
Journal of Geoscience and Environment Protection, 2017, 5, 99-124 
http://www.scirp.org/journal/gep 

ISSN Online: 2327-4344 
ISSN Print: 2327-4336 

DOI: 10.4236/gep.2017.53008  March 16, 2017 

 
 
 

Application of ANN and MLR Models on 
Groundwater Quality Using CWQI at Lawspet, 
Puducherry in India 

N. Suresh Nathan, R. Saravanane, T. Sundararajan 

Department of Civil Engineering, Pondicherry Engineering College, Puducherry, India 

 
 
 

Abstract 
With respect to groundwater deterioration from human activities a unique 
situation of co-disposal of non-engineered Municipal Solid Waste (MSW)   
dumping and Secondary Wastewater (SWW) disposal on land prevails simul-
taneously within the same campus at Puducherry in India. Broadly the objec-
tive of the study is to apply and compare Artificial Neural Network (ANN) 
and Multi Linear Regression (MLR) models on groundwater quality applying 
Canadian Water Quality Index (CWQI). Totally, 1065 water samples from 68 
bore wells were collected for two years on monthly basis and tested for 17 
physio-chemical and bacteriological parameters. However the study was re-
stricted to the pollution aspects of 10 physio-chemical parameters such as  
EC, TDS, TH, 3HCO− , Cl−, 2

4SO − , Na+, Ca2+, Mg2+ and K+. As there is wide 
spatial variation (2 to 3 km radius) with ground elevation (more than 45 m) 
among the bore wells it is appropriate to study the groundwater quality using 
Multivariate Statistical Analysis and ANN. The selected ten parameters were 
subjected to Hierarchical Cluster Analysis (HCA) and the clustering proce-
dure generated three well defined clusters. Cluster wise important physio- 
chemical attributes which were altered by MSW and SWW operations, are 
statistically assessed. The CWQI was evolved with the objective to deliver a 
mechanism for interpreting the water quality data for all three clusters. The 
ANOVA test results viz., F-statistic (F = 134.55) and p-value (p = 0.000 < 
0.05) showed that there are significant changes in the average values of CWQI 
among the three clusters, thereby confirming the formation of clusters due to 
anthropogenic activities. The CWQI simulation was performed using MLR 
and ANN models for all three clusters. Totally, 1 MLR and 9 ANN models 
were considered for simulation. Further the performances of ten models were 
compared using R2, RMSE and MAE (quantitative indicators). The analyses of 
the results revealed that both MLR and ANN models were fairly good in pre-
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dicting the CWQI in Clusters 1 and 2 with high R2, low RMSE and MAE val-
ues but in Cluster 3 only ANN model fared well. Thus this study will be very 
useful to decision makers in solving water quality problems. 
 

Keywords 
Canadian Water Quality Index, Multi-Linear Regression, Artificial Neural 
Network, Simulation, Comparison 

 

1. Introduction 

Fresh water covers about 2.5% of earth’s water out of which groundwater con-
stitutes about 30.1% (https://water.usgs.gov). Even though groundwater is ab-
undant, it may still be unusable when its quality is considerably deteriorated by 
chemical and bacteriological contamination due to anthropogenic activities in 
social and industrial sectors. The increase in population and urbanization plays a 
pressing role in augmenting the demand for water supply in municipal and in-
dustrial sectors. 

The natural processes like weathering of rocks/soils, atmospheric precipitation 
etc., play an important role in the chemical constitution of groundwater [1] [2]. 
Further exploitation of groundwater due to agrarian, industrial and urban activi-
ties plays a critical part in the degradation of groundwater quality [3]. However 
in the recent years, anthropogenic activities like discharge of untreated or par-
tially treated waste water, mining and related activities, solid waste dumping, 
contaminated agricultural runoff due to pesticides etc., compound the likelihood 
of groundwater deterioration [4].  

Furthermore the groundwater qualitatively relies on the physio-chemical and 
bacteriological quality of recharged water, inland surface run off and subterra-
nean geochemical responses. Cyclic changes in groundwater may also be 
brought about by hydrological and anthropogenic components [5] [6]. 

Casual regulation and multiplying anthropogenic activities frequently lead to 
the disproportionate dispensation of chemical components in groundwater, re-
sulting in varying analytical data. So there is a critical demand for the planners, 
administrators and managers to distinguish the groundwater pollution and 
search for a fruitful and reliable system for regulating ground water resources 
and allied pollution [6]. 

The monitoring and analysis of water quality status are absolutely necessary to 
detect long-term trends in selected water quality parameters so as to discern 
prospective water quality problems. It is intended to determine the most contri-
buting parameters which cause alterations in groundwater quality by calculating 
water quality indices for various water uses like drinking water, irrigation, 
recreation, aquatic life etc. The water quality assessment shows the variation of 
water quality parameters. At the same moment, good quality of water must be 
adequately accessible to nurture hale and healthy life. 

https://www2.usgs.gov/water/
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Regionally because of non-availability of surface water, the entire population 
of Puducherry, India has to rely upon groundwater reserves. With respect to 
groundwater deterioration from human activities at Puducherry, we then have 
two significant aspects:  
• Contamination based on non-engineered Municipal Solid Waste (MSW) 

dumping  
• Partially treated or Secondary Wastewater (SWW) application on land 

In order to assess the groundwater qualitatively, dependable data on water 
quality is required, which can be acquired through routine water quality surveil-
lance programs. These programs usually generate huge and complicated data 
matrix containing a number of water quality attributes, which are generally hard 
to comprehend and evaluate the water quality as a whole. To overcome this, a 
mathematical technique, which transforms the massive of water quality data into 
a single count, such as WQI is required to ascertain the extent of pollution in 
water bodies. Thus WQI is a powerful tool to get overall information on water 
quality in a readily explicit form that can be utilized by administrators, decision 
makers and people. The theory of WQI is contingent on the precept of collating 
water quality parameters with respect to controlling threshold limits. 

A single WQI value gives information more precisely and it is easy to under-
stand than a long list of parametric values. Additionally, WQI also facilitates 
comparison between different sampling locations at different points of time. 
Considering the simplicity and reliable approach of WQI, it is ascertained that 
these indices will furnish explicit outlines of overall water quality and possible 
drifts. Thus, WQI can be used to furnish a comprehensive summary of envi-
ronmental performance that can be expressed to the public in an understandable 
pattern. While appreciating the importance and usability of WQI, it is important 
to know about the limitations of WQI: 

1) Lack of information due to amalgamation of several parameters to a single 
index measure. 

