlation between random variables. Normal copula func-
tion, t-Copula function and Frank Copula function are effective in describing 
the dependence structure of symmetry. While the Clayton Copula function and 
Gumbel Copula function are used to describe dependence structure of asymme-
tric, one describes the strong upper tails correlation of the random variables and 
the other describes the lower tails. In order to describe the correlation between 
random variables quantitatively and accurately, the results are usually compared 
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with empirical Copula distribution functions so as to select the optimal Copula. 
The empirical Copula function is defined as follows: 

(Xi,Yi) (i = 1, 2, ···, n) is samples form bivariate population (X,Y). The empiri-
cal distribution functions of X and Yare Fn(x) and Gn(y) respectively, the sample 
empirical Copula distribution function was: 

[ ( ) ] [ ( ) ]
1

1( , ) , [0,1]
n i n i

n

n F x u G y v
i

C u v I I u v
n ≤ ≤

=

= ∈∑                (2) 

where [ ]I ⋅  is an indicative function. It means when ( )n iF x u≤ , [ ( ) ] 1
n iF x uI ≤ = ; 

otherwise, [ ( ) ] 0
n iF x uI ≤ = . 

Through calculating and comparing square Euclidean distance of each Copula 
function and empirical Copula distribution function, optimal function can be 
obtained. 

2 2

1
| ( , ) ( , ) |

n

m n m
i

d C u v C u v
=

= −∑                     (3) 

where m is the chosen Copula function type, Cn(u,v) is empirical Copula distri-
bution function, Cm(u,v) is the selected Copula distribution function, 2

md  is the 
square Euclidean distance. The smaller value shows that the selected Copula 
function is more effective in depicting correlation. In this paper, squared Eucli-
dean distance is used to quantified the correlation degree of Copula function. 

2.2. Fuzzy Clustering 

The final clustering results of traditional clustering algorithms such as K-means 
depends on the choice of initial aggregation point or the number of strict classi-
fication in some degree. While fuzzy clustering aims at the optimization of the 
objective function, dynamically adjusts the clustering center and the member-
ship degree, and then determines the class of the sample points by iterative con-
vergence so as to automatically classify the sample data. In this paper, the fuzzy 
C means clustering is used for the wind farm output classification. 
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X is a given sample matrix, p is the number of random variables, n is the 
number of random variables. Fuzzy clustering is to divide the n observations in-
to c class, the clustering center is V = {v1,v2, ···, vc}, of which vi = (vi1, vi2, ···, vip) (i = 
1, 2, ···, c). 

uik is the membership grade of class i membership, and 
1

1
c

ik
i

u
=

=∑ , the object-  

tive function is defined as: 
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m
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= −∑∑J U,V x v                 (5) 
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U = (uik)c×n shows membership matrixdik = ||xk − vi||. The objective function 
value J(U,V) is expressed as the weighted square distance and the weighted 
square distance between the sample and the cluster center. 

The specific steps are: 
1) Determine the c number of classes, power exponent m and the initial 

membership matrix (0) (0)( )iku=U , determine the initial membership matrix U(0) 
through a series of random numbers produced by a uniform distribution in 
[0,1]. 

2) l is iteration step number. The cluster center at step l is: 

( )

( )( )
( )( )

1

1

1

1
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3) Modify membership matrix U(l), then calculate the value of the objective 
function J(l). 

2( )
( ) 1

( )
1

|| ||1 / ( ) ( 1, 2, , ; 1, 2, , )
|| ||

lc
l k i m

ik l
j k j

u i c k n−

=

−
= = =

−∑ x v
x v

          (7) 

( ) ( ) ( ) ( ) ( ) 2

1 1
( , ) ( ) (|| )

n c
l l l l m l

ik k i
k i

u
= =

= −∑∑J U V x v              (8) 

4) Determining membership tolerance of terminating iteration 0uε > . When
( ) ( 1)max{| |}l l
ik ik uu u ε−− < , the iteration terminates, otherwise l = l + 1, then turn 

to step (2). 
Through the above steps, the final cluster center V and the membership U can 

be obtained, and sample class can be determined according to the element value 
of U. 

