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Abstract 
The Cranking Nilsson model is applied to calculate the single-particle energy 
eigenvalues and eigenfunctions of nuclei in a strongly deformed potential. 
Accordingly, The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the 

volume conservation factor 00
0ω ω , the smoothed energy, the BCS energy, 

the G-value and the electric quadrupole moment of the five uranium isotopes: 
230U, 232U, 234U, 236U and 238U are calculated as functions of the deformation 
parameter. Furthermore, the single-particle Schrödinger fluid is applied to 
calculate the rigid-body model, the cranking-model and the equilibrium- 
model moments of inertia of the five uranium isotopes. Moreover, the collec-
tive model is applied to calculate the rotational energies of these isotopes. The 
best potential and deformation parameters are also given. 
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1. Introduction 

As we go far from closed shells, some new very simple and systematic features 
start to show up for some nuclei. This is true for nuclei with mass number A in 
the range 155 185A≤ ≤ , for 225A ≥ , for nuclei in the s − d shell 19 25A≤ ≤  
and for p shell nuclei in 9 14A≤ ≤ . Even-even nuclei in the same region all 
have a low-lying first excited state with 2I +=  and electric quadrupole radia-
tion is strongly enhanced. A description of these nuclei and many other de-
formed nuclei has been given by a model proposed and developed by A. Bohr 
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and B. Mottelson [1]. The success of the independent-particle approximation for 
spherical nuclei near closed shells naturally suggests adopting a similar proce-
dure for deformed nuclei. Thus, as a first guess for the deformed nucleus inter-
nal wave function we want to take an independent-particle wave function, gen-
erated from a deformed potential. One of the most successful models for gene-
rating realistic intrinsic single particle states of deformed potentials is that first 
proposed by Nilsson [2]. This model was limited to nuclei with axially symme-
tric quadrupole deformations. Positive values of the deformation parameter cor-
respond to prolate deformation and negative values to oblate deformation. 

The success of the description of many nuclei by means of deformed potential 
can be taken as an indication that by distorting a spherical potential in this 
manner we automatically obtain the right combination of spherical eigenfunc-
tions that makes the corresponding Slater determinant a better approximation to 
the real nuclear wave function. From this point of view, the deformed potential 
is a definite prescription for a convenient mixing of various configurations of the 
spherical potential. The absolute values of the rotational energies or equivalently 
the moments of inertia require the knowledge of the fine details of the intrinsic 
nuclear structure. Consequently, the investigation of the nuclear moments of in-
ertia is a sensitive check for the validity of the nuclear structure theories [3]. 

Theoretical investigations of Ref. [4] on rare earths and actinides showed that, 
having reproduced the experimental equilibrium deformations of nuclei, one 
was able to reproduce their experimental moments of inertia. More specifically, 
using the cranking formula and a realistic model of intrinsic structure of a nuc-
leus (realistic single-particle potentials plus pairing interaction), one was also 
able to reproduce the experimental ground state moments of inertia within the 
limits of 10% - 25%. 

It is well known that nearly all fully microscopic theories of nuclear rotation 
are based on or related in some way to the cranking model, which was intro-
duced by Inglis [3] in a semi-classical way, but it can be derived fully quantum 
mechanically, at least in the limit of large deformations, and not too strong 
K-admixtures ( )K I� . The cranking model has the following advantages [3] 
[5]. 

1) In principle, it provides a fully microscopic description of the rotating nuc-
leus. There is no introduction of redundant variables, therefore, we are able to 
calculate the rotational inertia parameters microscopically within this model and 
get a deeper insight into the dynamics of rotational motion.  

2) It describes the collective angular momentum as a sum of single-particle 
angular momenta. Therefore, collective rotation as well as single-particle rota-
tion, and all transitions in between such as decoupling processes, are handled on 
the same footing.  

3) It is correct for very large angular momenta, where classical arguments ap-
ply. 

A simple and widely used way to describe the change of the single-particle 
structure with rotation is given by the Cranked Nilsson model (CNM) [5]-[10]. 
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It is the method of calculating the shell correction energy that made it possible to 
do large-scale calculations where the nuclear potential-energy surface was ex-
plored in great details as a function of different deformation degrees of freedom. 
Important achievements in this field include the prediction of Super deformed 
high-spin states and terminating bands. The CNM model is a theoretical ap-
proach that provides us with good physics interpretation of the different proper-
ties of deformed nuclei and at the same time allows us to carry out systematic 
and accurate calculations of the different properties of the deformed even-even 
nuclei. 

