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Abstract 
A variation of the direct Taylor expansion algorithm is suggested and applied 
to several linear and nonlinear differential equations of interest in physics and 
engineering, and the results are compared with those obtained from other al-
gorithms. It is shown that the suggested algorithm competes strongly with 
other existing algorithms, both in accuracy and ease of application, while de-
manding a shorter computation time. 
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1. Introduction 

With the advent of high speed personal computers and workstations and the 
decrease of the cost of computer resources in general, numerical methods and 
computer simulation have become an integral part of the scientific method and a 
third approach to the study of physical problems, in addition to theoretical and 
experimental methods. 

The problem of solving differential equations numerically had long been of 
interest to mathematicians and scientists alike, long before the appearance of 
modern computers. One of the oldest and simplest algorithms is the Euler me- 
thod, also known as the Euler-Cauchy method or the polygonal method [1]-[8]. 
This algorithm utilizes the definition of the derivative of a function,  
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to solve first-order differential equations of the form [9]  
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subject to initial condition ( )0 0y x y= . The method replaces the differential 
equation by a difference equation and, using a small enough step size x h∆ = , 
advances the solution from nx  to 1n nx x h+ = +  through  

( )1 ,n n n ny y hf x y+ = +                       (3) 

The Euler method can also be viewed as a Taylor expansion of the function 
about point nx  and retaining only the first two terms. Thus the remaining 
terms, or the error in the Euler algorithm, is given by  

2
2
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(4) 

where ξ  is some value of x  in the interval under consideration of width h . 
Consequently, the local error in the Euler method is of the order of 2h , resulting 
in a global error of the order of h . The Euler algorithm is, therefore, first order 
[10]. Achieving high accuracy with a first-order algorithm in some cases require 
very small intervals h  (hence too many steps), increasing the total computation 
time and round-off error, resulting in instability of the algorithm. 

An improved version of the Euler method is obtained by retaining three terms 
in the Taylor expansion of the function instead of two, yielding a second order 
algorithm [6]. Alternatively, one can advance the solution from nx  to 1nx +  by 
using the value of the derivative at the midpoint of the interval rather that at the 
beginning,  

( )1 , ,
2 2n n n n n n
h hy y hf x y f x y+

 = + + +                 
(5) 

This algorithm is known as the modified Euler method, the midpoint method, or 
the second-order Runge-Kutta method [1] [2] [7]. It can be shown that this 
method is equivalent to the first three terms of the Taylor series described above. 

Yet another way of improving the order of the Euler method is to use the 
average value of the derivative at the beginning and at the end of each interval,  
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where 1ny +  on the right hand side is obtained from Equation (3). This algo- 
rithm is referred to as the Adams-Bashforth rule [6], and is second order. 

The accuracy of the Euler method can be improved further by including 
higher terms of the Taylor expansion in the numerical calculations. Thus, by 
including the first five terms, one achieves a fourth-order algorithm. This 
approach, also referred to as the “Creeping up” process, has been mentioned in a 
limited number of references [7] [11], but has not received much attention. In 
particular, the discussion of this method in connection with the differential 
equations of order higher than one has been very limited in the literature [12]. 
This is mainly due to the general concern that in all but the simplest cases the 
necessary higher-order derivatives tend to become quite complicated, rendering 
the computations extraordinarily tedious [3] [8]. Thus, it is believed that the 
Taylor expansion method is generally not practical if derivatives of higher order 
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than the first are retained. It has also been stated that the method is not suf- 
ficiently accurate away from the initial point [6]. 

Currently the most widely used numerical algorithms for solving differential 
equations are the fourth-order Runge-Kutta (RK), fourth-order Adams-Bashforth- 
Moulton (ABM), and the fourth-order Milne methods. The RK algorithm [12] 
[13] is single-step, or self starting, and is the most commonly used method 
among the three. The ABM and the Milne algorithms are multi-steps and are not 
self starting [1] [14]. They are normally started by using a single-step algorithm, 
such as the RK algorithm. 

The objective of this article is to discuss a variation of the direct Taylor series 
(DTS) algorithm for the solution of first- and higher-order differential equations. 
We show that not only this algorithm remains accurate away from the initial 
point, evaluation of the higher derivatives that are needed for accuracies com- 
parable to the RK, ABM, and Milne methods are indeed quite simple. Finally, 
the accuracy and ease of application of the DTS method are explicitly demon- 
strated by considering several important second-order linear and nonlinear dif- 
ferential equations of mathematical physics and comparing their solutions using 
the fourth-order DTS, RK, ABM, and Milne methods. 

