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Abstract 
In this paper, we develop statistical inference for an important health inequa-
lity index proposed by Lv, Wang and Xu [1] for ordinal data. Asymptotic dis-
tributions of the indices are established. This allows us to make inference for 
the indices. Generalizations of the indices to multiple population setting are 
also studied. We demonstrate the effectiveness of our procedure using the 
health inequality data of several areas in Switzerland, and our results classify 
these areas into three classes based on their health inequalities. 
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1. Introduction 

The qualitative nature of SRHS data prevents the straightforward use of conven-
tionally developed indices for measuring income inequality. A reasonable index 
for SRHS data should be invariant to rescalings of variables which preserve the 
order of categories. 

Assessment on health inequality for ordered data has received attention in the 
last ten years, [2] and [3] developed median-based concept of inequality. [4] pro- 
posed polarization measures, which are also median based. These methods are 
invariant to cardinal scaling on the categories. [5] proposed a method using in-
come-health matrix to measure socioeconomic inequality in health. [6] intro-
duced a family of sub-group decomposable indices and investigated the decom-
posability of the indices. [7] conducted an empirical study of the health inequa-
lity index for ordinal data from China. Reference [8] considered the tools and 
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choices to be made when measuring socioeconomic inequalities with rank-de- 
pendent inequality indices. [9] made an empirical comparison with several or-
dinal and cardinal measures of health inequality. [10] proposed a new measure 
for ordinal health data to monitor income-related health differences between 
regions in Great Britain. [11] defined a new ratio-scale health status variable 
and developed positional stochastic dominance conditions that could be imple-
mented in a context of multi-dimensionality categorical variables. [12] examined 
the measurement of social polarization with categorical and ordinal data. [13] 
introduced two approaches to measure social polarization in the case where the 
distance between groups is based on an ordinal variable, such as self-assessed 
health status. More examples on ordinal inequality measurements can be seen in 
[14], [15] and so on. For statistical inference of these recent developed health 
inequality indices, some authors (e.g. [4], [16]) have derived standard errors for 
the inequality indices they have introduced. [17] presented a unified methodol-
ogy for the estimation of inequality indices of the cumulative distribution func-
tion. 

Recently, [1] proposed a class of measures of health inequality, which are easy 
to compute and have some desirable properties, such as additivity, invariance of 
parallel shifts, normalization and simple aversion to median-preserving spreads. 
However, it is designed only for one population and has not developed statistical 
inference for the index. This motivates us to work along this topic. In this paper, 
we establish asymptotic distributions of the indices introduced by [1] and extend 
the indices to multiple population settings. Our procedures allow dependence 
between the considered populations and different sample sizes. In particular, we 
answer several important questions, for example, whether the health inequality 
of one population is the same as others and is there a linear relationship among 
the health inequalities of different populations? 

The reminder of the paper is organized as follows. In Section 2, we review the 
indices developed by [1] and derive asymptotic distribution of the indices. In 
Section 3, we develop the indices for multiple populations. Empirical results are 
reported in Section 4. Section 5 concludes the paper. 

2. Inference for the Health Inequality Index 
2.1. Review of the Indices 

According to [1], denote ( )T
1, , , ,i nV V V=V    as the health statuses of n  in-

dividuals. Let ( )T
1, , mh h=h   be a finite given set of health categories with 

2m ≥ . Assume that health categories represent various health statuses and sa-
tisfy 1 mh h< < . The values of 1, , mh h  are ordinally significant so that, if 

j kh h< , then jh  represents a lower health status than kh . 
Let ( )T

1, , md d=d   and ( )T
1, , mf f=f   be the empirical and population 

frequencies of the health categories, respectively, while ( )1
1

n
i l ild n I V h−

=
= =∑  

represents the relative frequency of individuals with health statuses equal to ih . 
Further let 



C. Z. Niu et al. 
 

253 

( ) ( ) T
0 diag ,Ω = −f f ff                      (1) 

and let G  be a m m×  matrix with the ( ),i j th entry being ( )2g i j− , where 
( )g ⋅  is a function of nonnegative integers, such that  

( ) ( ) ( ) ( )0 0 1 2 1g g g g m= < < < < −
. Lv, Wang and Xu [1] proposed the fol-

lowing classes of health inequalities: 

( ) ( )1 .m
i ji j iI g i j f f

= ≠
= −∑ ∑f                   (2) 

Two typical choices for ( )g ⋅  include the following: 

( ) ( ) 12 ,  1, , 1;   2 ,  1, , 1,  0 1.
1

m iig i i m g i i m
m

α α− −= = − = = − < <
−

     (3) 

Intuitively, the index is estimated by ( )I d , an empirical plug-in estimator in 
statistics. 

