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Abstract 
In this paper, we present a novel and efficient scheme for detection of P300 
component of the event-related potential in the Brain Computer Interface (BCI) 
speller paradigm that needs significantly less EEG channels and uses a minim-
al subset of effective features. Removing unnecessary channels and reducing 
the feature dimension resulted in lower cost and shorter time and thus im-
proved the BCI implementation. The idea was to employ a proper method to 
optimize the number of channels and feature vectors while keeping high ac-
curacy in classification performance. Optimal channel selection was based on 
both discriminative criteria and forward-backward investigation. Besides, we 
obtained a minimal subset of effective features by choosing the discriminant 
coefficients of wavelet decomposition. Our algorithm was tested on dataset II 
of the BCI competition 2005. We achieved 92% accuracy using a simple LDA 
classifier, as compared with the second best result in BCI 2005 with an accu-
racy of 90.5% using SVM for classification which required more computation, 
and against the highest accuracy of 96.5% in BCI 2005 that used SVM and 
much more channels requiring excessive calculations. We also applied our pro-
posed scheme on Hoffmann’s dataset to evaluate the effectiveness of channel 
reduction and achieved acceptable results. 
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1. Introduction 

The electroencephalogram (EEG) is a recording of brain activity. It is widely 
used as an important diagnostic tool for neurological disorders. Many BCIs util-
ize EEG signals to translate these signals into users’ commands, which can con-
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trol some external systems. Some BCI systems, such as the P300 oddball event 
response, are based on the analysis of the EEG event related potentials (ERPs) 
[1] [2]. The P300 component of the ERP, which is a positive deflection in the 
EEG around 300 ms after stimuli, is utilized as a control signal in BCI systems. 

A BCI system critically depends on several factors such as its cost, accuracy, how 
fast it can be trained and so on. The main goal of this paper is to propose an al-
gorithm for achieving above factors. Utilizing proper channels and efficient fea-
tures are two key factors that play an important role in enhancing the BCI sys-
tems. The effective features are obtained by eliminating poor features from ex-
tracted ones. In this study, we used wavelet decomposition for feature extraction, 
which was an efficient tool for multi-resolution analysis of non-stationary sig-
nals such as the EEG. Also, we applied Mahalanobis’s criteria to choose wavelet 
coefficients which were more discriminated. Optimal channels are selected by 
removing unnecessary channels based on Mahalanobis’s criteria and applying 
forward-backward selection (FBS) algorithm. In classification section, linear dis- 
criminant analysis (LDA) was used as a classifier because it had suitable factors 
such as fast training and simple implementation; hence, it brought high accuracy 
in output as well. 

In the following sections of the paper, the P300 speller data and preprocessing 
phases are described in Section 2. In Section 3, we present feature extraction based 
on wavelet transform, optimal channel selection, optimal sub-bands selection 
and classification algorithm. Experimental results and conclusions are given in 
Sections 4 and 5, respectively. 

2. P300 Speller Paradigm and Dataset 
2.1. Data Description 

The P300 speller paradigm described by Farwell and Donchin [3] presents a 66×  
matrix of characters as shown in Figure 1. Each row and each column are flashed 
in a random sequence. The subject’s task was to focus on characters in a word that 
was prescribed by the investigator (i.e., one character at a time). Two out of 12 in-
tensifications of rows or columns contained the desired letter (i.e., one particular 
 

 
Figure 1. Screen of P300 speller paradigm. 
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row and one particular column). Thus, a P300 can be achieved when the row/co- 
lumn flashes with attended symbol. 

We applied proposed method on data set II from the third edition of the BCI 
Competition, which was recorded for two different subjects, A and B [4]. Each 
subject consists of 64 channels sampled at 240 Hz with 15 repetitions per cha-
racter. Signals were band-pass-filtered from 0.1 - 60 Hz [5]. 

The training and the testing sets were made of 85 and 100 characters, respec-
tively. As such, the number of corresponding epochs for each subject was 85 × 
12 × 15 = 15,300 and 100 × 12 × 15 = 18,000, respectively. 