In addition to individual nucleons changing orbits to create excited states of 
the nucleus as described by the shell model, there are nuclear transitions that 
involve many (if not all) of the nucleons. Since these nucleons are acting togeth-
er, their properties are called collective, and their transitions are described by a 
collective model [1] [3] of nuclear structure. Nuclei with high mass number have 
low-lying excited states which are described as vibrations or rotations of non- 
spherical nuclei. Many of these collective properties are similar to those of a ro-
tating or vibrating drop of liquid, and in its early development the collective 
model was called the liquid-drop model. The collective model, also called unified 
model, describes the nuclei in such a way that they incorporate aspects of both 
the nuclear shell model and the liquid-drop model in order to explain certain 
magnetic and electric properties that neither of the two separately can explain. 
In the collective model, high-energy states of the nucleus and certain magnetic 
and electric properties are explained by the motion of the nucleons outside the 
closed shells (full energy levels) combined with the motion of the paired nucle-
ons in the core. The increase in nuclear deformation that occurs with the in-
crease in the number of unpaired nucleons accounts for the measured electric 
quadrupole moment, which may be considered as a measure of how much the 
distribution of electric charge in the nucleus departs from spherical symme-
try. 

The study of the velocity fields for the rotational motion led to the formula-
tion of the concept of the Schrödinger fluid [11] [12] [13] [14]. The problem of a 
single quantum particle moving in a time-dependent external potential well is 
formulated specifically to emphasize and develop the fluid dynamical aspects of 
the matter flow in this concept. This idealized problem, the single-particle 
Schrödinger fluid, is shown to exhibit already a remarkably rich variety of fluid 
dynamical features, including compressible flow and line vortices. It provides 
also a sufficient framework to encompass simultaneously various simplified flui-
dic models for nuclei which have earlier been postulated on an ad hoc basis, and 
to illuminate their underlying restrictions. Explicit solutions of the single-par- 
ticle Schrödinger fluid problem are studied in the adiabatic limit for their ma-
thematical and physical implications (especially regarding the collective kinetic 
energy). 

Sadiq et al. [15] used the projected shell model to study the yrast positive par-
ity bands in 230–240Unuclei. The energy levels, deformation systematics, E2 transi-
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tion probabilities and g-factors are calculated. The calculation reproduces the 
observed positive parity yrast bands and B(E2) transition probabilities. The ob-
served deformation trend of low-lying states in Uranium nuclei depends on the 
occupation of down-sloping components of high j orbits in the valence space. 
The low-lying states of yrast spectra are found to arise from 0-quasiparticle (qp) 
intrinsic states, whereas the high spin states possess multi-qp structure.  

Doma, Kharroube, Tefiha and El-Gendy [16] have recently applied the CNM, 
the concept of the single-particle Schrödinger fluid and the nuclear superfluidity 
model to calculate the electric quadrupole moments and the moments of inertia 
of the even-even p-and sd-shell nuclei and the obtained results are in good 
agreement with the available experimental data. Furthermore, Doma and El- 
Gendy [17] applied the collective model to calculate the rotational and vibra-
tional energies of the even-even ytterbium: 170Yb, 172Yb and 174Yb, hafnium: 176Hf, 
178Hf and 180Hf and tungsten: 182W, 184W and 186W nuclei. Moreover, they have 
applied the single-particle Schrödinger fluid to calculate the nuclear moment of 
inertia of the nine mentioned nuclei by using the rigid-body model and the 
cranking model. Furthermore, they applied the CNM to calculate the L. D. 
energy, the Strutinsky inertia, the L. D. inertia, the volume conservation factor 

0
0 0ω ω , the smoothed energy, the BCS energy, the G-value, the total ground- 

state energy and the quadrupole moment of the nine mentioned nuclei as func-
tions of the deformation parameters β  and γ . 

In the present paper, we applied the concept of the single-particle Schrödinger 
fluid to calculate the cranking-, the rigid body- and the equilibrium-models 
moments of inertia for the five uranium isotopes: 230U, 232U, 234U, 236U and 238U. 
Furthermore, we applied the CNM to calculate the L. D. energy, the Strutinsky 
inertia, the L. D. inertia, the volume conservation factor 0

0 0ω ω , the smoothed 
energy, the BCS energy, the G-value and the electric quadrupole moment of the 
mentioned five isotopes. Moreover, we applied the collective model to calculate 
the rotational energies of the five uranium isotopes. Variations of the calculated 
characteristics with respect to the deformation parameter β and the nonaxiality  
parameter γ, which are assumed to vary in the ranges ( )0.50 0.50β− ≤ ≤  and 

( )0 60γ≤ ≤� �  are carried out.  

