
Journal of Electromagnetic Analysis and Applications, 2011, 3, 343-350 
doi:10.4236/jemaa.2011.39055 Published Online September 2011 (http://www.SciRP.org/journal/jemaa) 

Copyright © 2011 SciRes.                                                                             JEMAA 

343

New Formula for Evaluating the Number of Unit 
Cell of a Finite Periodic Structure Considered as 
Infinite Periodic One 

Samia Bouali, Taoufik Aguili 
 

SYSCOM Laboratory, Department of Information and Communications Technology, National Engineering School of Tunis,  
Tunis,Tunisia. 
Email: bouali_samia@yahoo.fr 
 
Received June 22nd, 2011; revised July 24th, 2011; accepted August 7th, 2011. 

 
ABSTRACT 

This paper presents a modeling and an analysis of one-dimensional periodic structure composed of a cascade connec-
tion of N cells considered as infinite. The ABCD matrix representations with the Floquet analysis have been used to 
derive the dispersion relation and input impedance of infinite periodic structure. The transmission matrix for the N 
identical cascaded cells has been successfully used to obtain an efficient and easy-to-use formula giving the necessary 
number of cells such that they can be considered infinite. As an illustrative example, the formula is applied and verified 
to finite size TL periodically loaded with obstacles. Scattering parameters and the input impedance of the structure are 
expressed and plotted. 
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1. Introduction 

A periodic structure consists fundamentally of a number 
of identical structural components “periodic elements” 
which are joined together end to end or side by side to 
form the whole structure [1,2]. In fact, periodic structures 
are investigated in several applications in the elec- 
tromagnetic engineering. For instance, these structures 
can be used to design frequency-selective surfaces [4], 
photonic crystals [5-8], and meta-materials [9]. Hence 
periodic structures have become a field of intense 
research activities. If the periodic structure is an infinite 
array, simple methods based on the Floquet’s theorem [1] 
or the periodic Green’s function [10], can be applied, 
where the characterization of the whole periodic structure 
can be reduced to the analysis of only a single cell. 
However, the infinite periodic structure is a theoretical 
case because in actual applications all periodic structures 
have finite size. Hence, the accurate analysis of the finite 
periodic structures usually needs to solve a large-scale 
problem. There are various methods to analyze finite 
periodic structures such as the finite-difference time- 
domain (FDTD) method [11], the moment method MoM 
[12], the subentire-domain (SED) basis functions and the 
conjugate-gradient fast Fourier transform (CG-FFT) 

[13,14]. 
In this paper, we investigate the various characteristics 

of finite and infinite (1-D) periodic structure by micro-
wave techniques. The study of the infinite periodic struc-
ture is reduced to a single unit cell, Floquet theorem is 
invoked and both dispersion diagram and input imped-
ance are obtained. For the case of finite periodic structure 
we suppose that a finite structure with a very large num-
ber of unit cell, can be considered as an infinite structure, 
using the transmission matrix for the N identical cascaded 
cells, a condition of convergence of the finite structure to 
an infinite structure is concluded. This convergence con-
dition helps to find the minimal number of unit cell nec-
essary such that they can be considered infinite. The ac-
curacy and the efficiency of the proposed formula was 
verified to a finite size TL periodically loaded with obsta-
cles, a scattering matrix analysis have applied input im-
pedance and S parameters are calculated and plotted. Dis-
persion diagram, the stop and pass band property, the ef-
fect of changing geometrical parameters on the pass (stop) 
bandwidth, attenuation and phase constant are shown. 

2. Periodic Structure Model  

The periodic structure discussed in this paper is made of 
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an infinite or finite repetition of a unit cell in one dimen-
sion. Each unit cell of this structure is characterized by 
its matrix chain; the study of the infinite periodic struc-
ture is reduced to a single unit cell as shown in Figure 1; 
we use the ABCD matrix with the Floquet analysis to 
model the infinite structure. 

2.1. The Infinite Periodic Structure 

The foundations of periodic structure theory are devel-
oped in [2] and [3], these references show that a periodic 
structure supports pure progressive waves propagating 
toward +Z or –Z, usually referred to as Bloch waves. If a 
unit cell in the structure is defined by its transmission 
matrix Tcell (the so-called ABCD matrix witch parame-
ters named Acell, Bcell, Ccell, and Dcell), we can write the 
matrix of the unit cell 

cell cell
cell

cell cell

A B
T

C D

 
 
 

              (1) 

The input impedance of the infinite structure Zin can 
be found by modeling the structure as shown in Figure 1. 
According to the Floquet’s theorem for infinite periodic 
structures [1-3], the input and output relationship of the 
nth unit cell are given by: 
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The parameters VN and IN are voltage and current cor-
responding to the propagating wave threw the nth unit cell.  

P P j P                   (3) 

The parameter P  is the complex propagation con-
stant of the periodic structure (where αp is the attenuation 
constant and βP is the phase constant) and L is the period 
of the structure shown in Figure 1 
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Equations (2) and (4) give: 

det( ) 0cellT I                (5) 
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Figure 1. Unit cell of periodic structure. 

