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Abstract 
In this work we analyze the concept of time dilation in its application to the 
rate of moving clocks. The rates of two equiform elementary electromagnetic 
clocks of different orientations relative to their direction of motion are com-
puted on the basis of relativistic transformations of force and coordinates for 
the case when the clocks are at rest in a stationary reference frame and for the 
case when they are moving at constant speed relative to the stationary refer-
ence frame. It is shown that, although both clocks run slower when they are 
moving than when they are at rest, the rate of the moving clocks is affected by 
their orientation relative to their direction of motion, rather than by the ki-
nematic (relativistic) time dilation as it is now generally assumed. The impli-
cation of this result for the experimental proofs of the existence of the kine-
matic the dilation is discussed. 
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1. Introduction 

Albert Einstein in his famous 1905 paper interpreted the Lorentz transformation 
equations for coordinates and time as indicating that time is kinematically “di-
lated” in systems that move with respect to the systems considered to be statio-
nary [1]. As a physical entity, time is defined in terms of specific measurement 
procedures, which may be described simply as “observing the rate of clocks”. It 
is now generally assumed that because of time dilation, the rate of all moving 
clocks is slower by the factor ( )1 22 21 v cγ = −  than the rate of the same statio-
nary clocks. However, a clock is a physical apparatus or device and is subject to 
the laws of physics in accordance with which the clock is constructed. Therefore, 
if a clock slows down when it moves, its slower rate should be explainable on the 
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basis of the specific laws responsible for the operation of the clock and on the 
basis of relativistic transformations applicable to these laws. 

In particular, if mechanical or electromagnetic forces are involved in the op-
eration of a clock, then the rate of the moving clock should be explainable on the 
basis of these forces and on the basis of the relativistic force transformation equ-
ations (for the derivation of these equations see, for example, [2])  

( ) ( )2 2 2 2
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y z
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where the primes indicate force components observed in a moving frame; the 
unprimed quantities are quantities observed in the stationary reference frame 
(laboratory); v  is the velocity of the moving reference frame relative to the 
laboratory; xu  is the x -component of the velocity of the force-experiencing 
object relative to the laboratory; and c  is the velocity of light.  

Furthermore, if the functioning of a clock depends on its geometrical para- 
meters, then the rate of the moving clock may depend on the relativistic 
transformation equations for coordinates [2] 

( ) ,x x vtγ′ = −                        (4) 

,y y′ =                           (5) 

.z z′ =                           (6) 

In this connection it is important to note that in Equations (1)-(6) the x 
components transform differently from the y  and z  components. Therefore, 
if two synchronous stationary clocks, one oriented in the x  direction, the other 
oriented in the y  or z  direction, are placed in a moving reference frame, the 
clocks may become asynchronous in that reference frame, because both the 
forces acting on differently oriented clocks and the linear dimensions of 
differently oriented clocks will transform differently. 

The purpose of this paper is to verify the above considerations regarding the 
rate of moving clocks by actual calculations and to discuss the implication of the 
obtained results for the experimental proof of kinematic time dilation. In the 
calculations that follow, we shall compute and compare the rates of two 
stationary elementary electromagnetic clocks with the rates of the same moving 
clocks. The operation of our clocks will be based on the interaction between a 
field-experiencing electric point charge and different field-producing electric 
point charge configurations. 

2. Calculations 

Clock #1. Consider two positive point charges 1q  of the same magnitude 
located at the points a±  of the z -axis. Let the charges be fixed in the 
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laboratory. A negative point charge 2q , whose mass is 0m , is placed at a point y 
of the y -axis close to the origin (so that y a ) and is constrained to move 
only along the y -axis1 (Figure 1). 

The electric field produced by the charges 1q  at the location of the charge 

2q  is 

( )
1

3 22 2
0

,
2π

q y

a yε
=

+
E j                      (7) 

where 0ε  is the permittivity of space and j  is a unit vector in the y  
direction. Since y a  (as we can see from Figure 1), we can neglect 2y  in 
the denominator of Equation (7). The force experienced by 2q , 2q= −F E , is 
then essentially 

1 2
3

0

.
2π
q q yF

aε
= − j                         (8) 

This is a linear restoring force. Therefore our system of the three charges 
constitutes a simple harmonic oscillator, and the charge 2q  oscillates with the 
period 

( )
1 21 2

3 20 0 0

1 2

2π .2πm mT a
F y q q

ε  
= =   

   
               (9) 

Clearly, this system of the three charges may be considered to constitute a 
clock and can be used for measuring time in terms of the period of oscillations 
T . 