2. The Cranked Nilsson Model 
2.1. The CNM Hamiltonian 

The single particle Hamiltonian in the CNM assumes the form [4] [5] [17]  

( ) ( )0 1 ,xH H H jω= + −                      (2.1) 

where 

( ) { }
2

0 2 2 2 2 2 21 .
2 2 x y z
pH m x y z
m

ω ω ω= + + +              (2.2) 

Here, the oscillator parameters ,x yω ω  and zω  assume the form [18] 
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( )

( )

( ) ( )

0

0

0

5 2π1 cos ,
4π 3

5 2π1 cos ,
4π 3

51 cos .
4π

x

y

z

ω ω β β γ

ω ω β β γ

ω ω β β γ

    = − −          
    = − +          
  

= −      

           (2.3) 

The second term in the right-hand side of Equation (2.1) is given by 

( )1 2
0 4 4

4 .π2
9

H V Vω ρ ε ′= +�                (2.4) 

In the above equations β  is the deformation parameter which is related to 

Nilsson’s deformation parameter [2] δ  by 2 4π
3 5

β δ= , γ is the nonaxiality  

parameter and 4ε  refers to the hexadecapole deformations degree of freedom. 
The angular frequency ( )0ω β  is given in terms of the non- deformed frequen-
cy 0

0ω  by [4] 

( )
1
6

0 2 3
0 0

15 5 51
4π 2π 4π

.ω β ω β β
−

 
= − −  

 
          (2.5) 

The non-deformed oscillator parameter 0
0ω�  is given in terms of the mass 

number A and the number of protons Z by [19] 

( )

1
3

0
0 2

38.6 .
0.1911.6461

A
A Z

A A

ω
−

=
− 

+ − 
 

�           (2.6) 

The stretched square radius 2ρ  is written in the form  

{ }2 2 2 2 2 2 2 ,x y z
m x y zρ ω ω ω= + +
�

              (2.7) 

The hexadecapole potential is defined to obtain a smooth variation [4] [5] [6] 
in the γ-plane so that the axial symmetry is not broken for 120 , 60 ,0γ = − −� � �  
and 60� . It is of the form 

( ) ( )4 40 4,0 42 4,2 4, 2 44 4,4 4, 4 ,V a Y a Y Y a Y Y− −= + + + +          (2.8) 

where the 4ia  parameters are chosen as 

( )2 2
40 42 44

1 1 15cos 1 , 30 sin 2 , 70 sin .
6 12 12

a a aγ γ γ= + = − =  

and 

( ) ( ) ( ){ }2 2
0 2 .o

t t t N
V N s Nχ ω µ⋅′ = − + −� � � �           (2.9) 

In Equation (2.9) t refers to the stretched coordinates xx Mξ ω= � , etc. 

The Hamiltonian ( )0H  can be simplified to  
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( ) ( )

( )

2
0 2 2 2 2 2 2 2

0 0 2,0 0 2,2 2, 2

2 2 2
0 2,0 2,2 2, 2

1 2cos sin
2 2 2

5 16π 8π 2cos sin 2 .
32π 5 5

H m r m r Y m r Y Y
m

m r Y Y Y

ω β ω γ β ω γ

β ω γ γ

−

−

= − ∇ + − − +

 
+ + − +  

 

�

 (2.10) 

Hence, to the first order in β , the Hamiltonian ( )0H  takes the form 

( ) ( ) ( )0 0 2 2 2 2
0 0 2,0 0 2,2 2, 2

2cos sin ,
2

H H m r Y m r Y Yβ ω γ β ω γ−= − − +   (2.11) 

where 

( )
2

0 2 2 2
0 0

1
2

.
2

H m r
m

ω= − ∇ +
�                  (2.12) 

Also, direct substitution for the different quantities in the operator 2ρ  gives 

( )2 20
2,0 2,2 2, 2

16π 8π1 cos 3 sin .
3 5 3 15

m r Y Y Yω ε ερ γ γ −

 
= − − + 

 �
 (2.13) 

2.2. The Single Particle Energy Eigenvalues and  
Eigenfunctions of the CNM 

The method of finding the energy eigenvalues and eigenfunctions of the Hamil-
tonian H, Equation (2.1), can be summarized as follows: 

1) Solving the Schrödinger’s equation of the Hamiltonian (2.10) 
( ) ( ) ( ) ( )0 0 0 0
0 ,i i iH Eψ ψ=                    (2.14) 

exactly. 
2) Modifying the functions ( )0

iψ  to become eigenfunctions for the solutions 
of the corresponding equation for ( )0

0H V ′+  
3) Using the functions obtained in step 2) to construct the complete function 

ψ , the eigenfunction of the Hamiltonian H, in the form of linear combinations 
of the above functions, as basis functions, with given total angular momentum j 
and parity π. 

4) Constructing the Hamiltonian matrix H by calculating its matrix elements 
with respect to the basis functions defined in step 3). 

5) Diagonalizing the Hamiltonian matrix H to find the energy eigenvalues 

nE  and eigenfunctions nψ  as functions of the non-deformed oscillator para-
meter 0

0ω�  and the parameters of the potentials. 