2) Sensitivity of the results due to the formulation of the index. 
3) Loss of information due to exchange among parameters, and  
4) Want of flexibility of the index to divergent ecosystems. 
Thus, WQI can be used as a powerful tool to get overall information and a 

comprehensive summary of environmental performance on water quality in a 
readily explicit form that can be utilized by administrators, decision makers and 
people in an understandable pattern [7]. Further, WQI is neither a replacement 
to the detailed analysis of environmental monitoring and modeling, nor should 
it be the only tool for the management of water bodies. 

In this situation, if deterministic models using MLR or simulation models like 
ANN could be developed for finding out water quality index, then it will be of 
great help to the managerial community to closely monitor the groundwater 
quality and the models so developed, could be a reliable alternative to the com-
plicated and time consuming water quality index calculations. Further these 
models are very practical, robust and cost effective. 
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2. Study Area and Present Scenario 

Puducherry is a Union Territory in India with an extent of 293 km2. The entire 
urban and sub urban areas of Puducherry are divided into nine zones for the 
purpose of water supply and comprehensive underground drainage system. 
Among the nine zones, Zone V (Lawspet) is a likely zone for groundwater ex-
ploitation. The borewells in Zone V are the only sources of water supply to 
coastal zones like Zone II (Muthialpet) and Zone V (Lawspet), as the current 
water supply in these zones are contaminated due to sea water intrusion. Of late, 
Zone V area is also getting affected due to the above said anthropogenic activi-
ties. Under these circumstances, it was decided to adopt Zone V which is a po-
tential groundwater source, for study purposes in order to prevent further con-
tamination. 

The study area falls in Zone V (Lawspet) area, wherein the STP and solid 
waste landfill are located in the same campus at Karuvadikuppam, Lawspet at 
Latitude 11˚58'16''N and Longitude 79˚48'11''E on the northern part of Pudu-
cherry, India (Figure 1). The terrain declines from North to South and the 
ground elevation ranges from 53 m to 6 m as shown in Figure 1. The area is 
identified with tropical climate with a mean yearly precipitation of 1200 mm, 
35% of which takes place during the South-West monsoon from June to Sep-
tember and the remaining 65% befalls during the North-East monsoon i.e. from 
October to December [8]. Presently 15 MLD of wastewater is treated using four 
serially connected facultative oxidation ponds and 1 UASB of capacity 2.5 MLD. 
Domestic sewage of BOD 250 mg/L is treated with a removal efficiency of 65%. 
Nearly, 12.5 MLD of partially treated SWW is discharged into a recharge pond 
area of 18 acres, since 1980 [8]. 

A portion of Sewage Treatment Plant (STP) site at Karuvadikuppam is used as 
solid waste landfill. Solid waste tipping started in 2004 and discontinued in 2013 
only and it spreads over an area of 21 acres approximately [9]. It is a non-engi- 
neered low lying open dump. The land fill is unlined and the solid waste has 
been dumped indiscriminately in an unscientific way and irregular fashion. The 
solid waste landfill height varies from 2 m to 6 m. So in Puducherry, a unique 
situation of co-disposal of MSW dumping and SWW disposal on land prevails 
simultaneously within the same campus.  

Against this back drop an effort has been attempted to investigate the spatial 
variation of water quality using, a readily understandable indicator, i.e. water 
quality index (WQI) for various intended uses (drinking and domestic uses). 

Broadly the objectives of the study were to 1) to apply the water quality index 
(WQI) so that the changes in the ground water quality of the study area can be 
monitored mainly for drinking purposes 2) to develop a Multivariate Linear Re-
gression (MLR) model, to simulate WQI which is commonly used as an indica-
tor of groundwater pollution 3) to establish an Artificial Neural Network (ANN) 
model that can be applied to directly foretell the water quality condition in the 
study area and thus furnish a dependable substitute to the WQI calculation me-
thod presently in use and 4) to evaluate the effectiveness of two data oriented 
methodologies viz., MLR and ANN.  
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Figure 1. Location map, elevation and sampling borewell sites in study area. 

3. Methodology 
3.1. Sample Collection and Monitoring of Borewells 

Nearly 125 water supply and agricultural borewells are located in and around 
STP within a radial distance of 2.5 km from STP and solid waste landfill. To ac-
curately represent the groundwater quality, a sampling strategy was formulated 
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to include a wide range of bore wells at the pivotal locations. Totally, 68 bore-
wells were identified in and around the study area and depicted in Figure 1. All 
the bore wells were considered for investigation and water samples were col-
lected every month from Jan 2014-Dec 2015 from solid waste dump area, re-
charge pond area, sewage farm area (existing) and peripheral area (private & 
Govt.) in order to study the seasonal and spatial variations.  

3.2. Physio-Chemical Analysis of Groundwater 

Water samples were collected from the borewells after pumping for 15 minutes. 
The samples were analyzed in the Public Health Laboratory, PWD, Puducherry, 
India. Totally 1065 water samples were collected and tested for 17 physiochemi-
cal and bacteriological parameters viz. EC, pH, TDS, Alkalinity, 3HCO− , TH, 
Ca2+, Mg2+, Fe2+, Cl−, 2

4SO − , 3NO− , Na+, F-, K+, 3
4PO − , Si4+, BOD, COD. Total 

Coliforms and Faecal Coliforms according to the standard methods [9] [10]. 
However the study was restricted to the pollution aspects of tenwater quality pa-
rameters viz. EC, TDS, 3HCO− , TH, Ca2+, Mg2+, Cl−, 2

4SO − , Na+, and K+. 

3.3. Canadian Water Quality Index (CWQI) 

The Canadian Council of Ministers of the Environment Water Quality Index 
(CWQI) is a well-established and universally accepted model for evaluating the 
WQI. The CWQI compares observations to a guideline value, which can be a 
water quality criterion or a locality specific chemical composition of a hydro 
geological parameter. 

The CWQI was formulated with the purpose of rendering a mechanism for 
reducing the documentation of water quality data [11] [12] [13]. As a compen-
dious tool, it furnishes a wide sketch of water quality data and it is functional for 
various purposes including drinking water quality, data communications, am-
bient water quality data processing, combined watershed designing, manage-
ment and policy decisions in the water supply sector. 