2.2. Preprocessing 

First, some preprocessing must be done on the signal to improve the signal to 
noise ratio and make it appropriate for using in BCI systems. To this end, all da-
ta were normalized as bellow: 

( )normal
x xx

SD x
−

= .                          (1) 

where x denotes the original signal, x  is the mean and ( )SD x  is the standard 
deviation of the signal. Then, we extracted the first 168 samples of each epoch, 
corresponding to the first 700 ms after each illumination in the P300 speller pa-
radigm. Finally, all signals were filtered by using a band-pass filter between [0.5 - 
40 Hz] and down sampled by a factor of 3. 

3. Methods 
3.1. Feature Extraction 

The Discrete Wavelet Transform (DWT) has been extensively used in ERP anal-
ysis due to its ability to effectively explore both the time-domain and the fre-
quency-domain features of ERPs [6] [7]. Therefore, we used DWT to decompose 
a recorded EEG signal into coefficients to form a suitable feature vector. We chose 
the Daubechies 4 (db4) mother wavelet as it resembles the P300 component in 
ERPs and is very smooth. The effective frequency components of the ERPs spe-
cified the number of decomposition levels. Since the ERPs do not have any use-
ful frequency components above 15 Hz, the effective wavelet coefficients were in 
the frequency range [0 - 15] Hz. Therefore, each EEG signal was decomposed 
into four levels and all five resulted sub-bands coefficients (i.e. A4, D4, D3, D2, D1) 
were candidate to form the feature vector. 

3.2. Channel Selection Algorithm 

The spelling accuracy in P300 speller depends on utilizing effective channels. It 
is obvious that less important channels leads to extraction of poor features. So, 
removing ineffective channels can decrease the computation time, implementa-
tion cost, and increase the output performance as well. To achieve this purpose, 
we used a hybrid method which extracts the optimal channels in two stages. In 
the first stage, we investigated the channels which had more discrimination abil-
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ity of target signals from non-target signals based on Mahalanobis’s distance 
(MD) [8]: 

( ) ( )T 1
1 2 1 2

1
8

MD µ µ µ µ−= − −∑                     (2) 

where μ1 is the mean for target class, μ2 is the mean for non-target class, and Σ  
is the covariance matrix of all two classes together. 

The procedure of channel selection starts with computing the MD of each of 
64 channels. First, we chose 44 channels with larger MD which were about 66% 
of all channels. Figure 2 shows the MD for all 64 channels of subjects A and B.  

 

 
(a) 

 
Figure 2. Mahalanobis distance for all channels of (a) Subject A and 
(b) Subject B. 
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In the next stage, we used the FBS algorithm to find optimal channels. First of 
all, just one channel which had the highest accuracy on validation set was se-
lected. In each running stage of the FBS algorithm, three channels were added 
and two channels were eliminated. So, one channel was added in each stage. The 
classification accuracy was assessed on the validation set described in the appendix. 
The FBS algorithm was implemented by defining the initial channel set which in-
cluded the channel with highest accuracy on validation set. The FBS algorithm’s 
steps are described below: 

1) Forward procedure:  
• Add each channel separately to the channel set (includes k channels). 
• Find a channel which the maximum validation set accuracy can be obtained by 

adding it. So, the number of channels will be 1k + . 
• Run all the above process two times.  
• In this case, 3k +  channels are obtained. 

2) Backward procedure: 
• Calculate validation set accuracy by removing each channel of selected channel 

set at forward procedure (includes 3k +  channels). 
• Find channel which it has the maximum bypass accuracy and eliminate it. 
• Run all the above process again. So, the number of remained channels would 

be equal to 1k + . 
As you see, one channel in each stage of the FBS algorithm was added to the 

channel set. This process continued until the optimal channel set was obtained.  
Figure 3 presents validation set accuracy for first 20 channels which were ob-

tained by FBS algorithm. For a proper performance, we chose channels which 
could create higher accuracy in validation set. According to Figure 3, 17 and 13 
channels are selected for subjects A and B, respectively. Scalp position of the  

 

 
Figure 3. Accuracy of the first 20 channels which were selected by the FBS algorithm for 
subject A and subject B. 
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selected channel set for each subject is shown in Figure 4. 
 