2.3. The solutions of Equation (2.14) 

The solutions of the equation ( ) ( ) ( ) ( )0 0 0 0
0 i i iH Eψ ψ=  are given, with the usual no-

tations, by [16] [17] 

( ) ( ) ( )0 , ,i NN R r Yψ θ ϕΛ≡ Λ = � ��              (2.15) 

( ) ( )0 0
0

3 ,
2i NE Nε ω δ = = + 

 
�               (2.16) 

where ( ),Y θ ϕΛ�  are the normalized spherical harmonics with  
, 1, , 0, , 1,Λ = − − + −� � � � � �  and �  is the nucleon orbital angular momentum 
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quantum number.  
The radial wave functions ( )NR r�  are given by 

( ) ( )
23 1

22 2 2
0

2

22
2 e ,

3
2

N N

N

R r a z L z
N

ρ
− − +

−

− + Γ 
 =

+ + Γ 
 

��
� �

�

�
        (2.17) 

where 
0

rz
a

= , 
( )0

0

a
mω δ

=
�  and the number of quanta of excitation N is 

related to the orbital angular momentum quantum number �  by  
, 2, , 0N N= −� �  or 1. 

The last function in the right-hand side of Equation (2.17) is the associated 

Laguerre polynomial. Since the nucleon has spin 
1
2

 and intrinsic spin wave 

functions sχ Σ , where 
1
2

Σ = ± , the single particle wave functions of the Hamil-

tonian ( )0
0H  are, then, given by 

( ) ( ) ( )0 ,i N sN R r Yψ θ ϕ χΛ Σ≡ ΛΣ = � ��             (2.18) 

The classifications of the functions N ΛΣ�  are straightforward. 

2.4. The Eigenfunctions of the Hamiltonian ( ) ′H V0
0 +  

Wave functions with given values of the number of quanta of excitations N, the 
orbital angular momentum quantum number � , the total angular momentum J 
and the parity π can be constructed from the functions (2.18), in the usual man-
ner, as follows  

1, .
2

N J J Nπ
Λ+Σ=Ω

 = Λ Σ Ω ΛΣ 
 

∑� � �           (2.19) 

The functions N Jπ�  are used as basis functions for the construction of the 
single particle nuclear wave functions with given total angular momentum J and 
parity π, in the usual manner, as follows 

1, .
2NNJ C J Nπ

Λ+Σ=Ω

 = Λ Σ Ω ΛΣ 
 

∑ ∑ ��
� �         (2.20) 

Accordingly, we obtain 15 wave functions, states, namely 

1 3 5 7 9 11 13 1, , , , , , , ,
2 2 2 2 2 2 2 2

3 5 7 9 11 13 15, , , , , and
2 2 2 2 2 2 2

+ + + + + + + −

− − − − − − −
 

The classifications of these states in terms of the functions N Jπ�  are straight- 
forward. 

The matrix elements of the Hamiltonian ( )0
0H V ′+  with respect to the func-

tions (2.20) are given by 
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( )

( )

( )

( )( )

0
0

0
0

, , ,

0 , , , ,
, , ,

0
0 , ,

1 1, ,
2 2

1 1 3, ,
2 2 2

2 1

N N
N N

N N N N
N N

J H V J

J J C C N H V N

J J C C N

π π

ω δ δ δ δ δ

χ ω µ δ δ

′
′ ′ ′Λ Σ Λ Σ

′ ′ ′ ′ ′Λ Λ Σ Σ Ω Ω
′ ′ ′Λ Σ Λ Σ

′ ′Λ Λ Σ Σ

′+

  ′ ′ ′ ′ ′ ′ ′= Λ Σ Ω Λ Σ Ω × ΛΣ + Λ Σ  
  

    ′ ′ ′= Λ Σ Ω Λ Σ Ω × +        

+



− ΛΣ + +

∑ ∑

∑

� �
�

� �
�

� � � �

� � �

� � � �( )( )

( )( )

1, 1,

1, 1, , ,

1

1 N N

δ δ

δ δ δ δ

′ ′Λ+ Λ Σ− Σ

′ ′ ′ ′Λ− Λ Σ+ Σ Ω Ω

 − Λ + Λ +

+ Λ −Λ +
+  

�

� �

 (2.21) 

It is easy to show that the matrix elements of the operator 2r  with respect to 
the basis functions N ΛΣ�  are given, with the usual notations by 

( )

2 2
0 , 2,

2, , ,

3 1
2 2

31
2

,

N N N N

N N

N r N a N n n

n n

δ δ

δ δ δ

′ ′−

′ ′ ′+ Λ Λ Σ Σ

   ′ ′ ′ΛΣ Λ Σ = + +

 + +   






  

 + + + + 
  

� � �

�

 (2.22) 

where 
( )

2
0

0

a
mω δ

=
�  and 2N n= + � . 