The resolution of (5) gives the dispersion relation. 
The input impedance of the structure is given by the 
resolution of (6) 

 2 0cell in cell cell in cellC Z D A Z B           (6) 

2.2. The Finite Periodic Structure 

By using Floquet analysis of an infinite periodic structure 
the feature of the overall system can be extracted by con-
sidering one single unit cell [2]. In practice the number of 
unit cell is always limited, so an infinite periodic struc-
ture is a theoretical case, we propose to determinate the 
number of unit cells permitting that several aspects of a 
finite periodic structure demonstrate the same behavior 
of an infinite periodic structure. 

We consider a simple finite structure that is periodic in 
one dimension. The structure can be modeled by cascad-
ing its transmission matrix with two boundaries at the 
beginning and the end of the structure, as illustrated in 
Figure 2. 

The unit cell of the periodic structure is considered re-
ciprocal; its transmission matrix is given by (1), its de-
terminant is equal to 1 (det(Tcell) = 1).  

The transmission matrix of the N identical cascaded 
cells is given by: 

1 N NN N
cell
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T PD P

C D
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           (7) 

D is the diagonal matrix formed by the eigenvalues 
of the matrix Tcell, P is a matrix consisting of the ei-
genvectors corresponding to the eigenvalues in D. The 
eigenvalues of Tcell are λ and µ which are given by: 
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By cascading N unit cell the matrix chains of the to-
tal structure can be written according to λ or µ. 
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Figure 2. Finite periodic structure in microwave circuits. 
 
The overall transmission matrix can also be written 

as [15]: 
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2 
The S parameters S11 and S21 associated with the en-

tire structure shown in Figure 2 are expressed by: 
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Ω and UN–1 is a parameter defined by (12).  

The input impedance of such a structure can be f
in different ways. One way is to start from the las
ment finding its input impedance which is the load im-
pedance for the former segment and repeat the same 
procedure until the end. In addition, in ABCD matrix 
representation [2] the input impedance is: 
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Cells 

ic structure. In 
this section we propose to find this finite number of unit 

cells which allow to show the same result as the infin
case. 

We have if │λ│> 1 then 0 <│µ│ < 1 and vice versa. If 
 by 
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2.3. Evaluation of the Number of Unit 

In the context of infinite periodic structure (infinite 
number of unit cells), both floquet theorem and continu-
ous dispersion curve are usually used. For finite periodic 
structure (finite number of unit cells) and by raising the 
number of unit cells at the convergence we must have the 
same results as the case of infinite period

ite 

N is very large and tends towards the infinite then
using (10) we have: 
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When N is very large the structure
nite, we propose to find the value of 
ished structure is equivalent to an infinite structure. By 
using (17) we can write if N very large then: 

 is considered infi-
N from which fin-
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By developing this equality we obtain:   
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ber we can approach easily the infinite case. 

Dispersion diagram contains information
wave properties of the structure and input impedance 
reflects properties of the structure from circuit point of 
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
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with E(x) is the integ r art of x. 
-
e 

. For 
atrix y finite periodic structure modeled by scatt

 determinate the sufficient number o

 regarding the 

view which depend on the cell param
son another way to find the number of cells necessary 
such that structure can be considered infinite, is to start 
from finite structure in Figure 3 with 2 unit cells then we 
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compare between Zin of the finite and infinite structure 
and continues to the convergence criteria. The algorithm 
displayed in Figure 3 describes the procedure of this 
method. 

Convergence is considered to be reached if the differ-
en

 in Figure 4. 

lf (L/2) of the transmission 

ce between the input impedance of finite and infinite 
structure is less than 0.01%. 

3. Numerical Results and Discussion  

In order to verify the accuracy and efficiency of the pro-
posed formula, we consider a finite-size TL periodically 
loaded with obstacles and constituted by the repetition of 
N unit cell. A unit cell is considered as a three part net-
work one half (L/2) of the transmission line, the loading 
element JX and another half (L/2) of the transmission line 
as shown

Therefore, the matrix of the unit cell can be obtained 
by cascading three matrix: 
 First, the matrix of the ha

line. 
 Second, the matrix of the element JX. 
 Third, the matrix of the half (L/2) of the transmission 

line. 
The transmission matrix of the half (L/2) of the trans-

mission line is given by: 
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Figure 4. Schema of the unit cell. 
 

where γ the transmission line propagation constant, L is 
the length of the transmission line and Zc is the trans-
mission line characteristic impedance. 