 
Figure 4. The scalp position of optimal channels for (a) Subject A and (b) 
Subject B. 
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3.3. Sub-Band Selection Algorithm 

P300 component doesn’t appear at the same sub-bands for different channels. On 
the other hand, all sub-bands in wavelet analysis don’t make enough discrimina-
tion between two classes. So, using an algorithm for choosing the optimal sub- 
bands seems to be necessary. In this situation, not only the redundancy gotreduced 
in feature dimension, discrimination between two classes can increase as well. 
For meeting these requirements, we used Mahalanobis’s criterion which was de-
fined in Equation (2). 

Figure 5 shows the MD of sub-bands for selected channels in previous sec-
tion. Notice that in Figure 5(a) numbers 1 to 17 of X axisreferto channels F1, F6, 
FC3, FCZ, C3, CZ, CP2, CPZ, CP3, P2, PZ, PO7, POZ, PO8, O1, OZ and O2, 
respectively. Also, in Figure 5(b) numbers 1 to 13 of X axis refer to channels FZ, 
FC6, C3, CZ, CPZ, P2, PO3, PO4, POZ, PO8, O1, OZ and IZ, respectively. 

After computing MD of sub-bands, it is necessary to use threshold limit for 
optimal sub-bands selection. In order to select suitable threshold, four steps should 
be considered as below: 
• Computing the MD of sub-bands for selected channels. Dividing area of max 

(MD) and min (MD) to five levels which were defined as threshold levels.  
• Eliminating poor sub-bands whose MD are smaller than thresholds. 
• Evaluating output accuracy on validation data set. 
• Choosing the threshold corresponding to the best validation performance. 

By applying the threshold level, one can use important sub-bands with nonzero 
values to construct the effective features. The appropriate threshold levels were 
78.36 and 45.9 for subject A and B, respectively. 

 

 
Figure 5. Mahalanobis distance of different sub-bands A4, D4, D3, D2, D1 versus optimal 
channels for (a) Subject A and (b) Subject B. 
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3.4. Classification Algorithm 

We used the LDA classifier based on linear transform y = WTx to classify the 
feature vectors of two classes. Here, W is the discriminant vector, x is the feature 
vector and y is output of the LDA classifier. Fisher’s LDA defined in Equation 
(3), tries to obtain transformation matrix W by maximizing the ratio of between- 
class scatter [9]: 

( )
T

T
b

w

W S WF W
W S W

=                          (3) 

where Sb and Sw are between-class scatter matrix and within-class scatter matrix. 
By computing the derivative of F and setting it to zero, one can show the optimal 
W is determined by below equation [10]: 

( )1
1 2 .wW S µ µ−= −                          (4) 

4. Experimental Results 
4.1. Results of Dataset 1 

For evaluation of the proposed method in selecting optimal channel set, our 
channel set was compared with three other channel sets. Their list is illustrated 
in Table 1. Classification performances for all channel sets were computed on 
data set II of BCI competition [4]. This data was recorded for two different sub-
jects A and B. So, the performance of each channel set is averaged between two 
classifiers. Results are shown in Figure 6. According to the figure, we can see 
that results of channel set proposed in this study are much better than others.  

To show that our proposed scheme extracts effective features, we compared 
the classification accuracies for all sub-bands and the optimal sub-bands as feature 
vectors in Table 2. According to the table, the classification accuracy of the use 

 

 
Figure 6. Comparison of accuracy between the three channel sets and optimal channel set 
obtained by proposed method. 
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of the optimal sub-bands in all trials, except in single trial, is higher than that of 
using all sub-bands. Besides, the feature vector dimension reduced up to 40%. 