Also, the matrix elements of the spherical-harmonic operators  

2,0 2,2 2, 2 4,0 4,2 4,4, 4, 2, , , , ,Y Y Y Y Y Y Y− −  and 4, 4Y −  with respect to the functions (2.15) 
are straightforward.  

2.5. Total Nuclear Quantities 

We define the total energy by [4] [5] [6] 

,sp i i iocc occ occE e e mω ω= = +∑ ∑ ∑�            (2.23) 

where the single-particle spin contribution im  is obtained as 

Λ Σ ΛΣ .i xm N j N′ ′ ′ ′= � �                 (2.24) 

The summations in (2.23) run over the occupied orbitals in a specific confi-
guration of the nucleus. The shell energy is now calculated from 

( ) ( ) ( )shell ,sp spE I E I E I= −               (2.25) 

where 

,ioccI m= ∑                        (2.26) 

and ( )spE I  is the smoothed single-particle sum which can be evaluated ac-
cording to the Strutinsky prescription [6] [20]. The detailed formulas for 

( )spE I  are discussed in [21] for 0I =  and in [22] for 0I ≠ . 
The pairing energy is an important correction that should decrease with in-

creasing spin and becomes essentially unimportant at very high spins. To obtain 

an ( 0I = ) average pairing gap ∆, which varies as 
1
2A

−
, the pairing strength G is 

chosen as [8] [9] [10]. 
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( ), 0 1
1 MeV ,p n

N ZG g g
A A

− = ± 
 

            (2.27) 

with g1/g0 ≈ 1/3. Furthermore, the number of orbitals included in the pairing 
calculation should vary as Z  and N  for protons (p) and neutrons (n), 
respectively. If pairing is calculated, the pairing strength G is an important pa-
rameter. Its value is given according to (2.27). As a default, we use  

0 119.2, 7.4g g= =  [5]. 
The total nuclear energy is now calculated by replacing the smoothed single- 

particle sum by the rotating-liquid-drop energy and adding the pairing correc-
tion 

( ) ( ) ( ) ( )shell pair, , , , ,tot RLDE I E I E I E Iε ε ε ε= + +        (2.28) 

or  

( )
2

2, ,
2tot sp LD

rig

E I E A E BIε = − + − +
ℑ
�  

where ( )4, ,ε ε γ ε= , LDE  is liquid drop energy, ( )spA E I=  is the smooth 

moment of inertia factor, 
2

2 strut

B =
ℑ
� . The shell and pairing energies are eva-

luated separately for protons and neutrons at 0I = , while the renormalization 
of the moment of inertia introduces a coupling when evaluating shellE  for 

0I > .  
From the single-particle wave functions, the electric (or mass) quadrupole 

moment may be calculated as 

2 2 ,i i ioccQ p qω ωχ χ= ∑                 (2.29) 

where 1ip =  for protons and 0 for neutrons. For more details concerning the 
Cranked Nilsson model, see [6]. 

3. The Single Particle Schrödinger Fluid 

The problem of a single quantal particle moving in a time-dependent external 
potential well was formulated specifically to emphasize and develop the fluid 
dynamical aspects of the matter flow [11] [12]. This idealized problem, the sin-
gle-particle Schrödinger fluid, is shown to exhibit already a remarkably rich va-
riety of fluid dynamical features, including compressible flow and line vortices. 
It provides also a sufficient framework to encompass simultaneously various 
simplified fluidic models for nuclei and to illuminate their underlying restric-
tions. Accordingly, each nucleon in the nucleus is assumed to move in a single- 
particle potential ( )( ),V tαr , which is deformed with time t, through its para-
metric dependence on a classical shape variable ( )tα . Thus, the Hamiltonian 
for the present problem is given by [11] [12] 

( )( ) ( )( )
2

, ; , .
2

H a t V a t
m

= +
pr p r             (3.1) 

The single-particle wave function ( )( ), ,t tαΨ r , which describes the motion 
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of a nucleon, satisfies the time-dependent Schrödinger equation  

( )( ) ( )( ) ( )( ), ; ; , ; , .H a t t t i t t
t

α α∂
Ψ = Ψ

∂
r p r r�       (3.2) 

We use polar form of the wave function and isolate the explicit time depen-
dence in ( )( ), ,t tαΨ r  by an energy phase factor, i.e. we write [11] [12] 

( )( ) ( )( ) ( )( )
0

; , ; exp d ,
tit t t t tα α α ′ ′Ψ = Ψ − 

 ∫r r
�
     (3.3) 

where ( )( )tε α  is the intrinsic energy of the nucleon that depends on time 
through α. Then, we write the complex wave function ( )( ), tαΨ r  in polar 
form 

( )( ) ( )( ) ( )( ), , exp , ,iMt t S tα α α Ψ = Φ − 
 

r r r
�

      (3.4) 

where ( )( ), tαΦ r  and ( )( ),S tαr  are assumed to be real functions of r  and 
α . 