3. Power System Risk Index 

Power system risk is a comprehensive measurement system of probability and 
the seriousness of the consequences of the accident [12], which can reflect the 
effects of the accident on the operation, according to the theory of risk, the risk 
can be expressed as a product of the accident probability and severity, expression 
is as follows [13], 

Risk Pro Sev= ⋅                         (9) 

where Risk is risk value, Pro is the probability of accident, Sev is the severity of 
accident consequence. 

The severity of accident consequence is described by degree of deviation be-
tween actual value and rated value. This paper uses risk utility function to de-
scribe severity, w is risk index, Sis utility function value, S’(w) > 0, S’’(w) > 0. 
These means with the increase of deviation degree, the speed of the serious in-
crease also accelerated, which is close to the actual operation of the power sys-
tem. With the tendency of wind power and other new energy sources are inte-
grated into grid, the maintenance of voltage level and the ability to withstand 
high power are of great significance to the stable operation of the system. In or-



M. S. Liu et al. 
 

356 

der to master the security of power system, this paper defines voltage over limit 
risk and branch flow overload risk index. 

3.1. Voltage over Limit Risk 

The voltage over limit risk describes the possibility and harm degree of the node 
voltage limit in the system, which reflects the risk of voltage collapse when the 
voltage value deviates from the normal operating level. The magnitude of the 
voltage determines the severity of the voltage over limit, and the severity is 
quantified by the deviation between the actual value and the rated value. The 
node voltage 1.0 pu means the severity function value is 0; with the voltage value 
deviates from the rated value, the severity increases. The node voltage over limit 
severity function is expressed as: 

=e 1,  |1 |LVi
i

L
V LVi iS L V− = −                      (10) 

1

V

i

N

V Vi i V
i

R P Sα
=

= ⋅∑                         (11) 

where SVi is voltage node i over limit severity, Vi is the voltage, LLVi is the voltage 
fluctuation deviation; RV is the system voltage over limit the total risk, PVi is the 
probability of node i voltage over limit, αi is the weight factor, NV is node num-
ber. 

3.2. Branch Power Flow Overload Risk 

Transmission line has transmission power limit, branch flow overload risk re-
flects the line withstand certain transmission power possibility and harm degree. 
In order to avoid the occurrence of masking phenomenon, but not ignore the 
potential risks which line is close to limit completely, risk appears when the line 
load rate reach 90%. The branch power flow overload severity function is de-
fined as: 

1,  0.9Oi
i

L
L Oi i iS e L l L= − = −                    (13) 

1

L

i

N

L Li i L
i

R P Sβ
=

= ⋅∑                        (14) 

where SLi is a branch of I power flow overload severity, li is the current trend of i 
value, Li is power transmission limit of I branch, Lo is power flow deviation; RL is 
the total risk system of branch power flow overload, PLi is the probability of branch 
i overload, βi is an important weight factor, NL is the total branch number. 

4. Risk Assessment of Wind Power Access to Power System 

Power system risk value can be obtained from probability value and conse-
quence severity. The utility function above can be used to quantify severity. Be-
cause of the stochastic fluctuation of wind power, the probability value is ob-
tained by probabilistic power flow calculation [14]. Monte Carlo simulation 
method [15], widely used in power system, is accurate in calculating probabilis-
tic power flow. In this paper, probabilistic power flow is calculated by Monte 
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Carlo simulation, then the probability of the bus voltage limit and the power 
flow overload can be obtained. Concrete steps are: 

1) Pretreat wind farm raw data and perform fuzzy clustering. 
2) The edge distribution function is obtained by the kernel density estimation 

based on nonparametric estimation. Draw edge distribution histogram to ob-
serve the input variable dependent structure. 

3) Calculate the square Euclidean distance for each kind of data to select op-
timal Copula function to produce the correlated output samples. 

4) Model power system with wind farm integration; Calculate probabilistic 
power flow to obtain probability of bus voltage limit and branch flow overload. 

5) Calculate the node voltage over limit and branch power flow overload se-
verity degree of the system, and define the comprehensive severity as the arith-
metic mean of the total severity of N times power flow calculation. 

6) Multiply the probability with the consequence severity to obtain the risk 
value.  