Table 3 shows a comparison between output accuracy of the two best results 
of the BCI competition 2005 [11], our previous work [12] and also the results 
obtained in this paper. As it is clear, our results are better than the second ranked 
competitors using SVM classifier. Although the results of this paper are some-
what lower than presented results in [12], here we utilized a simple classifier and 
less EEG channels. 

4.2. Results of Dataset 2 

To investigate the robustness of the proposed method, we employed Hoffmann’s 
dataset [13], which was comprised of four healthy subjects and four subjects 

 
Table 1. List of electrode positions in different channel sets. 

Channel 
Set 

Number 
Reference Channels 

1 
M. Kaper  
et al. [14] 

{Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7, PO8} 

2 
E. W. Sellers  

et al. [15] 
{Fz, Cz, Pz, Oz, FP1, FP2, F3, F4, C3, C4, P3, P4, P7, P8, T7, T8} 

3 
H. Zhang  
et al. [16] 

{F3, FC3, C3, CP3, P3, Fz, FCz, Cz, CPz,  
Pz, F4, FC4, C4, CP4, P4} 

4.a 
This study for 

Subject A 
{F1, F6, FC3, FCZ, C3, CZ, CP2, CPZ, CP3, P2, PZ, PO7, POZ, 

PO8, O1, OZ, O2} 

4.b 
This study for 

Subject B 
{FZ, FC6, C3, CZ, CPZ, P2, PO3, PO4, POZ, PO8, O1, OZ, IZ} 

 
Table 2. Evaluation the feature vector obtained by Mahalanobis’s criteria. 

Feature Vector 
Percentage of 

Feature Reduction 
(%) 

Classification Accuracy (%) 

1 Trial 5 Trials 10 Trials 15 Trials 

All sub-bands _ 26.5 67 85 91.5 

Optimal 
sub-bands 

about 40 25 68 86 92 

 
Table 3. Classification accuracy of our algorithm, the two best competitors in BCI com-
petition 2005 and [12] based on the number of channels and classification algorithms. 

 
Number of Channels 

Classifier 
Classification Accuracy (%) 

Subject A Subject B 5 Trials 15 Trials 

Our scheme 17 13 LDA 68 92 

First ranked [11] 64 64 SVM 73.5 96.5 

Second ranked [4] 11 10 SVM 55 90.5 

Our previous work 
[12] 

26 19 BLDA 69.5 93 
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with neurological deficits. The recorded EEG data were based on visual stimuli 
(TV, telephone, lamp, door, window, and a radio) that evoked the P300 compo-
nent. Each subject had to complete four sessions. In each session, having six runs, 
subjects were asked to focus on a specific image for each run, while the sequence 
of stimuli was randomly presented. The number of blocks inside each run was 
randomly chosen between 20 and 25. During every block, each image was flashed 
one time. The data contained 32 channels of EEG signals recorded at sampling 
rate of 2048. We used the data recorded in the first three sessions as the training 
and the last session as the test data for all eight subjects.  

First, EEG signals were preprocessed according to Section 2. For each session, 
the single trial features corresponding to the first 20 blocks of flashes were ex-
tracted via DWT decomposition. For each subject, we reduced the number of 
channels from 32 to 20 by using the sorted MD values in decreasing order. We 
ran the FBS algorithm (as described in Section 3.2) to choose the most effective 
channels from the pre-selected 20 channels. Table 4 shows the number of se-
lected final channels by the proposed method for eight subjects. It is important 
to note that the mean number of selected channels is 8.5 per subject. In order to 
select the best sub-bands of decomposed coefficients (A4, D4, D3, D2, D1), the se-
lected channels were used to compute the efficient threshold by using the Maha-
lanobis criteria as described in Section 3.3. For each subject, we ran the sub-band 
selection procedure and reduced the feature vector dimension as nearly 45%. 
The results showed that by eliminating those sub-bands whose MD values were 
smaller than the threshold, the number of features was reduced without decreasing 
the accuracy. Moreover, in some cases, the classification accuracy was improved. 
Figure 7 presents the mean accuracy for 8 subjects in our proposed scheme and 
Hoffman method with 8 and 32 channels. 