The model essentially consists of three measures of variance based on selected 
guideline values or threshold limits (scope, frequency, amplitude) as detailed 
below: 

1) The number of variables whose objectives are not met (scope). 
2) The frequency with which the objectives are not met (frequency). 
3) The amount by which the objectives are not met (amplitude). 
These values are concerted to bring about a single value (between 0 and 100) 

portraying the water quality. A value of 100 is the best possible index score and a 
value of 0 is the worst possible. The Canadian Water Quality Index (CWQI) is 
computed as follows: 

( )1
Numberoffailedvariables ×100
Totalnumberofvariables

F Scope =  

( )2
NumberoffailedtestsFrequency 100
Totalnumberoftests

F = ×  
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A sample calculation for computing CWQI (refer Table 1) for borewell 
(BW1) is as follows: 

1 2100 8 10 80;  100 8 10 80F F= × = = × =  

( )
( )( )( )3

excursion 1423 750 905 500 8 5.113;  5.113 10 0.511

0.01 0.01 33.83

nse

F nse nse

= + + − = = =

= + =



 

2 2 2
1 2 3100 31.82say32

1.732
F F F

CWQI
+ +

= − =  

3.4. Multivariate Statistical Analysis 

As there is wide spatial variation (2 to 3 km radius) with ground elevation (more 
than 45 m) among the borewells it is appropriate to investigate the quality of the 
ground water in the entire study area applying multivariate statistical analysis. 

Uncertainty is innate in all methods of evaluating groundwater pollution, 
arising from missing data, the natural, spatial and temporal in consistency of the 
hydrogeological variables in the field, and in mathematical computation. Con-
ventional procedures are inferior at addressing the non-linearity, subjectivity, 
and intricacy of the cause-effect association between water quality parameters 
and conditions but still they are the presently accepted procedures.  

In similar situations, multivariate statistical methods [14] [15] [16] [17] and 
artificial neural networks, can be effectively used in a wide variety of environ-
mental applications. The results demonstrated that the combined approach ef-
fectively interpreted the geological significance of the factors, and also reduced 
the area of exploration targets. 

3.5. Artificial Neural Networks (ANN) 

Several deterministic models have been tried in the past for prediction of CWQI  
 
Table 1. Mean physio-chemical test results of BW1. 

 EC TDS TH 
3

HCO−  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ 

BW1 1423 905 377 209 323 85 178 83 34 5 

Guideline 
Value 

750 500 300 200 250 200 50 75 30 10 

Note: EC-µs/cm, all other parameters mg/L. 
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in groundwater. These models require input data, model parameters, and exten-
sive information to obtain results. But, in practice the statistical precision of the 
models is not encouraging because natural systems tend to be too complex for 
deterministic modeling [18] [19]. 

Further, because of large number of factors affecting the water quality, and 
their complicated nonlinear relationships with the variables, the traditional de-
terministic models are not easy to handle. On the contrary ANNs provide a 
quick, flexible and reliable means of creating models for estimating groundwater 
quality. Currently ANNs have revealed very good realization as regression tools, 
chiefly when applied for pattern recognition and function estimation. Thus 
ANN is used as an approximation tool rather than a complex mathematical cal-
culation, which results in admissible deviation of predicted value from observed 
data [20] [21]. 

In relation to the conventional approaches, ANNs admit approximate or 
missing data, inexact results, and they are less susceptible to outliers. Further 
they are highly parallel, i.e., their multitudinous independent operations can be 
handled concurrently. Because of parallel processing architecture, ANN is com-
petent enough to manipulate complicated numerations, thus making it the most 
popular technique today for high speed computing of large data. In addition, 
there are many advantages in problem solving as elaborated below:  

1) Application of a neural network does not call for previous comprehension 
of the underlying process, so it can be employed to solve the problems vaguely 
described. 

2) No need to identify all the complex associations among various features of 
the process under analysis. 

3) A conventional optimisation procedure or statistical model delivers a solu-
tion only when executed completely whereas a neural network always converges 
to a local optimal result. 

4) The model has more forbearance to noise and ambiguous data thereby re-
quiring less information for model development.  

5) The findings are the outcome of the generic behaviour of data, as such the 
influence of outlier is reduced.  

For these reasons ANNs are found to be more suitable for handling various 
hydrological modeling problems [22] [23]. 

3.5.1. Structure of an ANN 
ANN is a simulation of the real nervous system in other words, it is a numerical 
model contingent on biological neural networks. It is a system which consists of 
a collection of units called “neurons” communicating with each other in a net-
work that works to produce a simulated output. ANNs are inspired by the activ-
ity of human brain. The basic units of any biological neural system are neurons, 
which are classified into sets, consisting of millions of them, organized in layers 
and constitute their own functional arrangement. A set of these subsystems 
create a global system [24] [25]. 
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3.5.2. Components of an ANN 
Typically a neuron receives many parallel and multiple inputs. Each input has its 
own relative weight which signifies the importance of the input within the acti-
vation function of the neuron. These weights do the same role played by the bi-
ological neurons in synapses. In both cases, some inputs are more important 
than others so they have more involvement in the processing of the neuron and 
to produce a neuronal result. The weights are coefficients that can be adapted 
within the network depending on the intensity of the input signal, received by 
the artificial neuron [26]. 

Based on the inputs and weights, the summing part provides the potential 
postsynaptic value “hi” of the neuron. The most common function is the sum of 
all weights and inputs, by grouping the inputs and weights in two vectors 
( 1 2,  , , nx x x ) and ( 1 2, , ,j j njw w w ) and then calculate this amount making the 
scalar product of two vectors. 

( )i ij ih t Sw x= ∗                         (1) 

where hi(t) is post synaptic potential. 
The inputs and weights can be combined in different ways before transferring 

the value to the activation function. The specific algorithm for the propagation 
of neural inputs depends on the choice of architecture. The result of the sum-
ming part in most cases is a weighed sum, which is transformed into the actual 
output of the neuron through an algorithmic process known as activation func-
tion. 

( ) ( ) ( )( 1i i i ia t f a t h t= − ∗                       (2) 

The activation function depends on the postsynaptic potential “hi(t)” and its 
previous state of activation. However, in many models of ANN, the current state 
of the neuron does not depend on its previous state “ai(t − 1)”, but only on the 
current state. 

( ) ( )( )i i ia t f h t=                         (3) 

In the activation function, the value of the output combination can be com-
pared with a threshold value for determining the output of the neuron. If the 
sum is greater than the threshold value, a neuron signal is generated. If the sum 
is less than the threshold, no signal is generated. Usually the threshold value, or 
transfer function value is typically nonlinear.  

Before applying the activation function, some noise is added to the inputs. 
The source and amount of this noise are determined by training of a particular 
network. This noise is commonly known as temperature of the neuron. In fact 
by adding different noise levels to the result of the combination or summing, a 
model more similar to the brain can be created. 