Figure 1 is the flow chart. 
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Figure 1. Flow chart of risk assessment. 
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5. Simulation Results and Analysis 
5.1. Wind Power Output Correlation Modeling and Evaluation 

Based on the 50,000 sets of measured output data of Australian wind farms in 
spring, this paper uses fuzzy clustering method combined with Copula function 
for correlation modeling. The validity of the method is verified by comparing 
with the measured data. 

Fuzzy clustering of the sample matrix is divided into 6 classes; Table 1 shows 
the cluster analysis results and the selected optimal Copula function. 

To eliminate the influence of sample size difference on correlation coefficient, 
the total size of the generated data and the measured data should be the same, 
and produce the output sample of corresponding proportion. Figure 2 is com-
parison of the frequency histogram of the measured output and the simulated 
output. 

In Figure 2, the left one is frequency histogram of measured output data, the 
right one is frequency histogram of output by clustering and Copula function. 
As can be seen from Figure 2, there exists correlation between the output of the 
two wind farms, the correlation is different in different locations, the specific 
performance of the lower tail has strong correlation, the upper tail is relatively 
weak, the weakest correlation is in the central. After fuzzy clustering analysis, the 
lower tail correlation of class 1 and class 4 is depicted by Clayton-Copula func-
tion, The Frank-Copula function depicts the symmetry of the other classes. 
Clustering refines the modeling process and has better fitting effect. The Pearson 
linear correlation coefficient, Kendall rank correlation coefficient, Spearman 
rank correlation coefficient and relative error of quantitative σi are calculated to 
analyses excellence of modeling. 

| |simu real
i

real

P P
P

σ −
=                         (14) 

where Preal is the wind farm i measured output. Psimu is wind farm i simulation 
output. N represents the total number of samples. For each clustering scheme, 
the simulated 20 times average is used to reduce the randomness error. Table 2 
is the comparison result of correlation coefficient and relative error between the 
method and the measured data. 
 
Table 1. Fuzzy clustering results. 

Class  
number 

Cluster center Proportion Optimal Copula 
Squared Euclidean 

distance 

1 (2.2404, 3.5798) 30.81% Clayton 0.8137 

2 (10.4320, 21.5651) 21.71% Frank 0.6860 

3 (20.5277, 43.0317) 16.71% Frank 0.7204 

4 (33.6675, 69.1418) 11.14% Clayton 0.8094 

5 (48.8864, 97.3516) 10.07% Frank 1.5543 

6 (67.9871, 119.5788) 9.56% Frank 0.4795 
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Table 2. Correlation and error comparison. 

 Pearson Kendall Spearman 
N

i
i

σ∑  

Actual Data 0.9140 0.7915 0.9348 - 

Copula 0.9221 0.7957 0.9441 0.1976 

 

 

 
Figure 2. Comparison of measured and simulated output data. 

 
From the above table, we can see that all kinds of optimal Copula functions 

generated by fuzzy clustering are clustered around the center of clustering, the 
concentration is strong and the relative error is smaller. This method can accu-
rately describe the correlation of wind power output. 

5.2. Risk Assessment of Wind Power Access to Power System 

The above two wind farms are respectively integrated into IEEE-RTS79 reliabili-
ty test system node 17 and 24, wind turbine takes constant power factor control 
method, and its power factor is cosφ = −0.95, integration node is taken as PQ 
node with negative power and simulation scale N = 50,000. The load fluctuation 
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is random variable which obeys normal distribution, the expectation is the given 
value of the standard system, and variance is 5% of the expectation, Figure 3 is 
the example. 

When the two correlation wind farms are integrated into node 17 and 24, the 
voltage fluctuation increases at the access point, the voltage shows a downward 
trend, and the low voltage over limit may appear. Table 3 is partial node voltage 
information. The voltage fluctuations before and after wind power integration 
are shown in Figure 4 and Figure 5. 

Compared with the no integration only considering the random fluctuation of 
load, the volatility of node far away from the integration node (such as node 6) is 
slightly enhanced, but still fluctuates in the safe range; Node 17 and 24 voltage 
and access node nearby (such as node 3) showed larger variance, the voltage 
fluctuation is greatly increased, the minimum voltage is lower than the lower  
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Figure 3. IEEE-RTS79 system with wind power integration. 
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Figure 4. Voltage without wind integration. 