Let us now assume that the three charges are placed in a reference frame 
moving along the x -axis with constant velocity v=v i  relative to the labo- 
ratory. The force ′F acting on 2q  as observed in the moving reference 
frame (where the charges 1q  are at rest now) is the same as that given by 
Equation (8), except that y and a  are now written with primes, that is 

1 2
3

0

.
2π
q q y

aε
′

′ = −
′

F j                       (10) 

 

 
Figure 1. A negative point charge 2q  oscillates along the y -axis under the action of 
two fixed positive point charges 1q . This system constitutes an elementary electro- 
magnetic clock. 

 

 

1The charge must be constrained to stay on the axis because otherwise it is unstable with respect to a 
lateral displacement. 
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To find the force acting on 2q  in the moving clock as observed from the 
laboratory, we use Equations (2), (5) and (6) combined with Equation (10). Let 
us assume that the velocity v  of the moving reference frame is much larger 
than the maximum oscillatory velocity of 2q . The velocity u  of 2q  relative to 
the laboratory is then equal to v , and its x  component, xu  , is then simply 
v . Hence Equation (2) becomes 

( )2 2

1 ,
1y y yF F F

v c
γ

γ
′ = =

−
                  (11) 

from which we obtain 

.y
y

F
F

γ
′

=                          (12) 

Substituting Equation (10) into Equation (12) and taking into account that, by 
Equations (5) and (6)2, y y′ =  and a a′ = , we obtain for the force acting on 

2q  in the moving clock as observed from the laboratory 

1 2
3

0

.
2π
q q y

aε
= −F j                       (13) 

Taking into account that the mass of the moving charge 2q  (actually its 
transverse mass, See, for example, H. Goldstein [3]) is 

moving 0 ,m mγ=                        (14) 

and using Equation (9) with 0m  in it replaced by movingm , we obtain for the 
period of oscillations of the charge 2q  in our moving clock #1 as observed from 
the laboratory 
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Comparing Equation (15) with Equation (9), we find that 

moving stationary ,T Tγ=                      (16) 

so that the rate of our moving clock #1 is longer by the factor γ  than its rate 
when it is stationary. 

Clock #2. This clock is the same as clock #1 except that the field-producing 
charges 1q  are now placed along the x -axis at the points a±  of the axis 
(Figure 2). The point charge 2q  is again on the y axis close to the origin, so 
that y a . 

Clearly, when clock #2 is at rest in the laboratory reference frame, the period 
of oscillations of 2q  is the same as that given by Equation (9) for clock #1, that 
is 

( )
1 21 2
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2Observe that a , being the z  coordinate of 1q , transforms according to Equation (6). 
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Figure 2. A negative point charge 2q  oscillates along the y  axis under the action of 
two fixed positive point charges 1q . This system constitutes an elementary electro- 
magnetic clock. 
 

Let us now assume that clock #2 is placed in a reference frame moving along 
the x  axis with velocity v=v i  relative to the laboratory. As observed in that 
reference frame (where the charges 1q  are at rest now), the force ′F  acting 
on 2q  is the same as that given by Equation (10), that is 

1 2
3

0

.
2π
q q y

aε
′

′ = −
′

F j                        (18) 

To find the force acting on the moving 2q  as observed from the laboratory, 
we use Equations (2), (5) and (4) combined with Equation (18). As before, we 
assume that the velocity v of the moving reference frame is much larger than the 
maximum oscillatory velocity of 2q . The velocity u  of 2q  relative to the 
laboratory is then again equal to v, and its x  component, xu , is simply v . 
Hence Equation (18), just like Equation (10), becomes 

( )2 2
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1y y yF F F

v c
γ

γ
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from which we again obtain 
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Substituting Equation (18) into Equation (20) we have 

1 2
3

0

,
2π
q q y

aγ ε
′

= −
′

F j                      (21) 

where we still need to transform y′  into y  and a′  into a . This we do with 
the help of Equations (5) and (4). 