2.2. Asymptotic Results 

Base on the above indices, we establish the following asymptotic distribution. 
Theorem 1. Using the delta method, we can establish that 

( ) ( )( ) ( )20, ,n I I N σ− ⇒d f  

where ( )2 T T
0G Gσ = Ωf f f . 

In practice, 2σ  is unknown and must be estimated. Given that d  is a con-
sistent estimator of f , the asymptotic variance can be estimated by  

( )2 T T
0ˆ G Gσ = Ωd d d . Based on the asymptotic result, the two-sided symmetric 

( )100 1 %α−  asymptotic confidence interval for the health inequality index 
( )I f  can be constructed as 

( ) ( )( )2 2
1 2 1 2ˆ ˆ, ,I z n I z nα ασ σ− −− +d d  

where 1 2z α−  is the 1 2α−  quantile of the standard normal distribution. 

3. Extension to Multiple Populations 
3.1. Testing for Equivalence 

We first consider two populations with ( )T
1, ,i i imf f=f  , ( )T

1, ,i i imd d=d   

and ( )T

1, , ,  1, 2
ii i inV V i= =V 

. Our analysis considers the cases of mutually de- 

pendent samples and independent samples, with the former being relevant in 
examining the evolution of health inequalities in a single group (e.g., changes in 
health inequality over time), while the latter being relevant in comparing health 
inequality between two groups (e.g., cross-national). The sampling is performed 
independently within each group. 

Lemma 1. Using the delta method, we have 

( ) ( )( ) ( ) ( )

( )( ) ( )

T T

T T
1

1

1 1

p

n
l pl

n I I n G o

G I V o
n =

− = − +

= = − +∑

d f f d f

f h f
 

Theorem 2. Let ijσ  be the ( ),i j th entry of two populations’ covariance 
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matrix. Denote { }1 2max ,n n n= , ( )lim ,  0 1,  1, 2i n i in n iλ λ→∞= < ≤ =


 . The 
asymptotic distribution of ( ) ( )1 2I I−d d  is 

( ) ( )( ) ( ) ( )( ) ( )2 2 2
1 2 1 2 11 1 22 2 12 1 20, 2 .n I I I I N σ λ σ λ σ λ λ − − − ⇒ + − d d f f  

Now we consider hypothesis testing problem, 

( ) ( ) ( ) ( )0,1 1 2 ,1 1 2:   . .  : .aH I I v s H I I= ≠f f f f  

We introduce the following Wald statistic: 

( ) ( )( )2
1 2

2 2 2
11 1 22 2 12 1 2

.
2n

n I I
T

σ λ σ λ σ λ λ

−
=

+ −

d d

               (4) 

Then under the null hypothesis 0H , 2
1nT ⇒   as n →∞ . The correspond-

ing p -value can be computed by the following formula: 

( ) ( )2
1

1 ,obs obsp Pr T t F t= ≥ = −


                 (5) 

where ( )2
1

F ⋅


 represents the cumulative distribution function of the chi-squared 
variable with one degree of freedom. 

These results are general, an assumption of independent populations is not 
required, this implies that our test work with the unbalanced designs case. If 
these two populations are treated as independent, then  

( ) ( ){ }1 2Cov , 0l lI V I Vτ= = =h h  and thus 2
12 0σ = . For a particular circums-

tance, when the sample sizes of these two populations are equal, 1 2n n n= = , we 
can have 1 2 1λ λ= =  and then the asymptotic distribution in Theorem 2 reduc-
es to 

( ) ( )( ) ( ) ( )( ) ( )2 2 2
1 2 1 2 11 22 120, 2 .n I I I I N σ σ σ − − − ⇒ + − d d f f    (6) 