 

 
Figure 5. Voltage with wind integration. 

 
Table 3. Node voltage information. 

Node Expect Maximum Minimum Variance 

3 
0.983616/ 
0.982288 

0.997678/ 
0.997068 

0.980912/ 
0.907201 

3.9188e−06/ 
3.7163e−04 

6 
1.012343/ 
1.011934 

1.020438/ 
1.019752 

1.003119/ 
0.993875 

3.9139e−06/ 
1.12633e−05 

17 
1.038548/ 
1.034183 

1.039121/ 
1.039034 

1.037869/ 
1.007277 

2.2149e−08/ 
5.4045e−05 

24 
0.977827/ 
0.967348 

0.983634/ 
0.983138 

0.971891/ 
0.878941 

1.9595e−06 
5.5165e−04 

Notes: “*/*”in the table means “no wind integration/wind integration” data. 

 
limit, there is a low voltage situation and a voltage over limit risk. Wind power 
access changes the original power flow distribution, so the branch power flow 
may reach the transmission limit of line, destroy the thermal stability of the line 
and cause overload phenomenon, which leads to the fault of relay protection 
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operation and may cause cascading failures also if serious. According to risk 
theory formula, the importance factor is taken as 1, the system node voltage over 
limit and branch flow overload risk are calculated as shown in Table 4. 

In order to quantitatively characterize the line carrying capacity when the 
maximum power flow occurs, the maximum load rate is defined: 

max

lim
m

S
S

λ =                             (13) 

where smax is the branch maximum power flow, Slim is the maximum transmis-
sion limit. 

Figure 6 is the maximum load overload branch flow rate, the penetration of 
wind power for η, pictures from left to right respectively shows the maximum 
load ratio of without wind, permeability of 0.4η and η. 

Branch 10 has been close to full load while it is not connected to the maxi-
mum load rate of wind power, therefore, the line transmission capacity should 
be increase to reduce risk. The power flow of branch 18 and branch 27 has 
changed greatly after the access of wind power. With the increase of permeabili-
ty, the maximum line load rate increases gradually, and the grid risk exists. 
Branch 18 is the transformer branch, branch 24 is a high voltage class 230 kV, 
and is an important channel for the transmission of electricity to the 230 kV  

 
Table 4. Risk value. 

Node/Branch Probability Severity Risk 

Node 3 13.528% 0.0261 0.003531 

Node 24 25.946% 0.0431 0.011183 

Branch 10 69.596% 0.2125 0.147891 

Branch 18 5.592% 0.0906 0.005066 

Branch 27 1.5% 0.0318 0.000470 
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Figure 6. Overload current maximum load rate. 



M. S. Liu et al. 
 

363 

area, there should be attention to the risk. 
As can be seen, in the current wind power access mode, node 3 and 24 have 

the risk of low voltage, 10, 18 and 27 have the branch power flow overload risk, 
which can be regarded as the key nodes and lines to be paid attention to. The 
system personnel should carry on the pertinence analysis, reasonably plan the 
wind power access point and the access capacity, take the corresponding meas-
ure to reduce the electric network risk, and provides the safeguard for the power 
system safe reliable operation. 

6. Conclusions 

Based on the measured output data of wind farm, the fuzzy clustering and Co-
pula function theory are combined to realize the correlation modeling of wind 
power output. The wind power probabilistic flow is calculated by Monte Carlo 
simulation method to obtain the probability of the node voltage over limit and 
branch flow overload. The severity is measured by utility function, and the risk 
value is calculated according to the risk theory. Results show that: 

1) After the fuzzy clustering processing for the total sample, the optimal Co-
pula function is modeled for each kind of data, which can accurately describe the 
correlation of wind power output. 

2) In and near the wind power access position, the voltage fluctuation is 
strong and prone to have voltage over limit risk.  

3) This method can evaluate the risk of branch flow overload, identify the sys-
tem critical lines and provide theoretical support for differential operation and 
maintenance.  

This method in the paper can realize the modeling of wind powers with cor-
relation, quantitative risk index of limit over voltage and branch flow overload 
and realize the power grid risk assessment of the operation condition. It can 
identify the weak links and key lines when the wind power access to the power 
system which can provide the basis for the realization of the difference opera-
tion. 
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