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Abstract 
The Laws of Classical and Quantum Mechanics are well known. However, 
their origin remains mysterious and their interpretation controversial. It has 
been argued that this situation will continue until one manages to derive the 
Laws of Physics from some very first principles. In this paper, we use basic 
concepts of Differential Geometry to yield the Klein-Gordon equation and the 
Lagrange equations of Relativistic Mechanics without using the standard 
postulates of Quantum Mechanics, Special Relativity or even General Relativity. 
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1. Introduction 

Quantum Mechanics plays an important role in Science and Technology today. 
Its predictions have been always confirmed and steadily improved. Applying its 
calculation rules, we can compute the properties of matter to very high accuracy. 
However, its foundations remain obscure. There have been several attempts to 
derive the Schrödinger equation from very different principles including two 
published derivations by E. Schrödinger himself [1] [2], the analogy to Classical 
Electrodynamics [3] [4], Stochastic models [5] [6], uncertain relations [7], just to 
name a few, but none has been universally accepted. Using a so powerful theory 
like Quantum Mechanics without understanding its rational is somewhat 
frustrating for scientists. Therefore many interpretations of Quantum Mechanics 
have been developed in the course of time leading to endless debates, see e.g. [8] 
and references therein. 

Discovering the origin of the Klein-Gordon equation is an important step to 
solve the mysteries behind the laws of Physics, since it is a bit more than just an 
equation for spin-zero particles. It can be related to the Dirac equation and to 
some extent to higher spin theories as well as to the non-relativistic Schrödinger 
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equation. Quantum Mechanics occupies a very unusual place among physical 
theories: it contains Classical Mechanics as a limiting case, yet it requires this 
limiting case for its own formulation (p. 3 in [9]). This is in our view a clear hint 
towards a close relation between the two theories. Several derivations or 
interpretations of Quantum Mechanics start with the textbook axioms of 
Quantum Physics, but this is nonsense according to some authors [8] [10]. The 
results of this paper should help answer questions raised by the unexpected 
coexistence of Classical and Quantum Mechanics in some macroscopic 
topological insulators [11]. 

In Section 2, we derive the Klein-Gordon equation for free fields in a curved 
space time from purely geometrical considerations. In Section 3, we introduce 
interactions of the scalar field with some vector potentials. In Section 4, we 
discuss our results and in Section 5 we give our conclusions. 

2. Free Scalar Fields 

The idea that the laws of Classical Mechanics may have a geometric origin is 
indeed very old. One may e.g. cite Lagrange (1736-1813) [12]: 

Nous allons employer la théorie des fonctions dans la mécanique. Ici les 
fonctions se rapportent essentiellement au temps, que nous designerons par 
t ; et comme la position d’un point dans l’espace dépend de trois 
coordonnées rectangulaires 1x , 2x , 3x , ces coordonnées, dans les 
problèmes de mécanique, seront censées être fonctions de t . Ainsi on peut 
regarder la mécanique à quatre dimensions, et l’analyse mécanique comme 
une extension de l’analyse géométrique. 

This program has been fulfilled to some extent with the advent of Special 
Relativity and Generality. However it is not clear whether this picture should be 
extended to Quantum Mechanics. This is the aim of the present study. 

First of all we assume that spacetime is a smooth four dimensional real 
Riemann manifold. Each spacetime point x  is labeled by four coordinates  

0
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3

x
x

x
x
x

µ

 
 
 =  
  
 

                           (1) 

where 0x ct=  represents the time coordinate and c  is a dimensional constant 
(e.g. the velocity of light in empty space), ix  are spatial coordinates  
( )1, 2,3i = . The points of a curve are characterized by their distance s  from 
the origin. s  is defined as  

2d d ds g x xµ ν
µν=                         (2) 

where gµν  is the metric tensor. It can be used to evaluate scalar products and 
to rise as well as to lower the indices of four dimensional vectors. One defines to 
this purpose the inverse tensor g µν  by the the relation  

g gµσ µ
σν νδ=                          (3) 
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where µ
νδ  is the Kronecker delta symbol. It takes the value one for equal 

indices and zero otherwise. To obtain a real value of the curve length s  we 
require  

2d 0s ≥                             (4) 

Instead of s  one may use the equally good parameter τ  (proper time) 
defined as  

d ds c τ=                            (5) 

The velocity vector along the curve is defined as  

d
d
xx
µ

µ

τ
=                            (6) 

It yields by definition (2) the identity  

( )
2

,g x x g x x

x x c

µ ν
µν

µ
µ

=

= =

   

 

                       (7) 

where  

x g xνµ µν=                            (8) 

We are now ready to study the variation of scalar field ( )xψ  along a curve 
( )x τ . A field is by convention a function of space and time. 
The total derivative of the scalar field ψ  yields  

( )d
d

x xµ
µ

ψ ψ
τ
= ∂                        (9) 

where µψ∂  is a partial derivative  

xµ µ
ψψ ∂

∂ =
∂

                        (10) 