4.3. Run Time and Computational Complexity 

We compared the computation time in our approach with our previous works 
[12] [17] and two best results in the BCI competition [4] [11]. The results re-
vealed that the training time of our procedure was significantly lower than the 
first and the second ranked competitors using SVM classifier. The fact is that 
when training data dimension is too large, tuning of the SVM classifier is very 
difficult and its performance is reduced. So as to reduce the dimension of the 
training data in [11], the data was divided into 17 partitions, and for each parti-
tion, final channels were selected among all of the 64 channels by using back-
ward selection algorithm. The decision on target or non-target test data was 
made by voting on the outputs of 17 parallel SVM classifiers. Although this me-
thod has better accuracy as compared to our scheme, it extremely increases the  

 
Table 4. Number of selected channels for each subject. 

Subjects S1 S2 S3 S4 S6 S7 S8 S9 

Number of Channels 11 8 9 7 9 6 11 7 
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Figure 7. The mean accuracy for 8 subjects of second dataset in our proposed method 
and Hoffman method for 8 and 32 channels. 
 
computational requirements and training time. It is worth mentioning that we 
used fewer channels than the first ranked competitor. Additionally, we used the 
LDA classifier that needs less calculation as compared to the SVM. We observed 
that the training phase in this paper was nearly 2 and 1.5 times faster than the 
previous works in [12] and [17], respectively. The procedure of feature and 
channel selection in [17] is more complex and needs more computations than 
this work. The LDA outperforms the BLDA that used in [12] [17] in small size 
data because of parameters tuning requirements of BLDA and its complexity. 

5. Conclusion 

Three main features of a suitable BCI system are defined as low cost, real time 
responses and high accuracy. To achieve these objectives, we proposed a scheme 
for selecting minimal channels and effective features. Proper channels were ob-
tained by utilizing Mahalanobis’s criteria and FBS algorithm. To extract effective 
features, we used discrete wavelet decomposition via mother wavelet db4 and 
reduced the number of coefficients by utilizing Mahalanobis’s criteria. The set of 
minimal features and effective channels resulted in less computation, and rea-
sonable accuracy. We achieved 92% accuracy using a simple classification algo-
rithm based on LDA, as compared with our previous works [12] [17] using the 
BLDA classifier, requiring more computation, and much more channels requir-
ing excessive computation. Also, our results in all trials were better than the se- 
cond best result in BCI 2005 using SVM classifier, with low computational speed, 
not having enough robust performance. The results on two different P300-BCI 
datasets including 10 disabled and able-bodied subjects indicated that our pro-
posed scheme needed less features and channels, and significantly reduced cal-
culations, despite providing similar or better accuracy compared with other ex-
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isting schemes. 
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Appendix 

We applied validation process based on five-fold cross-validation method to ob-
tain proper channels. The procedure follows items below: 
• Training data with 85 × 12 × 15 × Channel Count signals (where, 85: charac-

ters, 12: stimuli, 15: time repetitions, and Channel Count: number of chan-
nels) averaged over all signals by 3 times repetitions. So, training data con-
tained 85 × 12 × 5 × Channel Count signals. 

• We divided 85 characters to five partitions and built validation set from N × 
12 × 5 × Channel Count signals, where, N contains 17 characters and used 
residual data to form a training set.  

• Feature vectors were created based on wavelet coefficients (approximate coeffi-
cients level 4 and detail coefficients levels 1 to 4 (A4, D4, D3, D2, D1).  

• The LDA classifier was trained and output precision was evaluated based on  

validation set. The precision is defined as: TpPrec
TP FP FN

=
+ +

, where TP, FP,  

FN are the number of true positive, false positive and false negative respec-
tively. 

• Validation performance was assessed by averaging between five precisions. 
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