The average potential field is assumed to be in the form of anisotropic har-
monic oscillator potential. The intrinsic energy of the single particle state is, then 

( ) ( )1 1 .
x y zn n n x x y z zE n n nω ω= + + + +� �             (3.5) 

In terms of the frequencies ,x yω ω  and zω  we introduce one single para-
meter of deformation δ  given by [2] 

2 2
0

41 ,
3zω ω δ = − 

 
                     (3.6) 

2 2 2
0

21 .
3x yω ω ω δ = = + 

 
                  (3.7) 

Applying the time-dependent perturbation method and using the equation 
arising from the first-order perturbation of the wave function we can calculate 
the first-order time-dependent perturbation correction to the wave function ex-
plicitly as function of the number of quanta of excitations corresponding to the 
Cartesian coordinates and the quantity σ , defined by [11] [12] 

,y z

y z

ω ω
σ

ω ω
−

=
+

                      (3.8) 

which is a measure of the deformation of the potential. 
We use the cranking-model formula for the calculation of the moment of in-

ertia. After the inclusion of the residual pairing interactions by the quasiparticle 
formalism, the formula for the x-component of the moment of inertia is given in 
terms of the matrix elements of the single-particle angular-momentum operator 
corresponding to the rotation around the intrinsic x-axis, the variational para-
meters of the Bardeen-Cooper-Sehrieffer wave function corresponding to the 
single particle states and the quasiparticle energy of this state [23].  

We now examine the cranking moment of inertia in terms of the velocity 
fields. Bohr and Mottelson [1] showed that for harmonic oscillator case at the 
equilibrium deformation, where 
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( )1

d 0,
d x y zn n ni i

E
σ =

=∑                   (3.9) 

the cranking moment of inertia is identically equal to the rigid moment of iner-
tia: 

2 2
1 .cr rig i ii m y z
=

ℑ = ℑ = +∑               (3.10) 

We note that the cranking moment of inertia crℑ  and the rigid moment of 
inertia rigℑ  are equal only when the harmonic oscillator is at the equilibrium 
deformation. At other deformations, they can, and do, deviate substantially from 
one another [12].  

The following expressions for the cranking-model and the rigid-body model 
moments of inertia, crℑ  and rigℑ , are obtained [12]: 

( ) ( )
1
3 2

2
0

1 1 11 1 ,
6 2 1cr

E q qσ σ
σ σ σω

+    ℑ = + + −    + −    
     (3.11) 

( ) ( )
1
3

2
0

1 1 1 1 ,
6 2 1rig

E q qσ σ
σ σω

+  ℑ = + + −     + −  
      (3.12) 

where E is the total single particle energy, given by (3.5) and q is the ratio of the 
summed single particle quanta in the y-and z-directions 

( )
( )

1
.

1
yocc

zocc

n
q

n
+

=
+

∑
∑

                     (3.13) 

q is known as the anisotropy of the configuration. The total energy E and the 
anisotropy of the configuration q are easily calculated for a given nucleus with 
mass number A, number of neutrons N and number of protons Z. Accordingly, 
the cranking-model and the rigid-body model moments of inertia are obtained 
as functions of the deformation parameter β and the non-deformed oscillator 
parameter 0

0ω�  by suitable filling of the single-particle states corresponding to 
the ground-state of the given nucleus [13] [14]. 

4. The Collective Model 

The two most important developments in nuclear physics were the shell model 
and the collective model. The former gives the formal framework for a descrip-
tion of nuclei in terms of interacting neutrons and protons. The latter provides a 
very physical but phenomenological framework for interpreting the observed 
properties of nuclei. A third approach, based on variational and mean-field me-
thods, brings these two perspectives together in terms of the so-called unified 
models. Together, these three approaches provide the foundations on which 
nuclear physics is based. They need to be understood carefully, in order to gain 
an understanding of the foundations of the models and their relationships to 
microscopic theory as given by recent developments in terms of dynamical 
symmetries. 

On the basis of the collective model, we calculated the rotational energies by 
using the following formula [17] 
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( ) ( )
( )
( )

1
,

1
1

1 1

AI I
E I

DI I
CI I

+
=
 +
+ − + 

                (4.1) 

where A is the reciprocal-moment of inertia of the nucleus, 
2

2
A =

ℑ
� . The value 

of A has been determined for all the considered uranium isotopes by using the 
concept of the single-particle Schrödinger fluid [13] [14]. 

5. Results and Discussion 

We have calculated the reciprocal moments of inertia by using the cranking 
model and the rigid-body model of the single-particle Schrödinger fluid for the 
even-even deformed uranium isotopes; 230U, 232U, 234U, 236U and 238U as functions 
of the deformation parameter β, which is allowed to vary in the range from -0.50 
to 0.50 with a step equals 0.005. The equilibrium values for the moments of iner-
tia of the five isotopes are considered as the values for which the cranking model 
and the rigid-body model are equal for each isotope.  