We use implicitly Einstein’s sum convention [13]. 
Since µψ∂  transforms like a vector field we may define the auxiliary vector 

field ( )P xµ  as  

P i µ
µ

ψ
ψ
∂

=                          (11) 

where i  represents a dimensional constant. We use here the standard 
notations of Quantum Mechanics with purpose. One may apply the inverse 
metric tensor on Pµ  to obtain the momentum field  

( ) ( )P x g P xµ µν
ν=                      (12) 

Equation (9) yields  

( ) ( )d
d

i x P x xµ
µ

ψ ψ
τ
= − 



                   (13) 

The expression x Pµ
µ  represents the scalar product of two vector fields; it is 

therefore a scalar field by itself. It can in principle take any value. However a 
small miracle happens when the trajectory is chosen so that the velocity x  is 
parallel to the momentum P , it means  

mx Pµ µ=                           (14) 
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where m  is a third scalar dimensional constant besides   and c . To make 
sense m  and Pµ  must be real. Negative values of m  are in principle 
allowed. In the following we show that the scalar field ( )xψ  will then obey the 
Klein Gordon equation that the path ( )x s  will obey at the same time the 
geodesic equation, further we will try to find the meaning of the classical 
trajectory ( )x s  for the wave function ( )xψ . 

Equations (6) (7) (14) yield  
2x P mcµ

µ =                          (15) 

2 2P P m cµ
µ =                          (16) 

Equations (11) and (16) mean that the scalar field ( )xψ  will obey the 
Klein-Gordon equation  

2 2

2 0m cµ
µ ψ

 
∂ ∂ + = 
 

                      (17) 

for free particles if Pµ  is constant in a Minkowski spacetime  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

g g µν
µν

 
 − = =
 −
 

− 

                  (18) 

To show (17) multiply Equation (16) with ψ  and use the definition (11). 
The Klein-Gordon equation is used to describe spinless particles. Notice that 
Dirac fields for spin-1 2  particle are also solutions of (17). Schrödinger wave 
functions are non-relativistic approximations for ψ . We will not further 
discuss these well known facts. In more general cases multiply (16) with ψ ∗  
from left and ψ  from rights, it yields  

( ) ( )2 2 2 0g m cµν
µ νψ ψ ψ ψ∗ ∗∂ ∂ − =                 (19) 

One may try to use the left hand side of (19) as a Lagrangian density  

( ) ( ) ( )2 2 2, g m cµν
µ νψ ψ ψ ψ ψ ψ∗ ∗ ∗= ∂ ∂ −L             (20) 

for the Klein-Gordon field. The action reads  

( ) ( )4, d ,S x g xψ ψ ψ ψ∗ ∗  = −  ∫ L                 (21) 

where  

( ) ( )detg x g xµν=                         (22) 

It leads to the Klein Gordon equation  

( )
2 2

2
1 0m cg g

g
µν

µ νψ ψ∂ − ∂ + =
− 

                (23) 

in curved space times. Very often some extra terms containing the curvature 
scalar R  are arbitrarily added to Equation (23) in the literatur [14]. 

Unlike the usual derivations of Quantum Mechanics the geometrical path 
taken in this paper is inconsistent unless we give an equation for the classical 
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trajectory as well. To do this recall that Equation (14) looks like Hamilton’s 
equation  

Hx
Pµ µ
∂

=
∂

                          (24) 

for which we already know the Hamiltonian  

( ),
2

g P P
H x p

m

µ ν
µν=                      (25) 

and we determine the Lagrangian  

( ),

2

L x x g x P H

mg x x

µ ν
µν

µ ν
µν

= −

=

 

 

                    (26) 

It yields the Euler-Lagrange equations  

0x x xλ λ µ ν
µν+ Γ =                          (27) 

where  

( ), , ,2
g g g g
λσ

λ
µν µσ ν σν µ µν σΓ = + −                  (28) 

are Christoffel symbols [13]. They vanish in Minkowski space. Equation (26) 
may also be written without indices as  

0x x∇ =


                           (29) 

This is a geodesic equation. It means that the curve ( )x s  is the shortest path 
between two of its points. 

Finally it is interesting to solve Equation (13). We find  

( )( ) ( )( ) ( )
2

0 0exp imcx xψ τ ψ τ τ τ
 

= − − 
 

            (30) 

only the phase of the wave function ψ  changes along the field lines ( )x s . 
Remember s cτ= . The intensity ψ ψ∗  remains constant. This allows some 
kind of statistical interpretation of the wave function. 

Equations (11) (14) (27) determine a set of lines (trajectories) that do not 
intersect and that are characterized by a probability which is the same at each of 
their points. This is clearly an addition to the standard interpretation of 
Quantum Mechanics. 