2. A Variation of the Direct Taylor Series (DTS) Method 

Consider a first-order differential equation given by (2). We expand the solution 
of this differential equation in a Taylor series about the initial point in each 
interval nx  to obtain its value at the end of that interval 1n nx x h+ = +   

( ) ( ) ( ) ( )1 2 3 4
2 3 4

1 1! 2! 3! 4!
n n n n

n n
y y y y

y y h h h h+ = + + + + +
           

(7) 

where ( )1
ny , ( )2

ny , ( )3
ny , ( )4

ny  are the first, second, third, and fourth derivatives 
of the function evaluated at nx x= . Using the initial condition of the problem, 
( )0 0y x y= , this expansion can be used iteratively to solve the differential 

equation up to some final value of the independent variable. The higher deri- 
vatives of the function, which are required in Equation (7), can be obtained by 
successive differentiation of the original differential Equation (2). Thus,  
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Although these equations look tedious, their evaluations in most cases are 
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quite straightforward and result in fairly simple expressions. 
Using terms up to and including the k -th order in Equation (7) (i.e., 

retaining 1k +  terms), results in a local error of  
( ) ( )
( )

1
1

1 !

k
ky

E h
k

ξ+
+=

+                        
(9) 

and, thus, a global error of the order of kh . Since the commonly used high- 
order numerical algorithms for solving differential equations are fourth order, 
we restrict our attention to Taylor expansions up to and including the fourth 
derivative, resulting in a fourth-order algorithm for comparison. 

The DTS algorithm can be extended to numerically solve a differential equa- 
tion of any order. To demonstrate this, consider a second-order differential 
equation given by  

( )( )
2
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y f x y y
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(10) 

subject to the initial conditions ( )0 0y x y=  and ( ) ( ) ( )1 1
0 0y x y= . Of course, this 

equation can always be reduced to a system of two first-order differential 
equations. Alternatively, one can extend the Taylor algorithm as follows: From 
Equation (10) and its differentiation, the second and higher derivatives of the 
function are obtained and evaluated at 0x . Then Equation (7) is used to advance 
the solution from the initial point 0x  to 1x . To advance the solution from 1x  
to 2x , however, various derivatives of the function at 1x  are needed. These, in 
turn, can be obtained from the Taylor expansion of the derivatives themselves,  
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and, using Equation (7), the solution is advanced from 1x  to 2x . Iteration of 
these steps will eventually yield the value of the function at the desired final 
value of the variable. In Equation (11), the order of the highest derivative 
retained on the right side of each equation should be the same as the order of the 
numerical algorithm required. Thus, for a the numerical algorithm to be fourth- 
order, derivatives up to and including the fourth-order should be included in the 
expansions. 

The suggested variation of the direct Taylor series, which we refer to as the 
DTS method, differs from the standard Taylor series method in the following 
way. In the standard method, the function is calculated at the required value of 
the variable x  directly from the value of the function and its derivatives at the 
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initial value 0x  [15],  
( )
( )
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In the suggested variation of the algorithm (the DTS method), on the other hand, 
the interval [ ]0 ,x x  is divided into many subintervals, each of width h . The 
function and its derivatives are then Taylor expanded and advanced from 
subinterval to subinterval until the function is evaluated at the required value of 
the variable x , thus resulting in a much greater accuracy. 

3. Comparison with Other Algorithms  

Applications of the DTS (direct Taylor series) method, as well as other common 
algorithms, to numerical solutions of first-order differential equations are 
straightforward and will not be discussed here. Table 1 summarizes the results 
for several important second-order differential equations of mathematical 
physics. Each equation, subject to the given initial conditions, is numerically 

 
Table 1. Several linear and nonlinear differential equations of interest. Each equation, 
subject to the initial conditions described, is numerically evaluated at fx x= , using 

fourth-order Runge-Kutta (RK), Adams-Bashforth-Moulton (ABM), Milne, and the 
direct Taylor series (DTS) algorithms. In each cases, a step size of 0.1h =  is used. The 
true values are given for comparison.  

 Differential Equation fx  RK ABM Milne DTS True 

(a) 
cosy y y x′′ ′+ + =  

( ) ( )0 0, 0 1y y′= =  
4 0.8604−  0.8604−  0.8604−  0.8604−  0.8604−  

(b) 
sin 0y y′′ + =  

( ) ( )0 1, 0 0y y′= =  
3 0.9488−  0.9488−  0.9488−  0.9487−  0.9488−  

(c) 
3 0y y′′ + =  

( ) ( )0 1, 0 0y y′= =  
4 0.9583−  0.9583−  0.9583−  0.9583−  0.9583−  

(d) 
( )21 0y y y y′′ ′− − + =  

( ) ( )0 1, 0 0y y′= =  
3 1.7280−  1.7279−  1.7280−  1.7280−  1.7280−  

(e) 

3

cos
2
yy y y x′′ ′+ + − =  

( ) ( )0 1, 0 0y y′= =  
5 0.7891−  0.7891−  0.7891−  0.7891−  0.7891−  

(f) 
7 132 0y y y− −′′ + − =  

( ) ( )0 1.1, 0 0y y′= =  
2 1.1485 1.1485 1.1485 1.1485 1.1485 

(g) 
2 2 0x y xy x y′′ ′+ + =  

( ) ( )1 1, 1 0y y′= =  
2 0.6275 0.6275 0.6275 0.6275 0.6275 

(h) 
( )21 2 6 0x y xy y′′ ′− − + =  

( ) ( )0 1, 0 0y y′= =  
1 2.0004−  2.0000−  2.0000−  2.0000−  2.0000−  

(i) 
( )1 2 0xy x y y′′ ′+ − + =  

( ) ( )1 1, 1 0y y′= =  
2 0.2338 0.2338 0.2338 0.2338 0.2338 

(j) 
2 4 0y xy y′′ ′− + =  

( ) ( )0 1, 0 0y y′= =  
1 1.0000−  1.0000−  1.0000−  1.0000−  1.0000−  
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solved and the function is evaluated at some final value of the variable fx  by 
the fourth-order RK (Runge-Kutta), ABM (Adams-Bashforth-Moulton), Milne, 
and the DTS algorithms, using a step size 0.1h =  in each case. 