The transmission matrix of the element JX lumped 
shunt admittance is given by: 

               (24) 

The matrix of the unit cell is given by: 
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Figure 3. Determination of the number of cells necessary to 
have an infinite structure. 
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3.1. The Infinite Periodic Structure 

In the lossless case we have 

j                     (27) 

In this case, we use (5), (26) and (27) to define the 
dispersion relation of this structure as follows: 

cos( )
cosh s

2 2
cos

C
P L

in( )

2

π
2

P

P

XZL L
L

L
n

 



  

   

 



     

  (28) 

cos cos( ) sin( )
2 2

0

C
P

P

XZL
L L  



      
 

 

      (29) 

To simplify theses equations we pose: 

2
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a                   (30) 

and 
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( ) cos( ) sin( )CXZ
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Using (28) and (29), the att
stant can be written as: 
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is varying between –1 and +1, the periodic structure 
su

odic structure. The 
dispersion diagram is depicted in Figure 5 and Figure 6 
for different parameters of the stru

To simulate the structure we can vary two parame-
te the

 vary-
ing (a) and L. The dispersion curve with attenuation is 
obtained by plotting G(f), the frequ orre-
sponding to G(f) larger than 1 indicate the pass band 

tion to have propagation G(f) should be between –1 and 
+1. The attenuation and phase constants were calculated 

 of 

his pass bands. 
The frequency ranges corresponding to the stop and pass 

pports a non attenuated propagation waves. Else no 
wave can propagate along the peri

cture.  

rs: the parameter (a = XZ/2) or  length of the unit 
cell (L). We present the results for several cases by

ency ranges c

while the frequency regions with G(f) < 1 correspond to 
the stop band. For the dispersion curve without attenua-

and plotted. Simulations results show the presence
sto uation ap band and pass band. The atten nd phase con-
stants were calculated by using the two equations of dis-
persion. T agrees well with the stop and 
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Figure 5. Dispersion Diagram for three values of L and a = 5. 
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Figure 6. Dispersion Diagram for three values of a and L = 
10 mm. 
 
band depend on the physical configuration of the peri-
odic structure (L) and the obstacle (JX). 

) represents propagation without attenuation 
agree well with Figure 7 (respectively Figure 8) that we 
have α = 0 and Figure 9 (respectively Figure 10) that we 
have β ≠ 0 it's a non attenuated propagation (α = 0 and β 
≠ 0). The range of the frequency in Figure 5 represents 
propagation with attenuation agree well with Figure 7 
that we have α ≠ 0 and Figure 9 that we have β = 0 it’s 
an attenuated wave. 

3.2. The Finite Periodic Structure 

Using (22), we obtain N = 12 as a sufficient value to ap- 
proach the infinite case. In order to verify this value we 

The range of the frequency in Figure 5 (respectively 
igure 6F
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Figure 7. The attenuation constant for three values of L,  
 = 5. a
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Figure 8. The attenuation constant, for three values of a, L 
= 10 mm. 
 
have plotted the input impedance of the structure for 
several value of N (10, 12 and infinite).The examination 
of the curves on the various frequency bands show that 
the input impedance of the 12 unit cell has an excellent 
agreement with the input impedance of the infinite struc-
ture. The variation of input impedance (absolute value) 
over frequency for finite (N = 10, 12) structure is illus-
trated in Figure 11 and Figure 12 by iterative method 
(Figure 3). The input impedance based on finite periodic 
structure is shown in this graph for number of unit cells 
of N = 10 and 12. It is seen that the input impedance 
reaches the limit of infinite periodic structure, if th

 clearly observed that the input impedance of finite 
ructure reaches the limit of corresponding infinite case, 

e 
number of unit cells are in order of 12. 

It is
st
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Figure 9. The phase constant, for three values of L, a = 5. 
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Figure 10. The phase constant, for three values of a, L = 10 
mm. 
 
if the number of unit cells is in order of 12. 

The input impedance of a finite periodic structure is 
depicted in Figure 13 by using ABCD matrix method 
(16), we put the load of ZL= 50 Ω. 

By increasing the number of unit cells, the number of 
fluctuations will also increase which is illustrated in 
Figure 13. 

In order to compare those results to those from scat-
tering parameter calculation, the scattering parameters 
are displayed in Figure 14. They are calculated based on 
(14) and (15). 

4. Conclusions 

I
ated. In the case of infinite structure, the Floquet theo-

rem has been invoked, and both dispersion diagram and  

nfinite and finite periodic structures have been investi-
g
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Figure 11. Input impedance for the case of infinite and fi-
nite unit cells a = 10 and L = 10 mm. 
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Figure 12. Input impedance in the case of infinite and finite 
unit cells (a = 10 and L = 10 mm). 
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igure 13. Input impedance for the finite structure (a = 1, L 
= 10 mm, ZL = 50 Ω). 
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input impedance have been obtained. By using scattering 
matrix and applying boundary conditions for the case of 
finite structure, both input impedance and S-parameters 
have been obtained and an efficient and easy-to-use for-
mula to find the necessary number of unit cell for peri-
odic finite structure to be equivalent of an infinite peri-
odic structure has been presented. The formula is verified 
on a transmission line periodically loaded with obstacles. 
Simulation results have validated the proposed numerical 
modeling formula. 
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