3. Interactions 

The simplest way to insert interactions of the Klein-Gordon field with external 
fields is given by the principle of minimal substitution:  

qP P A
cµ µ µ→ −                        (31) 

which means  
qi A
cµ µ µ∂ → ∂ +                        (32) 

and  
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qmx P A
cµ µ µ= −                        (33) 

we define the Lagrangian density for the Klein-Gordon equation  

( ) 2 2 2, , q qA g i A i A m c
c c

µν
µ µ ν νψ ψ ψ ψ ψ ψ∗ ∗ ∗     = ∂ − ∂ + −     

     
L   (34) 

and the action  

( ) ( )4, , d , ,S A x g x Aψ ψ ψ ψ∗ ∗  = −  ∫ L                (35) 

It yields Lagrange’s equations in Minkowski space (18)  

( ) ( )( )
22 2

2
m c q qi A A A A

c c
µ µ µ µ

µ µ µ µψ ψ ψ ψ
   ∂ ∂ + = − ∂ + ∂ +   

  

     (36) 

and  

( )

( )

2 2

2

2

1

1

m cg g
g

q qi g A A A A
c cg

µν
µ ν

µ µ µ
µ µ µ

ψ ψ

ψ ψ

∂ − ∂ +
−

   = − ∂ − + ∂ +    −   



          (37) 

in more general spacetimes. 
The Hamiltonian for the classical trajectory is  

( ),
2

q qg P A P A
c cH x P

m

µ µ ν ν
µν
   − −  
  =               (38) 

The Lagrangian reads  

( ),
2

mg x x qL x x x A
c

µ ν
µν µ

µ= +
 

                     (39) 

It yields the Euler-Lagrange equations  

qx x x F x
mc

λ λ µ ν λ σ
µν σ+ Γ =                         (40) 

where 

F A Aµν µ ν ν µ= ∂ − ∂                        (41) 

is Maxwell’s field strength tensor. Equation (40) is postulated within Special 
Relativity and General Relativity as a generalization of Newton’s second law for 
the motion of a particle in the electromagnetic field ( )F xµν . Notice that we did 
not need at all use the point particle concept in order to derive (40) from pure 
Mathematics. Just as in the case of the free particle Equations (33) (40) yields a 
congruence of trajectories that have defined probabilities. Equations (13) (33) 
yield an additional contribution of the interaction to the phase of the wave 
function  

( )( ) ( )( ) ( )
0

2

0 0exp dimc iqx x x A
c

τ µ
µτ

ψ τ ψ τ τ τ τ
 

= − − − 
 

∫ 

 

     (42) 

Adding an arbitrary phase ( )xϕ  to (42) will correspond to a modification of 
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the vector potential  

( ) ( ) ( )cA x A x x
qµ µ µϕ→ − ∂
                  (43) 

in full agreement with gauge theory. 

4. Discussion 

It is generally accepted that Classical Mechanics is the limit of Schrödinger 
equation when 0→ , that is when the action of the moving particles are much 
bigger than  . This restricts the scope of Quantum Mechanics to microscopic 
systems. We have found the derivations of the Schrödinger equation not quite 
convincing. Therefore we have tried to find the origin of Quantum Mechanics in 
the mathematical properties of scalar functions defined over a spacetime 
endowed with a metric tensor g  that allows us to define the proper time τ . 

Requiring the velocity x  to be parallel to the gradient ψ∂  of the scalar field 
is the ultimate cause of fundamental equations of Classical and Quantum 
Mechanics. The rest mass plays the role of a (scalar) proportionality constant 
that can in principle take any real value. We have reinterpreted the relations (14) 
(33) as a Hamilton equations and we have calculated the equations of motion for 
classical trajectories. These are lines of constant intensity. Our work seems to 
give partial support to the standard probabilistic interpretation of Quantum 
Mechanics. 

Trajectories have always been related to particles. They have been banned 
from Quantum Mechanics but we find here that they are intrinsic properties of 
the fields (wave functions) themselves. It means that Quantum Mechanics in its 
present status may indeed be somehow incomplete and we need to correct this. 
New interpretations of Quantum Mechanics and the uncertainty relations are 
therefore required. 

There are some claims of observed macroscopic quantum effects e.g. 
topological insulators which exhibit a coexistence of Classical and Quantum 
Mechanics, in contradiction with textbook knowledge [11]. Our analysis shows 
however that Classical and Quantum Mechanics have the same mathematical 
origin. They are completely tied and It seems reasonable to expect that both 
should be valid all over the universe with practical limitations given by 
Heisenberg uncertainty relations and the experimental facilities. This is matter 
of further research. 

5. Conclusion and Outlook 

We have shown how the Klein-Gordon equations of Quantum Mechanics and 
relativistic Newton’s equations of Classical Physics can be simultaneously 
derived from the mathematical properties of scalar functions and not from 
physical principles and postulates. Since fermions obey the Dirac equation but 
also the Klein Gordon equation in Minkowski space, we may see why they 
behave just like other particles (bosons) in Classical Physics. We wish the same 
could happen in curved spacetimes [15] [16], but this remains to be confirmed. 
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There are big questions about particles: how do they inherit their properties (rest 
mass, energy-momentum, electric charge, classical trajectories etc.) from fields? 
Understanding the Mathematics behind the laws of Physics is not only thrilling 
but it is required in order to achieve a deeper understanding of nature. 
Geometry (Gravity) seems to play a decisive role in the selection of the 
fundamental laws of Physics. 
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