In Table 1, Equations (a)-(f) describe different types of oscillating systems. In 
each equation x  is time and y  represent an oscillating physical quantity. The 
first equation corresponds to a sinusoidally driven damped harmonic oscillator. 
The second equation is the general equation of a pendulum (simple or compound), 
oscillating with some (not necessarily small) amplitude. The third is the 
differential equation of an intrinsically nonlinear oscillator, consisting of a mass 
tethered by two springs, oscillating in a direction perpendicular to the springs. 
Equation (d) describes the motion of a Van der Pol oscillator [16] [17]. Equation 
(e) is the Duffing's equation with damping, describing the oscillations of an 
externally driven hacksaw blade clamped at one end [18]. Finally, (f) is the 
differential equation of motion of a particle oscillating under a Lennard-Jones 
(6-12) potential energy function [19]. In each case, the final time fx  at which 
the function is evaluated numerically, is chosen such that the oscillator 
undergoes approximately one-half cycle. The last column gives the “true” value 
of the function at fx , evaluated either by analytical solution of the differential 
equation when available, or by a very small step size ( 0.001h = ), using the 
fourth-order RK algorithm. 

Equations (g)-(j) are some of the common linear differential equations of 
mathematical physics, namely, Bessel, Legendre, Laguerre, and Hermite, res- 
pectively [20]. They show up in a variety of physical problems, ranging from 
heat conduction in solids, to wave equations, to quantum mechanical systems. 

In all cases studied, the DTS algorithm generated a noticeably shorter CPU 
time than any other algorithm. In fact, the average CPU time for the DTS 
programs was found to be 21%, 58%, and 68% shorter than those for the cor- 
responding RK, Milne and ABM programs, respectively. 

4. Discussion 

Based on the results listed in Table 1, we see that in all cases studied the DTS 
(direct Taylor series) method provides accuracies that are essentially identical to 
the widely used algorithms of the same order while requiring a shorter computation 
time. 

Evaluation of higher derivatives does not pose any serious difficulty. Indeed, 
higher derivatives become less problematic for differential equations of higher 
order. For example, with the fourth-order DTS algorithm and a second-order 
differential equation, only two higher derivatives should be computed from the 
differential equation; for a fourth-order equation, no higher-order derivatives 
are needed. 

A striking feature of the DTS method is the ease with which its order of 
accuracy can be increased. For instance, to increase the order of the algorithm 
from four to six, one only needs to retain two additional terms in the Taylor 
expansion. Such an increase of the order of algorithm is not a trivial task in the 
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RK (Runge-Kutta), ABM (Adams-Bashforth-Moulton), or Milne method. Simi- 
larly, while generalizations of the latter methods to higher-order differential 
equations are not trivial, in the former case, it can be accomplished by simply 
incorporating Taylor expansions for higher derivatives, as we shall demonstrate 
in the following paragraph. 

Third-order differential equations are not common in physics and engi- 
neering. Fourth-order equations, on the other hand, are occasionally encoun- 
tered in some cases, such as bending of beams. As an example, we demonstrate 
the power of the DTS algorithm for the following simple fourth-order linear 
differential equation for which the analytical solution exits for comparison,  

4 2

4 2

d d4 5 0
d d

y y y
x x

− + =
                     

(13) 

subject to the initial conditions  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 31 10 1, 0 , 0 1, 0
2 8

y y y y= = = =
         

(14) 

With a step size 0.1h = , the fourth-order DTS method yields ( )1 2.0637y = . 
With the sixth-order algorithm and the same step size, we find  
( )1 2.0641757y = . These compare with the true value of 2.0641759, obtained 

from the analytical solution of the differential equation,  

cosh sinh
2
xy x= +

                      
(15) 

The discrepancies between the true and the numerical values in the two cases 
are, respectively, of the order 4h  and 6h , as they should be. 

5. Conclusion 

In conclusion, we see that the direct Taylor series (DTS) algorithm is simple, 
easy to use, accurate, extendable to higher accuracies by simply retaining higher- 
order terms in Taylor expansions while requiring noticeably less computation 
time. Higher-order differential equations can be solved by trivial inclusion of 
Taylor expansions of higher derivatives. The other algorithms, such as Runge- 
Kutta, Adams-Bashforth-Moulton, and Milne methods are elegant but require 
complete construction of their working equations, which can be quite tedious 
depending on the order of the algorithm. 
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