3.5.3. Activation Function 
The activation (transfer) function establishes the reaction of a node to the total 
input signal it acquires. Generally hidden layer utilizes logistic transfer function. 
By means of an activation function, from hidden layer to output layer, a linear 
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transfer function is applied. Most commonly used non-linear sigmoid function 
is  

( ) ( )– 1 1 asf s e= +  

Also hyperbolic tangent transfer function is used in many networks as follows: 

( )
2

2

1tanh( )
1

 
s s s

s s s

e e ef s s
e e e

− −

− −

− −
= = =

+ +
 

1
wheres

n

i i i
i

w x
=

= ∑  

wi—weights & xi—input variables. 

3.5.4. Architecture of an ANN 
Generally ANN models (Figure 2) were specified by the network topology, 
training and/or learning rules [27] [28]. These ambiences have primarily confi-
gured the network behaviour with three different layers in the network topology 
which can be distinguished as:  

1) An input layer: contains neurons that acquire information from the envi-
ronment and connects the input information to the system (network). 

2) Hidden layer: acting as an intermediate computational layer. 
3) Output layer: the neurons provide the response and produce the desired 

output of the neural network. 
The connections between neurons can be excitatory or inhibitory: a negative 

synaptic weight defines a negative inhibitory connection, while a positive deter-
mines excitatory connection. Intra-layer connections, also called side connec-
tions, take place between neurons in one single layer, while the inter-layer con-
nections occur between neurons in different layers. There are also feedback  

 

 

Figure 2. Architecture of an ANN model. 
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connections that have an opposite way input-output. Based on these concepts, 
different neural architectures can set: 
• Single Layer Networks consist just one layer of neurons. 
• Multi-Layer Networks are those whose neurons are organized in several lay-

ers, in response to the data flow in a neural network. 
• Feed Forward Networks circulate the information unidirectionally from the 

input neurons to the output neurons. 
• Feedback Networks circulate the information between the layers in any di-

rection. 

3.5.5. Training and Testing Algorithm 
In this research work, Multilayer Perceptron (MLP), a feed forward kind of 
ANN model is employed. In this model, a set of input data is fed into a network 
to receive a set of suitable output data after due mathematical processing. The 
MLP model is a network comprises of multiple layers of nodes (neurons) and 
these layers are interconnected from one layer to another. All the interconnected 
nodes of various layers form a directed graphical network system. The hidden 
layer and the output layer are connected through neurons, exercising a nonlinear 
activation function by a technique known as “back propagation” to train the 
network system. To standardize the model, the entire data set is segregated into 
three phases. The first phase is the learning phase which is utilized to train the 
network. The goal of training is to guarantee that the network replicates the in-
herent characteristic of the information availed in the ANN modelling. ANN 
weights and biases are fixed during the training procedure. The input variables 
and already ascertained output parameters decide the associated weights in such 
a way that the predicted and observed values are in agreement. Secondly the 
ANN models are put to testing in order to fix up the stopping criterion as when 
to stop. Lastly the model is validated utilizing the data which are not included in 
the training phase [29] [30] [31]. 

3.5.6. Model Performance Appraisal  
Performance appraisal of the MLR and ANN models is accomplished using three 
statistical indices, namely: Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE) and Coefficient of Determination (R2) to study the capability of 
simulating cluster wise CWQI. MAE demonstrates the mean of the errors simu-
lated by the developed model and is employed to detect the proximity of simu-
lated values (observed values). RMSE signifies the comprehensive variation be-
tween observed and simulated values. R2 represents the measure of the total va-
riance with respect to the observed values, which can be explained by the devel-
oped model. The mathematical expressions for MAE and RMSE are as follows: 

1

1MAE
n

oi pi
i

x x
n =

= −∑  

( )
1

21RMSE
n

oi pi
i

x x
n =

= −∑  

where xoi—observed CWQI and xp—predicted CWQI. 
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4. Results and Discussion 
4.1. Hierarchical Cluster Analysis (HCA) 

HCA visualizes intra-relationship among the parameters for a good perception 
of the studied system. Divergent sampling locations in the study area can be 
grouped into clusters to spatially explain the similarity in chemical composition 
of the groundwater quality among the bore wells [32] [33] [34]. The selected ten 
hydro-chemical parameters in the study area were subjected to HCA. The clus-
tering procedure generated three well defined clusters. Cluster 1 involves 28 bore 
wells, forming 41% of the sampling stations. Cluster 2 comprises of 8 bore wells, 
representing 12% of the sampling stations. Cluster 3 accounts for 32 bore wells 
comprising of 47% of the sampling stations. Clusters 1, 2 and 3 correspond to 
polluted, highly polluted and non-polluted regions of the study area.  

4.2. Descriptive Statistics 

During this study some important physio-chemical attributes from shallow 
groundwater in the study area were obtained and measured. The main intention 
of this study was to evaluate, determine, predict and compare the groundwater 
quality dispensation and extent of prospective contamination in the study area 
using MLR and ANN models. Besides statistically reporting the current status of 
shallow groundwater for impending comparisons, the study will also be precious 
to the managers answerable for groundwater development, regulation, exploita-
tion and deterioration. Cluster wise important physio-chemical attributes (EC, 
TH, 3HCO− , Cl−, 2

4SO − , Na+, Ca2+,Mg2+ and K+) of water quality impaired by 
MSW & SWW exercises,  apprehending the complete geology and ambient 
condition, are statistically assessed and presented in Tables 2-4. 
 

Table 2. Descriptive statistics Cluster 1. 

Statistic EC TDS TH 
3

HCO−  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ CWQI-OBS 

No. of observations 28 28 28 28 28 28 28 28 28 28 28 

Minimum 1004.0 634.0 226.0 147.2 194.9 50.3 73.2 54.3 20.2 2.6 31.2 

Maximum 1626.0 1023.0 464.0 389.5 385.2 85.3 216.0 108.9 46.0 6.0 73.5 

Range 622.0 389.0 238.0 242.4 190.3 35.0 142.8 54.6 25.8 3.4 42.3 

1st Quartile 1123.0 695.3 247.3 204.5 228.0 62.2 148.1 59.9 25.7 3.5 39.5 

Median 1238.0 781.5 273.0 234.6 261.8 65.6 166.4 65.6 31.4 3.9 48.5 

3rd Quartile 1388.5 861.5 319.8 276.5 305.9 69.7 190.5 71.4 37.0 4.3 64.9 

Mean 1253.5 787.3 290.4 242.7 267.4 66.4 165.1 67.3 32.1 4.0 51.6 

Variance (n) 29074.6 12346.4 2864.1 3630.4 2434.5 48.9 1008.8 120.0 48.4 0.5 175.0 

Standard deviation (n) 170.5 111.1 53.5 60.3 49.3 7.0 31.8 11.0 7.0 0.7 13.2 

Skewness (Pearson) 0.4 0.4 1.3 0.6 0.6 0.4 −0.7 1.9 0.3 0.7 0.3 

Kurtosis (Pearson) −0.8 −0.8 1.8 −0.2 −0.5 0.8 0.5 5.0 −0.8 0.5 −1.2 

Standard error of the 
mean 

32.8 21.4 10.3 11.6 9.5 1.3 6.1 2.1 1.3 0.1 2.5 

NOTE: EC-µs/cm, all other parameters mg/L. 
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Table 3. Descriptive statistics Cluster 2. 