We propose statistical inference procedures to test the equality between sam-
ples in terms of their health inequality indices. This equality issue often emerges 
when checking for the similarity of the health inequalities in the whole country 
or in a specified region. For example, China, a country consists of many admin-
istrative regions, such as Eastern China, North China, and Central Region, with 
each region having several provinces. Those provinces in the same region have 
similar economic and/or social behaviors. Therefore, those provinces in the 
same region are assumed to have the same health inequalities. We also examine 
whether the health inequality index of a province is the same as the average in-
dex of the entire region. The above two testing problems lead to another applica-
tion. If the preceding analysis reveals that the provinces within each region have 
equal indices, then we can check whether the common means in two regions are 
also the same. Accordingly, we cluster the regions based on the test results. In 
other words, if several regions have the same health inequality, then we can view 
these regions as one cluster. 

3.2. Global Test 

Suppose there are ( )3r r ≥  populations with ( )T
1, ,i i imf f=f  ,  
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( )T
1, ,i i imd d=d   and ( )T

1, , ,  1, ,
ii i inV V i r= =V  

. For the dependent sam- 

ples, we can obtain the similar results as those presented in Section 2. However, 
the covariance structure becomes too complex to be practical when more sam-
ples are used. We only consider independent samples for simplification. A global 
test can be constructed as: 

( ) ( ) ( ) ( )0,2 1 ,2:   . .  :r a i jH I I v s H I I= = ≠f f f f          (7) 

for some ( ), 1, 2, ,i j i j r≠ = 
. 

Define the matrix ( ) ( ) ( )1 1 1 1,r r rR I L− × − − ×
 = −  , where ( ) ( )1 1r rI − × −  is an identity 

matrix with 1r −  dimension, and ( )1 1rL − ×  is a 1r −  dimensional vector with 
all the elements being 1. Then, Hypothesis in (7) can be rewritten as follows: 

( ) ( )0,3 ,3: 0,   . .  : 0,aH RI v s H RI= ≠f f  

where ( ) ( ) ( )( )T
1 , , rI I I=f f f . 

Define { }max , 1, ,in n i r= =


, ( )lim ,  0 1,  1, ,i n i in n i rλ λ→∞= < ≤ =





. 
Given the independence of the r  groups of samples, we can obtain  

( ) ( )( ) ( )0, ,n I I N− ⇒ Σd f                  (8) 

where ( )2 2
11 1diag , , rr rσ λ σ λΣ =  . Therefore, 

( ) ( )( ) ( )T0,n RI RI N R R− ⇒ Σd f  

and 

( ) ( )( ) ( ) ( ) ( )( )1T T 2
1.rn RI RI R R RI RI

−

−− Σ − ⇒d f d f          (9) 

Note that under the null hypothesis, ( ) 0RI =f  in (9). Consequently, a Wald 
type of test statistic can be defined as 

( ) ( ) ( )
1T T Tˆ ,rT nI R R R RI
−

= Σd d                  (10) 

where ( )2 2
11 1

ˆ ˆ ˆdiag , , rr rn n n nσ σΣ =  
  is an estimator of Σ . Given the central 

role of the test statistic rT , we state the asymptotic behavior of rT  under the 
null hypothesis in the following theorem. 

Theorem 3. Let { }max , 1, ,in n i r= =


, ( )limi n in nλ →∞=


 , 0 1iλ< ≤ ,  
1, ,i r=  , then under the null hypothesis ( ) ( )0,1 1: rH I I= =f f

 in (7), we 

have 2
1.r rT −⇒   

The corresponding p-value can be computed by: 

( ) ( )2
1

, ,1 ,
r

r r obs r obsp Pr T t F t
−

= ≥ = −


              (11) 

where ( )2
1r

F
−

⋅


 represents the cumulative distribution function of the chi-squared 
variable with 1r −  degrees of freedom. The equality hypothesis (7) can be re-
garded as a generalization of the two-sample comparison case. The availability of 
this hypothesis can be seen clearly in our empirical application. 