First we notice that, by Equation (5), 

,y y′ =                           (22) 

To find the relation between a′  and a , we proceed as follows. Let us 
designate the positions of the two 1q  charges observed from the laboratory as 

rightx a=  and leftx a= − , where rightx  refers to the charge located to the right of 
the origin and leftx  refers to the charge located to the left of the origin. The 
distance between the two charges observed from the laboratory is then 
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right left2 .a x x= −                      (23) 

Let the time of observation in the laboratory be t  (arbitrary time of 
observation). Using Equation (4), we have for the positions of the two 1q  
charges measured in the moving reference frame in terms of their positions ob- 
served from the laboratory 

right rightx x vtγ γ′ = −                       (24) 

and 

left left .x x vtγ γ′ = −                       (25) 

The distance between the two charges measured in the moving reference 
frame is then, by Equations (24), (25) and (23), 

( )right left right left right left2 2 ,a x x x vt x vt x x aγ γ γ γ γ γ′ ′ ′= − = − − + = − =   (26) 

and hence 

.a aγ′ =                             (27) 

Substituting y′  and a′  in Equation (21), we therefore obtain for the force 
acting on the charge 2q  in the moving clock as observed from the laboratory  

1 2
4 3

0

.
2π
q q y

aγ ε
= −F j                        (28) 

Taking into account that the mass of the moving charge 2q  is 

moving 0 ,m mγ=                          (29) 

and using Equation (17) with 0m  in it replaced by movingm , we obtain for the 
period of oscillations of the charge 2q  in our moving clock #2 as observed from 
the laboratory 
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Comparing Equation (30) with Equation (17), we find that for clock #2 
5 2

moving stationary ,T Tγ=                       (31) 

so that, in contrast to Clock #1, the rate of the moving Clock #2 is dilated by the 
factor 5 2γ  rather than by the factor γ . 

3. Discussion 

The calculations just presented reveal two properties of the rate of moving 
clocks: 1) moving clocks run slower than the same stationary clocks; 2) 
differently constructed (or oriented) synchronous stationary clocks may run at 
different rates and therefore may become asynchronous when placed into a 
moving reference frame. Quantitatively, our first clock behaves in accordance 
with the idea of the kinematic (relativistic) time dilation (the moving clock runs 
γ  times slower than the stationary clock), but our second clock behaves in stark 
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disagreement with the idea of the kinematic time dilation (the moving clock 
runs 5 2γ  times slower than the stationary clock). And yet, the rate of the 
second clock is in accord with the fundamental relativistic transformation 
equations used in our calculations. To understand the behavior of the second 
clock, let us consider the electromagnetic forces responsible for the functioning 
of the two clocks. 

As is known, the electric field produced by a moving point charge concen- 
trates itself about the plane perpendicular to the direction of motion and 
decreases along the line of motion (see, for example [4]). Therefore, as seen by a 
stationary observer, the electric force acting on the charge 2q  due to the electric 
field of the charges 1q  in the moving clock #1 is different from the electric 
force acting on the charge 2q  due to the electric field of the charges 1q  in the 
moving clock #2. Likewise, the magnetic force acting on the charge 2q  (due to 
the magnetic field created by the charges 1q  in the moving clocks) is different 
in the two moving clocks. Thus, whereas the charge 2q  in the stationary clocks 
#1 and #2 is subjected to the same force, and the clocks are therefore 
synchronous, in the moving clock #1 the charge 2q  is subjected to forces 
different from the forces acting upon it in the moving clock #2, and therefore the 
two moving clocks are no longer synchronous (for a detailed discussion and 
calculations of the electromagnetic forces acting in the differently oriented and 
differently constructed clocks see [5]). For this kind of clocks we would like to 
denominate as Jefimenko’s non-Einsteinian clocks)3. 

It may at first appear that the principle of relativity is violated by the fact that 
synchronous stationary clocks may become asynchronous when moving. This is 
not so. According to the principle of relativity, it is impossible to tell whether a 
particular inertial reference frame is “actually” moving or is stationary. The fact 
that synchronous clocks may become asynchronous when placed in a “moving” 
reference frame does not tell us which of the two frames is really moving, 
because the effect is reciprocal. It is easy to see that if we started with synchro- 
nous clocks resting in the “moving” reference frame, then placed them into the 
“stationary” reference frame and used transformation equations expressing 
unprimed force components and coordinates in terms of primed quantities, we 
would find that the clocks placed in the “stationary” reference frame would not 
be synchronous when viewed from the “moving” reference frame. Thus placing 
synchronous clocks into a different reference frame and finding that the clocks 
become then asynchronous provide no information on whether or not one or 
the other of these reference frames is “actually” moving or is stationary, which is 
in complete agreement with the principle of relativity. 