Statistic EC TDS TH 
3

HCO−  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ CWQI-OBS 

No. of observations 8 8 8 8 8 8 8 8 8 8 8 

Minimum 1797.0 1134.0 357.0 276.7 428.9 60.3 224.2 63.0 39.5 3.8 27.7 

Maximum 2176.0 1356.0 453.0 458.7 517.1 126.3 317.9 89.5 67.5 10.6 35.9 

Range 379.0 222.0 96.0 182.0 88.2 66.0 93.7 26.5 28.1 6.7 8.2 

1st Quartile 1936.5 1225.0 381.0 353.5 448.2 75.2 275.4 74.0 45.0 6.5 28.2 

Median 2035.5 1274.5 399.0 392.5 463.0 89.5 279.1 85.0 52.5 8.2 29.1 

3rd Quartile 2108.8 1338.5 423.0 421.9 489.9 97.9 288.4 87.3 54.2 9.0 34.5 

Mean 2010.4 1266.4 404.0 381.3 468.1 89.4 278.8 80.6 51.0 7.6 30.9 

Variance (n) 16243.7 5951.2 1025.0 3242.6 834.2 392.1 607.6 76.4 73.5 5.6 10.8 

Standard deviation (n) 127.5 77.1 32.0 56.9 28.9 19.8 24.7 8.7 8.6 2.4 3.3 

Skewness (Pearson) −0.5 −0.5 0.2 −0.5 0.3 0.4 −0.8 −0.9 0.3 −0.5 0.5 

Kurtosis (Pearson) −1.1 −1.1 −1.2 −0.9 −1.1 −0.7 0.8 −0.6 −0.5 −1.0 −1.6 

Standard error of the mean 48.2 29.2 12.1 21.5 10.9 7.5 9.3 3.3 3.2 0.9 1.2 

NOTE: EC-µs/cm, all other parameters mg/L. 
 
Table 4. Descriptive statistics Cluster 3. 

Statistic EC TDS TH 
3

HCO−  Cl− 2
4SO −  Na+ Ca2+ Mg2+ K+ CWQI-OBS 

No. of observations 32 32 32 32 32 32 32 32 32 32 32 

Minimum 155.0 97.0 60.0 44.8 17.3 6.9 13.4 15.9 5.6 1.4 58.2 

Maximum 848.0 548.0 360.0 436.4 190.2 101.0 115.2 80.1 41.0 4.3 91.8 

Range 693.0 451.0 300.0 391.6 172.8 94.1 101.8 64.2 35.4 2.9 33.6 

1st Quartile 327.5 209.0 116.5 77.1 29.6 17.9 23.9 31.1 9.2 1.8 82.9 

Median 417.0 265.5 144.5 111.4 39.9 24.4 32.0 40.1 15.1 2.0 84.6 

3rd Quartile 588.5 379.3 183.8 191.7 57.1 39.9 46.0 51.9 17.4 2.9 89.1 

Mean 461.0 292.8 162.0 154.2 52.6 32.5 40.3 42.1 15.4 2.3 84.6 

Variance (n) 35013.1 14187.8 5015.3 10825.9 1507.2 485.4 569.7 239.2 65.8 0.6 44.8 

Standard deviation (n) 187.1 119.1 70.8 104.0 38.8 22.0 23.9 15.5 8.1 0.8 6.7 

Skewness (Pearson) 0.5 0.5 1.1 1.2 2.2 1.4 1.4 0.5 1.3 0.8 −2.0 

Kurtosis (Pearson) −0.8 −0.7 0.8 0.3 4.4 1.4 1.5 −0.2 1.4 −0.4 5.4 

Standard error of the mean 33.6 21.4 12.7 18.7 7.0 4.0 4.3 2.8 1.5 0.1 1.2 

NOTE: EC-µs/cm, all other parameters mg/L. 

4.3. Canadian Water Quality Index (CWQI) 

CWQI has been formulated, based on the conceptual framework of Canadian 
Council of Ministers of the Environment [35] [36] [37]. CWQI so developed re-
flected the physio-chemical quality of the groundwater in the study area. The 
results from the model are an evidence of the degrading nature of groundwater 
in the borewell locations. The cluster wise Descriptive Statistics of CWQI values 
are presented in Tables 2-4. From the findings, it can be observed that the mean 
value of CWQI in Cluster 1 is 51.67 and the groundwater quality falls under the 
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category “marginal”. Similarly the mean values of CWQI for Clusters 2 and 3 are 
30.90 and 84.60 respectively and based on this, the overall groundwater quality 
of Clusters 2 and 3 can be ascribed as “poor” and “good”. The poor nature of 
groundwater in Clusters 1 and 2 is mainly attributed to anthropogenic activities 
viz. 1) indiscriminate solid waste dumping and 2) partially treated SWW land 
application. 

4.3.1. Analysis of Variance (ANOVA) 
ANOVA has wide applicability in groundwater quality problems as a versatile 
diagnostic tool. The parametric one way ANOVA is an addendum of the t-test to 
multiple sample groups. ANOVA tests for significant differences in one or more 
clusters. If an overall significant difference is found as measured by F-statistic, 
post-hoc statistical contrasts may be used to determine where the differences lie 
among individual group means. In the CWQI monitoring context, only differ-
ences of mean relative to background are considered to be important.    

The one way ANOVA technique generates one way analysis of variance for a 
quantitative dependent variable by a single factor independent variable. The 
purpose of using ANOVA is to address the following questions: 

1) What are the main effects of independent variables (monitoring locations/ 
clusters) on dependent variables (i.e. mean value of CWQI)? 

2) What are the interactions among the independent variables? 
Thus, one way ANOVA identifies spatial variability among monitoring bore-

wells. Equality of variances among the clusters is evaluated with ANOVA and if 
it identifies significant differences then natural spatial variability is the likely 
cause. ANOVA compares the average values of CWQI among clusters to deter-
mine whether they are from same continuous distribution and whether signifi-
cant differences existed between the mean values of CWQI among the clusters.   