3.3. Hypothesis Testing within a Cluster 

Another interesting problem in the multiple sample case is whether the health 
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inequality of a specified population is the same as the average health inequality 
of entire population. For instance, one may interest to investigate the health in-
equality level in Hebei province is higher or lower than the average level of all 
provinces in the North China region. Accordingly, we propose the following 
testing hypothesis: 

( ) ( ) ( ) ( )0,4 0 ,4 0:   . .  :j a jH I I v s H I I= ≠f f f f               (12) 

for some ( )1, 2, ,j j r= 
. If the null hypothesis 0,1H  in (7) holds, then null 

hypothesis 0,4H  holds naturally. In other words, hypothesis 0,4H  only becomes 
meaningful when hypothesis 0,1H  is not true. 

Define ( )T1 , , 1 ,1 1 , 1 , , 1j r r r r r= − − − − −a   , that is, ja  is a 1r ×  
vector with its j -th element being 1 1 r−  and other elements all being 1 r− . 
Hypothesis (12) can be rewritten as follows 

( ) ( )T T
0,4 ,4: 0,   . .  : 0.j a jH I v s H I= ≠a f a f  

Recall that ( ) ( )( ) ( )0,n I I N− ⇒ Σd f  in (8) holds, we can obtain  

( ) ( )( ) ( )T T T0, .j j j jn I I N− ⇒ Σa d a f a a  

Similar to the derivation of rT , we can construct the following test statistic 

( ) ( ) ( )
1T T T .

jra j j j jT nI I
−

= Σd a a a a d                 (13) 

Under the null hypothesis in (12), ( )2 1
jraT ⇒  . Then the p-value can be 

determined similarly as that for rT . 

3.4. Hypothesis Testing between Clusters 

Further, we discuss the hypothesis testing between clusters. Assume now that 
our preliminary analysis reveals that the provinces the corresponding region 
(cluster), such as Eastern China region, have the same health inequality indices. 
We may then examine whether the health inequalities between two regions are 
similar. To this end, we choose two representative provinces in each region and 
then compare their health inequality indices following the proposed approaches 
in Section 2. However, this method does not employ all information in these 
groups. To use all underlying information, we compare the common means of 
these two regions. We consider the following hypothesis: 

( ) ( ) ( ) ( )0,5 01 02 ,5 01 02:   versus  :aH I I H I I= ≠f f f f         (14) 

where ( ) ( )1
01 11 iiI I rτ

=
= ∑f f  and ( ) ( )1 2

102 21
r

ii rI I rτ +

= +
= ∑f f . 

Without loss of generality, we assume that the first 1r  populations are clus-
tered in one group with a common health inequality ( )01I f , while the 1 1r +  
to 1 2r r+  populations are clustered in another group with another common 
health inequality ( )02I f . 0,5H  only becomes meaningful when null hypothe-
sis 0,1H  in (7) is not true. Define 

( )T
1 1 2 21 , ,1 , 1 , , 1 ,0, , 0 .r r r r= − −b    . 
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That is, b  is a 1r ×  vector with its first 1r  elements being 11 r , the 1 1r +  
to 1 2r r+  elements being 21 r−  and the other elements being 0. Similar to the 
derivation of raT , we can construct the test statistic as follows: 

( ) ( ) ( )
1T T T .rbT nI I
−

= Σd b b b b d                 (15) 

Under the null hypothesis in (14), ( )2 1rbT ⇒  , thus p-value can be deter-
mined similarly as that for rT . 

4. Empirical Application 

To illustrate our proposed procedures, we present a real application by using the 
data of the Swiss Health Survey [SHS] in 2002, conducted by Switzerland's Fed-
eral Statistical Office. A total of 19,706 observations were collected from seven 
areas in Switzerland. The survey respondents were asked to rate their health sta-
tuses on a five-point scale ranging from very bad to very good. This dataset was 
also analyzed by [3] and [6]. We do not include the distributions of SHS in the 
seven regions in this paper, this information can be found in [6]. We use the 
health inequality indices proposed by [1] to analyze the survey data and yield 
new observations. Denote the index with ( ) ( )2 1g i j i j m− = − −  by F1 and 
the index with ( ) 12 m i jg i j α − − −− =  by F2. For checking the robustness of the 
results obtained, we choose 0.9,0.6α =  and 0.3, then these related indices are 
denoted as F2-1, F2-2 and F2-3, respectively. 