There is, however, an important implication result as far as the proofs of the 
existence of the kinematic (relativistic) time dilation are concerned. It is now 
generally believed that the existence of kinematic time dilation has been 
demonstrated by actual experiments [6] [7] [8]. As has been already pointed out 

 

 

3In his book [5] Jefimenko adduces also other kinds of clocks that do not run in accordance with 
Einstein’s theory, e.g., 3 2γ -clock. 
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by Jefimenko [9], and as is clear from the calculations presented in this paper, 
the experiments that are interpreted as proofs of the reality of kinematic time 
dilation may have a simple alternative interpretation in terms of velocity- 
dependent forces present in the systems under consideration. Of course, we do 
not know what forces are responsible for the decay of elementary particles and 
we know little about the forces responsible for the functioning of atomic clocks. 
But there can be no doubt that the decay of elementary particles, as well as the 
action of atomic clocks, is controlled by some kind of forces. In the light of the 
calculations presented in this paper and of similar calculations presented else- 
where [5] [9], it is much more natural and prudent to interpret the experiments 
allegedly proving the reality of kinematic time dilation as manifestations of the 
existence of velocity-dependent forces and interactions in the systems under 
consideration. 

Moreover, it is now clear that to prove the reality of kinematic time dilation it 
is necessary not only to demonstrate that moving clocks run slower by the factor 
γ  than the same stationary clocks, but it is also necessary to prove that the rate 
of the moving clocks is not affected by their mechanism, structure, orientation 
or by any other specific physical or geometrical property of the clocks.  

In conclusion, in connection with the above, we would like to adduce here (or 
propose to consider) a curious paradox: 

Imagine that in the system K ′ , which moves with a constant velocity v  rel-
ative to the stationary system K , are installed two clocks: stationary" "Tγ -clock ( γ
-clock) Equation (16) and “ 5 2

stationaryTγ ”-clock ( 5 2γ -clock) Equation (31). The 
clocks are installed on a straight line perpendicular to the straight line K K′  
along which the system K ′  moves in the direction of the stationary system K , 
the clocks are equidistant from the line K K′  and let these clocks are synchro-
nized in K ′  At some distance from the clocks in the system K  are installed 
some “gimmick” with two sensors installed just like the clocks in K ′  on a 
straight line perpendicular to the straight line K K′ . Let these two clocks simul-
taneously at some arbitrary moment of time (in the system K ′  send light 
pulses in the directions of the corresponding sensors of “gimmick”. Let a cat is 
placed in this device. The sensors are constructed so that if they simultaneously 
(in the system K )4 receive the light pulses, it triggered an automatic gear which 
kills the cat in the “gimmick”. If the light pulses will not received by the sensors 
at the same moment of time of the system K , the gear will not work and the cat 
will stay alive. 

It is obvious that γ -clock and 5 2γ -clock once synchronized in the system 
K ′  will remain synchronized in this system constantly. Thus, from the point of 
view of the system K ′  pulses emitted by γ -clock and 5 2γ -clock simulta-
neously at some arbitrary moment of time in the system K ′  to the sensors of 
the “gimmick” reach the respective sensors simultaneously! And thus the poor 
cat will be killed. However, from the viewpoint of the system K  γ -clock and 

5 2γ -clock go with different rate. It means that the pulses are emitted at the dif-

 

 

4In this system time is measured by the “ stationaryT ”-clock. 
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ferent moments of time in the system K  and from different distances from the 
system K  and will not reach the sensors simultaneously! Thus, from the view-
point of the system K  the cat will stay alive! Let us name this cat as “Jefimen-
ko’s cat” (by analogy with the famous Shroedinger’s cat).  

As for the “Jefimenko’s cat” yet it is not a “point of view”. According to our 
calculations, the non-synchronicity of clocks is a purely objective phenomenon. 
Its essence is that stationary systems and moving systems are different physical 
systems, and so the physical phenomena occur in them in different ways. 
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