The hypothesis used is as follows: 
H0: There is no difference in the average levels of CWQI between the Clusters 

1, 2 and 3. 
H1: There are differences in the average levels of CWQI between the Clusters 

1, 2 and 3. 
Decision making is the rejection of Ho if P value is less than α. The F-statistic 

and Sig (significance) conform the differentiation of clusters. P < 0.05 shows that 
high variations of CWQI in terms of their spatial distribution in the study area 
and consequently it may be concluded that H0 is rejected and H1 is accepted.  In 
other words there are cluster wise differences in the mean values of CWQI, 
which means the spatial variability and clustering of bore wells based on physio- 
chemical parameters of the bore wells perform a very crucial role in the study 
area. 

The ANOVA test findings are presented in Table 5. The test results evince 
that F-statistic (F = 134.55) and p-value (p = 0.000) is less than α = 0.05, imply-
ing that there are critical differences in the average values of CWQI among the 
clusters. Further the difference in the mean values of CWQI, results in the for-
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mation of clusters and are mainly due to anthropogenic activities viz. 1) Conta-
mination based on indiscriminate MSW dumping and 2) Partially treated or 
SWW land application. 

4.4. Multi-Linear Regression Model (MLR) 

Regression models are best fit for establishing association between dependent 
and independent variables of small sample size. The MLR is a method applied to 
ascertain relationship between a dependent variable and one or more indepen-
dent variables in a linear fashion and it is based on the method of least squares 
[38] [39]. In the best model, sum of the squared error between observed and 
predicted values of the parameters should be minimum. CWQI estimation also 
can be performed using MLR models which explain linear relationship among 
various hydrogeological parameters and is as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
3 4

+ 2+ 2+ +

EC TDS TH HCO Cl SO ?

      Na Ca Mg K €

Y a b c d e f

g h i j

α − − −= + + + + + +

+ + + + +
 

where, Y—CWQI ; α—regression constant ; €—random error. 
a, b, c, d, e, f, g, h, i and j are coefficients of predictors in linear regression 

model; 
EC, TDS, TH, 3HCO− , Cl−, 2

4SO − , Na+, Ca2+, Mg2+ and K+ are input parame-
ters. 

The findings of MLR study for three clusters adopting 10 independent water 
quality parameters are summarized in Table 6. These are unstandardized re-
gression co-efficients/weights which are incorporated in the regression equation. 
The MLR model developed employing stepwise regression technique to predict 
CWQI in Cluster 1 is: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

3

2 + 2+
4

2+ +

1 122.39 0.006 EC 0.016 TDS 0.148 TH 0.031 HCO

                    0.077 Cl 0.232 SO 0.063 Na 0.18 Ca  

                    0.037 Mg 0.37 K

CWQI C −

− −

− = − − − −

− + − +

+ +

 

Similarly MLR models for Clusters 2 and 3 can be developed. In Cluster 2, the 
variables EC, TDS and Ca2+ had been removed from the model during stepwise 
regression because their regression co-efficients were observed to be statistically 
inconsequential in simulating CWQI. Further F-test was adopted to examine the 
complete significance of the formulated MLR model for simulating CWQI. Fur-
thermore the results of ANOVA of the MLR models of the three clusters are 
presented in Table 5. 

From Table 5 & Table 6, it is observed that in Cluster 1 from the F-statistic 
(F= 12.165) and p value (p = 0.000), it is resolved that it is in fact a significant 
model i.e. the independent variables interpret a significant degree of variability 
in the prediction of CWQI and it is also confirmed that R2 (0.88) is remarkably 
significant for this model. 

It is evident from the Table 6 that the MLR model for Cluster 2 has the high-
est R2 (1) value and is supported by F-statistic and p-level. However the MLR  
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Table 5. ANOVA test for cluster classification and MLR models. 

 
 

Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

Clusters 
CWQI 

Between Groups 26723.167 2 13361.583 134.548 0.000 

Within Groups 6454.951 65 99.307   

Cluster 1 
MLR 

Between Groups 4300.274 10 430.027 12.165 0.000 

Within Groups 600.932 17 35.349 
  

Cluster 2 
MLR 

Between Groups 85.555 7 12.222   

Within Groups 0.000 0    

Cluster 3 
MLR 

Between Groups 823.823 10 82.382 2.843 0.021 

Within Groups 608.584 21 28.980   

 
Table 6. MLR model co-efficients for selected water quality parameters. 

Dependent 
Variable 

“Y” 

Constant 
“α” 

Independent Variable 

R R2 
EC 
“a” 

TDS 
“b” 

TH 
“c” 

3
HCO−

 

“d” 

Cl− 
“e” 

2
4SO −

 

“f” 
Na+ 
“g” 

Ca2+ 
“h” 

Mg2+ 
“I” 

K+ 
“j” 

CWQI-C1 122.394 −0.006 −0.016 −0.148 −0.031 −0.077 0.232 −0.063 0.180 0.037 0.370 0.94 0.88 

CWQI-C2 24.718 -- -- −0.131 0.034 0.067 0.016 0.016 -- 0.187 −0.057 1 1 

CWQI-C3 98.920 0.044 −0.033 0.056 −0.059 −0.283 −0.074 0.342 −0.240 −0.185 −3.508 0.76 0.58 

 
model for Cluster 3 has the lowest R2 (0.58) value. This indicates that CWQI of 
Cluster 3 is not influenced by the anthropogenic activities under consideration. 
Thus the values of R2, F-statistic, and p-level for MLR models for all the three 
clusters are statistically significant which indicate that the formulated MLR 
models can simulate/predict CWQI reasonably. 

In general the “sig” column in Table 5 provides the computed value of “p”, if 
p < 0.05 then null hypothesis Ho is rejected and alternate hypothesis H1 is ac-
cepted. In other words the independent variables are significant. In case of 
CWQI, it can be interpreted that there is spatial variability in Clusters 1, 2 and 3. 
Similarly the MLR models for Clusters 1, 2 and 3 are significant as the p values 
are <0.05, and so the alternate hypothesis H1 is accepted and Ho is rejected. 