In Figure 1 we present the variations of the reciprocal values of the crank-
ing-model moments of inertia of the uranium isotopes 230U, 232U, 234U, 236U and 
238U with respect to the deformation parameter β. Since the reciprocal values of 
the rigid-body moments of inertia of these isotopes are slowly varying with re-
spect to β, we present only in Figure 1 the variation of the reciprocal values of 
the rigid-body model moment of inertia of the nucleus234U with respect to β. It is 
of interest to notice that, two values of the deformation parameter β, one of 
which is positive and the other is negative, produced good agreement between 
the calculated and the experimental moments for the five isotopes.  
 

 
Figure 1. Moments of inertia of the deformed nuclei 230U, 232U, 234U, 236U and 238U. The 
solid curves represent the cranking-model moments of inertia. The dotted curve repre- 
sents the rigid-body moment of inertia of the nucleus 234U. 
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In Table 1 we present the best values of the reciprocal moments of inertia by 
using the rigid-body and the cranking models of the Schrödinger fluid for the 
even-even deformed uranium isotopes: 230U, 232U, 234U, 236U and 238U, in KeV. 
The values of the deformation parameter β which produced the best values of 
the moments of inertia in each case are also given in this table. The correspond-
ing experimental values are given in the last column [24] [25] [26] [27]. Fur-
thermore, the values of the non-deformed oscillator parameter 0

0ω�  are also 
given in this table. Also, the calculated moments of inertia for values of β taken 
from ref. [15] are also given. 

In Table 2 we present the reciprocal equilibrium moments of inertia and the 
quadrupole moments for the five uranium isotopes. The values of the deforma-
tion parameters β and the nonaxiality parameter γ which produced the best val-
ues are given. The experimental values are also shown. 

It is seen from Table 1 that the calculated values of the moments of inertia by 
using the cranking-model are in excellent agreement with the corresponding 
experimental values. The values of the rigid-body moments of inertia are slightly 
different from the experimental values, as expected. Concerning the quadrupole 
moments of the uranium isotopes, we have no experimental findings except for 
238U. The calculated value is in good agreement with the corresponding experi-
mental one. 
 
Table 1. Reciprocal moments of inertia of the uranium isotopes, in KeV, for the rigid- 
body and the cranking models. The values of the deformation parameter β which pro-
duced the best fit between the calculated values and the corresponding experimental ones 
are also given. The values of the non-deformed oscillator parameter 0

0ω�  are given in 
this table. Furthermore, the experimental values [24] [25] [26] [27] are also given. Fur-
thermore the moments of inertia for values of β taken from ref. [15] are also given. 

Case β 0
0ω�  (MeV) 

2

2 rig

�
J

 KeV 
2

2 cr

�
J

 KeV 
2

2 exp

�
J

 KeV 

 0.175  8.581 8.662  
230U −0.18 6.69 8.532 8.611 8.68 

 0.240  8.576 8.654  

 0.190  8.201 8.253  
232U −0.20 6.69 8.163 8.202 8.28 

 0.240  8.189 8.248  

 0.19  7.190 7.263  
234U −0.20 6.69 7.172 7.233 7.29 

 0.250  7.189 7.260  

 0.20  7.512 7.561  
236U −0.21 6.68 7.422 7.494 7.57 

 0.250  7.501 7.555  

 0.19  7.742 7.801  
238U −0.21 6.68 7.683 7.722 7.82 

 0.255  7.738 7.787  
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Table 2. The equilibrium moments of inertia and the quadrupole moments for the five 
uranium isotopes. The values of the deformation parameters β and the nonaxiality para-
meter γ which produced the best values are given. The experimental values are also 
shown. 

Case β γ degrees 
2

2 equ

�
J

 KeV 
2

2 exp

�
J

 KeV [23] [26] 
calcQ  Barns  expQ  barns [27] 

230U 0.185 7.0 8.62 8.68 13.87 N/A 

232U 0.195 10.1 8.20 8.28 13.27 N/A 

234U 0.195 8.7 7.21 7.29 12.61 N/A 

236U 0.205 8.6 7.50 7.57 12.45 N/A 

238U 0.195 8.5 7.74 7.82 13.75 13.90 

 
In the numerical calculations of the rotational energies of the even-even de-

formed isotopes: 230U, 232U, 234U, 236U and 238U, we have used the formula, given 
by Equation (4.1) by Doma and El-Gendy [17]. Accordingly, we present in Table 
3 the calculated values of the rotational energies of the mentioned five isotopes, 
for even values of the total angular momentum I in the interval from 2 to 20, by 
using this formula together with the available experimental values. The experi-
mental values are taken from [24] [25] [26] [27]. 