Table 1 presents the health inequalities of seven areas in Switzerland based on 
F1 and F2 with different α . The standard errors are enclosed in parentheses, 
and the health inequalities are ranked based on the proposed measures. From 
this table, in all four different measures, we can find that Leman is the region 
with the highest health inequality value, which implies that the health status ex-
ists the most significant difference between Leman citizens. The other regions 
show ambiguous ranking. Specifically, for F1 and F2-2, Zurich is the region with 
least difference in health status, and Central has the second-to-the-lowest in-
equality. However, for F2-3, Central is identified as the least imbalanced region 
in health status, while Zurich has the second-to-the-lowest inequality. East and 
Ticino show the similar behavior. 
 
Table 1. Health inequality in the seven statistical areas of Switzerland. 

Area F1 F2-1 F2-2 F2-3 

Leman 0.3934(0.0073)1 0.8985(0.0102)1 0.3226(0.0058)1 0.0750(0.0034)1 

North-West 0.3589(0.0090)3 0.8277(0.0142)3 0.2937(0.0068)3 0.0651(0.0033)3 

Central 0.3151(0.0084)6 0.7930(0.0159)4 0.2601(0.0065)6 0.0439(0.0018)7 

Middle-Land 0.3665(0.0064)2 0.8572(0.0100)2 0.3013(0.0051)2 0.0662(0.0027)2 

East 0.3211(0.0070)4 0.7899(0.0131)5 0.2637(0.0054)4 0.0467(0.0016)5 

Ticino 0.3205(0.0170)5 0.7245(0.0303)7 0.2605(0.0134)5 0.0583(0.0056)4 

Zurich 0.3138(0.0066)7 0.7735(0.0125)6 0.2579(0.0051)7 0.0456(0.0015)6 
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Due to the reason of random sampling of the data set, it is natural to ask ques-
tions, like, do East and Ticino have different health inequalities in fact? Do Cen-
tral and Zurich have the same health inequality actually? We use statistical infe-
rences to address these problems. To fully answer these questions, various inter-
esting two-sample comparison tests are carried out, the results are reported in 
Table 2. We set the significance level to 5% . From Table 2, we can conclude 
that Leman is significantly more imbalanced than Middle-Land in health status. 
In contrast to the findings in Table 1, Middle-Land and North-West do not 
show statistically significant differences in their health inequalities. In other 
words, these two regions have the same health inequality level base on the data 
set we have. North-West is significantly more unbalanced in health status than 
East. Except for F2-3, all p-values for North-West and Ticino are all smaller than 
5% . Therefore, the difference of health inequality between North-West and Ti-
cino can be confirmed almost. Central and Zurich have the same inequality level, 
and the same finding has been observed for East and Ticino. 

Based on the above analysis, we classify North-West and Middle-Land, East 
and Ticino, and Central and Zurich into three groups. However, can we com-
bine two groups, such as the East and Ticino group with the Central and Zurich 
group? The question is equivalent to ask whether the average health inequality of 
the East and Ticino group is the same as that of the other group. The p-values of 
tests by using the above four measures are 0.5505, 0.1778, 0.7105 and 0.0140, re-
spectively, which are all larger than 5%  except for F2-3. Therefore, East, Ticino, 
Central, and Zurich may be clustered into one group. We also check whether 
these four regions have the same health inequality levels. The p-values for this 
global equality hypothesis testing are 0.8805, 0.1824, 0.8946 and 0.0942, respec-
tively, which suggest that these regions have the same inequality levels. We then 
examine whether this four-member group can be enlarged by including the 
North-West and Middle-Land group? We propose two hypotheses to investigate 
this question. First, are the average inequalities of North-West and Middle-Land 
similar to those of the other groups? Second, do these six regions have the same 
health inequality levels? For these two hypotheses, all the p-values resulting from 
tests with the four measures are significantly smaller than 5% , which indicate 
that the average health inequality of the North-West and Middle-Land group is 
different from that of the four-member group. We then examine whether the  
 
Table 2. p-values for two-sample comparison problems. 