4.5. Development of ANN-MLP Models 

To simulate CWQI of groundwater, 10 most significant physio-chemical para-
meters were chosen. Multi Layer Perceptron (MLP) methodology of ANN was 
applied using SPSS Version 21.0. 1065 groundwater samples were analysed to 
model CWQI. 70% of the samples were utilized to train the ANN models and 
the balance 30% of data were employed to evaluate the model. Primarily 10 va-
riables were used as inputs to ANN. To select the best fit ANN model, a metho-
dology has been worked out for periodic removal of input parameters. By elimi-
nating the input parameters the structure of optimized ANN model was made to 
run again.  
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4.5.1. Sensitivity Analysis 
Sensitivity analyses were carried out for the ANN model to ascertain the relative 
weight of each input variable for reasonably simulating CWQI. This analysis was 
employed for all the three clusters by making certain modifications on distinct 
inputs and examining their consequences on the model output. The modifica-
tion in the input was designed by removing certain parameters, while keeping 
the other input parameters intact and then the model output was simulated. 
Pursuing this removal approach 9 ANN models for Cluster 1 were developed 
and furnished in Table 7. 

The same approach was adopted for Clusters 2 and 3. The optimal simulated 
results of all the 9 ANN and MLR models in all the three clusters are summa-
rized in Tables 8-10. 

4.5.2. Comparative Performance of the ANN and MLR Models 
Further the performances of nine ANN models in simulating CWQI were col-
lated with those of the corresponding MLR models by using R2, RMSE and MAE 
(quantitative indicators) [40] [41] [42] [43]. The results of this comparison are 
also presented in Tables 8-10. The model which indicated high R2 value and 
considerably low MAE and RMSE values, was considered to be best simulated 
model and is suitable for further analysis. 

From the Tables 8-10 it could be seen that in Cluster 1, five ANN models 
showed R2 values more than 0.9 and the remaining 4 models showed R2 values 
between 0.85 and 0.9. The MLR model showed R2 value as 0.88. Based on the 
RMSE (3.99) and MAE (3.52) values, the ANN 9 and MLR models could be con-
sidered for further analysis.   

In Cluster 2, the R2 values ranged from 0.175 to 0.995. The ANN 2 and ANN 6 
models showed R2 values as low as 0.175 and 0.232 respectively. Interestingly the 
MLR and ANN 8 models showed exactly the same values of R2 (0.995), RMSE 
(0.23) and MAE (0.207). Both of these models could be considered for further 
investigation. 

 
Table 7. Combination of input parameters in ANN models (Cluster 1). 

Sl. 
No. 

Model 
ANN  

Architecture 
No. of  

parameters 
Combination of input parameters 

Output 
parameter 

1 ANN1 10-3-1 10 EC, TDS, TH, 
3

HCO− , Cl−, 2
4SO − , Na+, Ca2+, Mg2+ and K+ CWQI 

2 ANN2 8-2-1 8 EC, TDS, TH, 
3

HCO− , Cl−, 2
4SO − , Na+ and Ca2+ CWQI 

3 ANN3 7-2-1 7 EC, TDS, TH, 
3

HCO− , Cl−, 2
4SO −  and Na+ CWQI 

4 ANN4 6-2-1 6 EC, TDS, TH, 
3

HCO− , Cl− and Na+ CWQI 

5 ANN5 5-3-1 5 EC, TDS, TH, Cl− and Na+ CWQI 

6 ANN6 4-4-1 4 EC, TDS, Cl− and Na+ CWQI 

7 ANN7 6-3-1 6 EC, TDS, TH, 
3

HCO− , Cl−, and 2
4SO −  CWQI 

8 ANN8 6-1-1 6 EC, TDS, Na+, Ca2+, Mg2+ and K+ CWQI 

9 ANN9 8-2-1 8 TH, 
3

HCO− , Cl−, 2
4SO − , Na+, Ca2+, Mg2+ and K+ CWQI 
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Table 8. MLR and ANN models—Cluster 1 (CWQI). 

BW OBSERVED MLR ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 

BW1 32 40 40 40 42 37 38 37 39 40 38 
BW5 40 41 42 39 44 40 42 42 40 40 36 

BW14 39 38 41 39 37 34 41 49 41 39 39 
BW15 41 40 46 38 39 40 44 45 46 39 44 
BW40 39 40 37 39 38 37 38 36 36 39 36 
BW41 38 30 36 37 38 35 37 36 38 38 35 
BW42 31 35 36 37 37 35 38 38 36 40 37 
BW43 55 49 53 47 47 44 46 48 46 53 53 
BW47 73 65 68 67 70 71 66 68 67 69 69 
BW48 48 50 42 48 47 46 48 45 47 42 44 
BW49 48 54 52 54 51 49 51 48 50 49 51 
BW51 40 39 37 38 38 37 39 38 39 39 37 
BW52 47 44 39 43 43 43 45 46 45 41 39 
BW53 48 53 51 52 53 51 50 48 50 51 55 
BW54 49 51 43 49 49 49 49 47 48 47 48 
BW57 64 61 63 65 68 64 59 57 64 61 62 
BW58 49 55 48 56 56 54 54 50 55 50 51 
BW59 72 67 67 69 68 67 63 68 70 69 68 
BW60 66 69 67 69 69 72 67 72 69 69 70 
BW62 65 64 65 67 66 65 62 57 64 66 67 
BW63 74 67 69 68 68 73 64 71 71 67 69 
BW67 38 33 37 37 40 36 37 35 36 38 35 
BW68 39 40 37 38 45 38 39 38 42 39 37 
BW69 65 63 64 64 64 64 62 63 61 68 66 
BW70 57 61 54 62 64 62 59 58 61 59 59 
BW71 65 64 68 66 64 66 64 71 65 71 68 
BW72 73 73 66 70 72 73 68 74 71 72 70 
BW78 49 59 53 62 65 62 60 61 59 58 56 

R2   0.88 0.91 0.88 0.85 0.90 0.88 0.86 0.91 0.91 0.91 
RMSE   4.64 4.15 4.65 5.22 4.41 4.89 4.95 4.07 4.08 3.99 
MAE   3.74 3.51 3.48 3.93 3.14 3.74 3.95 3.10 3.02 3.52 

Note: BW—Borewell. All values in the Table indicate observed and simulated values of CWQI. 

 
Table 9. MLR and ANN models—Cluster 2 (CWQI). 

BW OBSERVED MLR ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 

BW7 36 36 34 29 35 31 35 29 36 36 32 
BW8 28 28 29 28 28 28 29 29 28 28 28 
BW9 28 28 28 28 28 28 28 29 30 28 29 

BW10 28 28 28 28 28 28 28 29 28 28 28 
BW11 35 35 35 29 34 34 35 28 35 35 35 
BW13 29 29 30 29 29 29 29 29 29 29 29 
BW44 29 29 29 29 29 27 29 29 28 29 27 
BW45 34 34 34 28 32 34 34 29 31 34 32 

R2 
 

0.995 0.945 0.175 0.970 0.743 0.985 0.232 0.823 0.995 0.778 
RMSE 

 
0.230 0.885 3.949 0.968 1.986 0.500 4.024 1.418 0.230 1.841 

MAE 
 

0.207 0.653 2.563 0.688 1.188 0.403 2.864 0.917 0.207 1.273 

Note: BW—Borewell. All values in the Table indicate observed and simulated values of CWQI. 
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Table 10. MLR and ANN models—Cluster 3 (CWQI). 

