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Abstract 
In this paper, using Salagean differential operator, we define and investigate a 
new subclass of univalent functions ( )nSα β . We also establish a characteriza-

tion property for functions belonging to the class ( )nSα β . 
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1. Introduction 

Let A  be the class of functions of the form 

( )
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k
k

k
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∞

=
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which are analytic in the unit disk { }: 1U z C z= ∈ < . A function ( )f z A∈  is 
said to be starlike of order α  if and only if  
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We denote by ( )S α∗  the subclass of A  consisting of functions which are 
starlike of order α  in U . 

Also, a function ( )f z A∈  is said to be convex of order α  if and only if 

( )
( ) ( )Re 1 ,      0 1      

zf z
z U

f z
α α

′′  + > ≤ < ∈ ′  
              (3) 

We denote by ( )C α  the subclass of A  consisting of functions which are 
convex of order α  in U . 

If ( )f z A∈  satisfies 
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then ( )f z  is said to be strongly starlike of order β  and type α  in U , de-
noted by [1].  

If ( )f z A∈  satisfies 

( )
( ) ( )πarg 1 ,      0 1,      0 1,      

2
zf z

z U
f z

βα α β
′′ 

+ − < ≤ < < ≤ ∈  ′ 
     (5) 

then ( )f z  is said to be strongly convex of order β  and type α  in U , de-
noted by ( )Cα β  [1]. 

The following lemma is needed to derive our result for class ( )nSα β . 
Lemma (1) [2] [3] [4] [5]. Let a function ( )p z  be analytic in  
( ) ( ) ( ), 0 1 and 0U p p z z U= ≠ ∈ , if there exists a point 0z U∈  such that 
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where 

( )( )( )0
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And ( ) ( )
1

0  0p z ia aβ = ± > . 

Definition 1. A function ( )f z A∈  is said to be in the class ( )nSα β  if 
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For some { }0,  0 1,  0  0 1n N Nα α β≤ < ∈ = < ≤ . 
Remark 
When 0n =  then ( )nSα β  is the class studied by [1]. 
Definition 2. For functions ( )f z A∈  the Salagean differential operator [6] 

is :nD A A→  

( ) ( ) ( ) ( ) ( ) ( )0 1 1,  , ,  0,1, 2,3,n nD f z f z D f z zf z D f z D D f z n− ′= = = =    

The main focus of this work is to provide a characterization property for the 
class of functions belonging to the class ( )nSα β . 

2. Main Result 

Theorem 1. If ( )f z A∈  satisfies 
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for some { }0,  0 1,  0 ,n N Nβ β< ≤ ∈ =   then ( ) ( )1
2

nf z S β∈  
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Proof. Let 
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Taking the logarithmic differentiation in both sides of Equation (8), we have 
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Multiply Equation (9) through by ( )p z , to get 
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Multiply Equation (10) by z  to obtain 
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Multiply Equation (11) through by 2 and divide through by ( )( )2
1 p z+  to 
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Multiplying Equation (12) by ( )
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If ∃  a point 0z U∈  which satisfies ( ) ( )0
πarg  
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then by lemma [2] 
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Hence, ( ) 0 1S a a′ = ⇒ = . 
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which contradicts the condition of the theorem. 
Hence, it is concluded from lemma [2] that 
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so that 
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