Area F1 F2-1 F2-2 F2-3 

Leman vs Middle-Land 0.0054 0.004 0.0056 0.0378 

North-West vs Middle-land 0.4765 0.0902 0.3723 0.7969 

North-West vs East 0.0006 0.0494 0.0005 4.04E−07 

North-West vs Ticino 0.0436 0.002 0.0273 0.3002 

Central vs Zurich 0.9032 0.3349 0.7904 0.4494 

East vs Ticino 0.9739 0.0476 0.8275 0.0473 
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health inequality level of Leman is the same as the average level of the North- 
West and Middle-Land group. The p-values of all four measures are strongly 
smaller than 5% , which indicate that the health inequality level of Leman is 
different from the average level of the North-West and Middle-Land group. In 
sum, we classify these seven regions into three groups, that is, Leman, North- 
West and Middle-Land, and the other four regions. 

5. Conclusion 

In this paper, we propose several statistical inference procedures for the novel 
health inequality indices introduced in [1]. We consider one-, two-, and mul-
tiple-sample cases. Given that health surveys generally cover multiple regions, 
the health inequalities of multiple sample cases must be tested. The health in-
equality in various regions of Switzerland validates the availability of our pro-
posed tools. Seven regions covered by SHS can be categorized into three groups 
after the numerical study; Leman has the highest health inequality followed by 
the North-West and Middle-Land group. The other four regions (i.e., Central, 
East, Ticino, and Zurich) have the same health inequality. Our proposed proce-
dures can also be applied to other recently proposed health inequality indices. 
The subjective well-being is influenced by many factors such as health inequality, 
education, environment and so on. The statistical inference on multi-dimen- 
sionality well-being inequality can be investigated ongoing. 
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Appendix. Proofs of Theorems 

Proof of Theorem 1. 
Given that d  is a consistent estimator of f , for the empirical frequency of 

the health categories, we can easily obtain the following: 

( ) ( )( )00, ,n N− ⇒ Ωd f f                  (A.1) 

where 

( ) ( ) T
0 diag .Ω = −f f ff  

Note that ( ) ( )i j j ig i j f f g j i f f− = − . Therefore, 

( ) ( )
1

1 1
2 .

m m

i j
i j i

I g i j f f
−

= = +

= −∑ ∑f  

Define ( ) ( ) T

1

, ,
m

I I
J

f f
∂ ∂ 

=  ∂ ∂ 

f f


 It can be easily shown that 

( ) ( )2 .l
l ii

I
g l i f

f ≠

∂
= −

∂ ∑
f

                   (A.2) 

Alternatively, we can have J G= f . Keeping only the first two terms of the 
Taylor expansion, we can estimate ( )I f  as 

( ) ( ) ( )T .I I J≈ + ⋅ −d f d f  

Then the variance of ( ) ( )I I−d f  is approximated by 

( )( ) ( )
( )

T T

T T
0

Var Cov ,

.

J J J

G n G

⋅ − = ⋅ − − ⋅

= Ω

d f d f d f

f f
 

Also ( )( ) ( )( )E I E I=d f  since d  is a consistent estimator of f , it fol-
lows that 

( ) ( )( ) ( )20, ,n I I N σ− ⇒d f  

where ( )2 T T
0G Gσ = Ωf f f .                                        

Proof of Theorem 2. 
Define { }1 2max ,n n n= , ( )lim ,  0 1,  1, 2i n i in n iλ λ→∞= < ≤ =



 . From Lemma 
1, we have 

( ) ( )( ) ( ) ( )

( )( ) ( )

T T

T T
1

1

1 1 .

p

n
l pl

n I I n G o

G I V o
n =

− = − +

= = − +∑

d f f d f

f h f  

Let ( ) ( )( )2 T
1 2Covh l lI V I Vσ = = =h h . After that, similarly as the proof of 

Theorem 1, it can be derived that 
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 (A.3) 
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Here,  

( )
( ) ( )( )

( )

2 T T
11 1 0 1 1
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Plug in the consistent estimators of if  and 2
hσ  by id  and  

( ){ } ( ) ( )
{ }1 2min ,

12 T T
1 2 1 2 1 2

1
ˆ min , ,

n n

h l l
l

n n I V I Vσ
−

=
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respectively, thus we can easily estimate 2
, , , 1, 2i j i jσ =  consistently. 

Combining the above result in (A.3), we can obtain 
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