BW OBSERVED MLR ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8 ANN9 

BW17 80 80 85 81 87 84 86 85 83 84 87 

BW18 89 87 87 88 89 88 85 87 88 86 88 

BW19 58 67 80 61 59 82 71 83 82 82 67 

BW20 83 82 82 83 81 85 84 85 86 83 82 

BW21 83 86 86 87 83 87 86 87 88 85 88 

BW22 86 83 87 86 85 87 85 87 89 85 88 

BW23 86 90 87 87 85 87 85 87 88 85 88 

BW24 83 86 86 84 83 87 85 86 87 85 88 

BW25 85 87 87 86 84 87 86 87 88 85 88 

BW26 84 87 86 85 83 86 86 86 86 85 88 

BW27 92 82 86 86 89 86 85 86 87 85 87 

BW28 92 84 84 85 91 86 84 86 87 84 87 

BW30 86 88 87 87 84 87 86 87 88 85 88 

BW32 83 86 80 87 84 84 81 83 82 83 84 

BW35 83 81 86 84 83 87 85 87 88 85 88 

BW36 92 87 85 88 89 87 86 86 88 85 87 

BW37 84 88 86 87 83 87 86 87 88 85 88 

BW38 83 83 81 84 81 83 85 83 83 83 83 

BW39 90 94 87 91 90 88 87 87 89 86 88 

BW46 83 79 81 86 84 83 85 83 83 83 83 

BW50 91 82 83 88 93 81 86 83 82 85 87 

BW55 72 76 81 74 71 81 74 81 82 84 72 

BW64 87 88 87 87 87 87 86 87 87 86 88 

BW75 92 91 81 86 94 85 75 83 82 83 88 

BW76 92 86 82 88 92 83 85 83 82 84 87 

BW77 74 77 80 72 72 81 69 81 82 83 68 

BW79 89 87 87 88 89 88 85 87 89 86 88 

BW80 84 91 86 88 84 86 87 86 85 85 88 

BW81 82 84 85 86 83 85 86 86 82 85 88 

BW82 86 88 87 87 85 87 86 87 86 85 88 

BW84 92 86 84 91 88 83 87 84 82 85 87 

BW85 83 86 86 87 83 85 87 86 84 85 88 

R2 
 

0.555 0.178 0.806 0.925 0.193 0.414 0.148 0.122 0.282 0.646 

RMSE 
 

4.463 6.074 2.967 1.867 6.104 5.190 6.248 6.326 6.206 4.057 

MAE 
 

3.678 4.341 2.347 1.309 4.091 3.834 4.247 4.159 4.053 3.441 

Note: BW—Borewell. All values in the Table indicate observed and simulated values of CWQI. 

 
In Cluster 3, the R2 values ranged from 0.122 to 0.925. The ANN 1 and ANN 4 

to ANN 8 models showed low R2 values. The ANN 3 is the only model which 
showed R2 value as high as 0.925 while MLR showed R2 value as 0.555. So ANN 3 
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model could be termed as best fit model for further examination. 
Conclusively in the anthropogenically polluted Clusters 1 and 2, both MLR 

and ANN models could be considered for further investigation. But, in Cluster 3 
which is less polluted, only ANN model is best fit for simulation. 

The graphical comparison of observed and optimal simulated CWQI by ANN 
and MLR models in all the 3 clusters are depicted in Figures 3-5. It is evident 
from these figures that the predicted CWQI derived by both MLR and ANN 
models tally fairly well with the observed CWQI in Clusters 1 and 2, whereas in 
Cluster 3 only ANN model fits well with the observed values. In addition to the 
concurrent plots, the comparison between observed and simulated CWQIs by 
ANN was analysed by scatter plots with 1:1 equilines and error bands for all the 
3 clusters and the same are illustrated in Figures 6-8. 

 

 
Figure 3. Observed and predicted CWQI in Cluster 1. 
 

 
Figure 4. Observed and predicted CWQI in Cluster 2. 
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Figure 5. Observed and predicted CWQI in Cluster 3. 
 

 
Figure 6. Error band in Cluster 1. 

 
In these figures the parallel lines (qualitative indicators) indicate higher and 

lower error bands in relation to 1:1 line. Understandably the simulated CWQI of 
23 borewells (82%) fall within ±10% error band in Cluster 1. In Clusters 2and 3, 
100% and 94% of the borewells fall within ±5% error band respectively. In view 
of the quantitative and qualitative realization gauges, the ANN models outper-
form MLR models in a much better way and this could be ascribed to the fact 
that MLR is dependent on method of least squares and it is linear in nature, 
whereas ANN is based on sophisticated nonlinear methods. 

5. Conclusion 

This research work was attempted to investigate the strength of two data in-
duced methodologies viz. MLR and ANN, for predicting CWQI in groundwater  
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Figure 7. Error band in Cluster 2. 
 

 
Figure 8. Error band in Cluster 3. 

 
quality scenario. Using HCA, 3 clusters were developed based on 10 most signif-
icant physio-chemical parameters. The cluster classification based on anthropo- 
genic activities and MLR models so developed have been validated by ANOVA 
using F-statistic. Each cluster was subjected to simulation of CWQI using one 
MLR and nine ANN models. The quantitative and qualitative performances of 
MLR and ANN models were assessed statistically and graphically. The analyses 
of the results revealed that both MLR and ANN models were fairly good in pre-
dicting CWQI in Clusters 1 and 2 with high R2, low RMSE and MAE values. In 
Cluster 3 only ANN model fared well. This is because MLR models are generally 
linear in nature and they are poor in their prediction ability especially in noisy 
data environment. Therefore, ANN models can be considered as a powerful and 
dependable tool in simulating complex, inter-dependable physio-chemical pa-
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rameters. Based on the required information, it will be very simple, clear and 
convenient to adopt either MLR or ANN model depending on environmental 
conditions to predict the water quality of the study area in a more practical way 
so that the associated costs, sampling points etc., can be minimized to the max-
imum extent possible. Thus this research attempt will be very practical to the 
groundwater management community which is involved in water quality prob-
lems. 
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