It is seen from Table 3 that the calculated values of the rotational energies of 
the five isotopes are in good agreement with the corresponding experimental 
ones. 

In Table 4 we present the calculated values of the L. D. Energy, the Strutinsky 
inertia, the L. D. inertia, the volume conservation factor 0

0 0ω ω , the smoothed 
energy, the BCS energy and the G-value of the five uranium isotopes: 230U, 232U, 
234U, 236U and 238U for values of the deformation parameter β and the nonaxiality 
parameter γ, which produced good agreement with the corresponding experi-
mental findings. 

6. Conclusions 

It is seen from Table 1 and Table 2 that the five uranium isotopes have nearly 
equal values of the deformation parameter 0.175 0.205β< <  (or  

0.21 0.18β− < < − ). The disagreement between the value of the rigid-body reci-
procal moment of inertia and the corresponding experimental data is due to the 
fact that the pairing correlation is not taken in concern in this model [3]. Fur-
thermore, according to the results of the moments of inertia by using the con-
cept of the single-particle Schrödinger fluid, the five nuclei may have prolate de-
formation shape (positive value of β) as well as oblate deformation shape (nega-
tive value of β).  

On the other hand, it is well-known that the quantity that characterizes the 
deviation from spherical symmetry of the electrical charge distribution in a nuc-
leus is its quadrupole moment Q. If a nucleus is extended along the axis of sym-
metry, then Q is a positive quantity, but if the nucleus is flattened along the axis,  
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Table 3. Rotational energies of the five even-even deformed isotopes: 230U, 232U, 234U, 236U 
and 238Uas functions of the total spin I by using the formula of ref. [17]. The experimental 
values are taken from [24] [25] [26] [27]. 

Nucleus Case 
𝐸𝐸(𝐼𝐼) in Kev 

2I =  4I =  6I =  8I =  10I =  12I =  14I =  16I =  18I =  20I =  

230U 
Calc. 
Exp. 

51.68 
51.72 

169.47 
169.50 

346.89 
347.10 

578.05 
578.20 

856.31 
856.40 

1175.59 
1175.70 

1531.47 
1531.60 

1921.14 
1921.20 

2320.61 
- 

2757.49 
- 

232U 
Calc. 
Exp. 

47.46 
47.57 

156.34 
156.56 

322.49 
322.6 

540.87 
541 

805.8 
805.8 

1111.5 
1111.5 

1453.49 
1453.7 

1828.04 
1828.1 

2232.71 
2231.5 

2665.84 
2659.7 

234U 
Calc. 
Exp. 

43.48 
43.5 

143.30 
143.35 

296.06 
296.07 

497.02 
497.04 

741.2 
741.2 

1023.8 
1023.8 

1340.75 
1340.8 

1687.16 
1687.8 

2064.41 
2063 

2465.55 
2464.2 

236U 
New 
Exp. 

45.12 
45.24 

149.40 
149.48 

309.72 
309.78 

522.22 
522.24 

782.3 
782.3 

1085.3 
1085.3 

1426.48 
1426.3 

1805.11 
1800.9 

2210.14 
2203.9 

2628.98 
2631.7 

238U 
Calc. 
Exp. 

44.78 
44.91 

148.22 
148.41 

307.11 
307.21 

517.76 
517.8 

775.7 
775.7 

1076.5 
1076.5 

1415.42 
1415.3 

1789.04 
1788.2 

2200.01 
2190.7 

2632.24 
2618.7 

 
Table 4. The L. D. Energy, the Strutinsky inertia, the L. D. inertia, the volume conserva-
tion factor 0

0 0ω ω , the smoothed energy, the BCS energy and the G-value of the five 
uranium isotopes:230U, 232U, 234U, 236U and 238U. 

Case β γ 
L.D.  

energy 
MeV 

Strutinsky 
inertia  
1/MeV 

L.D.  
inertia 
1/MeV 

0
0 0ω ω  

smoothed 
energy MeV 

BCS 
energy 
MeV 

G-value 
MeV 

230U 0.240 5˚ 4.441 145.42 113.5 1.0042 2833.4 3.15 0.089 

232U 0.240 5˚ 4.453 147.07 115.7 1.0053 3948.2 2.64 0.089 

234U 0.250 5˚ 4.464 145.47 116.9 1.0075 2766.1 2.11 0.089 
236U 0.250 5˚ 17.04 149.65 120.2 1.0134 27535 1.55 0.088 
238U 0.255 5˚ 17.12 111.24 151.6 1.0135 2729.9 1.47 0.088 

 
it is negative. According to the results of the electric quadrupole moments of the 
five nuclei, the five uranium isotopes have prolate deformation shape. 

Moreover, it is seen from the obtained results that the calculated values of the 
rotational energies of the five even-even deformed uranium isotopes are in good 
agreement with the corresponding experimental data for all values of the total 
spin I. 
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