
Journal of Software Engineering and Applications, 2017, 10, 168-173
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.102010 February 24, 2017

How Do You Know What You Know:
Epistemology in Software Engineering

Oluwatosin Ogundare

Industrial and Systems Engineering, Texas Tech University, Lubbock, TX, USA

Abstract

Ubiquitous computing emphasizes the notion of automation in the daily hu-
man experience. With the ease, comes the responsibility of knowing, the
knowledge of the intrinsic nature of the machine and the evolution of Hu-
man-Computer Interaction (HCI). The quest for knowledge is inevitable and
exists even in the mundane experience. This innate search is the soul of the act
of questioning. “How?” “What? “Why?” dominate our communal vocabulary
and model the endlessness of our natural inquisitiveness. For example, an in-
teraction of software systems in the case of a user who withdraws money from
the ATM and automatically gets a text message and an e-mail containing noti-
fication of the transaction, engenders questions about how it all works; i.e., the
nature of the special science that enables wireless communications. The focus is
establishing foundational Truths for the modern human-software co-existence.
The discussion that follows involves a delineation between the function that
an intelligent software system performs and the knowledge it implicitly en-
capsulates. The paper expounds the role of ontology in formalizing knowledge
in software systems and its contribution to the unveiling of the mystical black
box that intelligent software systems often present to their human counter-
part.

Keywords

Software Engineering, Epistemology, Ontology

1. Introduction

“Knowledge” according to Plato is “Justified True Belief”. Knowledge that de-
rives from aphorisms or other self-evident truths is easier to acknowledge. For
example, the knowledge of “multiplication” is justified by the truthfulness of
“addition”—which is often referred to as the Apriori. However, in Software En-
gineering, the Apriori is more obscure. The investigation of the nature of know-
ledge in Software Engineering requires an expansion of the general idea of the

How to cite this paper: Ogundare, O.
(2017) How Do You Know What You
Know: Epistemology in Software Engi-
neering. Journal of Software Engineering
and Applications, 10, 168-173.
https://doi.org/10.4236/jsea.2017.102010

Received: January 20, 2017
Accepted: February 21, 2017
Published: February 24, 2017

Copyright © 2017 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.102010
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.102010
http://creativecommons.org/licenses/by/4.0/

O. Ogundare

169

Apriori in establishing knowledge.
First, we examine the two types of technical knowledge that exist viz. Engi-

neering Knowledge and Scientific Knowledge. The delineation of engineering
knowledge to emphasize its distinction from scientific knowledge forms the
premise of its understanding and highlights its own importance. According to
Antonio Dias de Figueiredo, engineering knowledge is multidimensional and
every notion it portrays can only be completely understood when analyzed as
such [1]. So how is engineering knowledge constructed and what is its nature?
Diana Forsythe “an anthropologist studying a scientific community engaged in
formulating knowledge descriptions” asserts that knowledge in the applied
sciences (engineering) is established through acquisition and formalization [2].
“Knowledge Acquisition” according to R. Studer et al. can be realized in one of
two ways:

1) Transfer Process
2) Modeling Process
The Transfer and Modeling processes demonstrate some of the differences in

constructing scientific and engineering knowledge as discussed subsequently.

2. Examining the Differences between Scientific &
Engineering Paradigms

There is a marked distinction between knowledge realized through scientific
methods and knowledge established from an engineering process. The question
is how are they different? The difference is in the approach. Scientific theories or
paradigms are largely based on controlled empirical processes while engineering
methods are derived predominantly from the experience of what works. Figure
1 suggests that while both paradigms begin as a search for the solution to a
problem, the steps taken to find answers are very different [3].

The 10 steps in the engineering paradigm will in fact be an example of know-
ledge acquired through the “modeling” process. This process is widely used and
accepted in modern enterprise software engineering. As software gets more fo-
cused on problem solving for mundane or everyday tasks, the need for a formal
characterization of its encapsulated knowledge models, workflows and limita-
tions is increasingly more important.

Figure 1. Differences between scientific and engineering knowledge [7].

O. Ogundare

170

3. Ontologies in Software Engineering

“Software engineering is one of the most knowledge-intensive professions.
Knowledge and its management are relevant to several aspects of software engi-
neering at different levels, from the strategic or organizational to the technical”
[4]

If engineering is largely viewed or broadly considered to be the application of
pure “hard” science(s), then it follows that “Software Engineering” can be simply
viewed as the application of principles or theories from the discipline of com-
puter science to real world problems. However, IEEE gives the formal definition
of “Software Engineering” as follows:

“… It is the application of a systematic, disciplined, quantifiable approach to
development, operation, and maintenance of software; that is, the application of
engineering to software” [5]

From the definition, the adjectives “systematic” and “quantifiable” implies
there must be a set of agreed upon rules by which measurement is carried out.
Cuadrado-Gallego et al. suggest that the development of such global quantifiers
will be impossible in Software Engineering without ontology. In fact, he says that
without these formal ontologies, there will be no “shared, consensual conceptua-
lization” in Software Engineering [6].

There are different types of Ontologies in Software Engineering, each of them
serving different purposes. For example, Reference ontologies, whose main pur-
pose is to eliminate ambiguities in terminology and mitigate the occurrence of
what Thomas Kuhn refers to as “local incommensurability” [7]. The role of phi-
losophy in creating such standard terminologies is elegantly stated by Nicola
Guarino “… philosophy and linguistics play a fundamental role in analyzing the
structure of a given reality at a high level of generality and in formulating a clear
and rigorous vocabulary.” [8]

In contrast however, Application Ontologies are not as dense as its counter-
part and thus do not require the detail and structure that would involve either
Philosophy or Linguistics (at least in a formal sense). Application ontologies can
be generally viewed as taxonomies of domain specific vocabulary. Apart from
establishing commensurability, ontologies are relevant to epistemology in Soft-
ware Engineering because they help establish Fidelity. This is especially impor-
tant because according to Zelkowitz and Wallace, at least 30% of papers pub-
lished on Software Engineering are not based on empirical science. Empirical
methods are how we establish justified Truths or Knowledge in many science,
applied science and quantitative fields where mathematical proofs are less appli-
cable. The accepted pathway to science begins with a reasonable hypothesis, that
is then tested rigorously without bias and its conclusions accepted as Knowledge.
In modern software development, however, an intuition or a cross-pollinated
idea from another discipline is implemented as an algorithm without ever hav-
ing established its own truthfulness. Forsythe expresses a similar sentiment
about her interaction with AI engineers in the excerpt below:

“Talking with AI professionals, I had been struck by the apparent parallels

O. Ogundare

171

between the process that they call ‘knowledge acquisition’ … and what anthro-
pologist do in the course of field research … Asked how they went about the task
of gathering knowledge for their expert systems, the knowledge engineers I met
tended to look surprised and say, ‘We just do it’ …”. [2]

Furthermore, a distinction should be made between what is considered a rea-
sonable output of an intelligent system and what is verified knowledge produced
by the same system. This is only possible if there is a formal knowledge acquisi-
tion and verification system integrated into the design of intelligent systems. In
this regard, developing ontologies tie into the quest for establishing the founda-
tion of knowledge in intelligent software systems. Ontologies in Software Engi-
neering formalize the domain taxonomies, which leads to asking the right ques-
tions, establishing Truth and derived knowledge in line with what philosophers
(empiricists) have always maintained. Furthermore, ontologies help establish
technical aphorisms which may constitute Apriori truths in Software Engineer-
ing.

3.1. Reference Ontologies

Reference Ontologies (ROs) focuses on presenting generalized expressions (uses
quantified variables in statements in line with First-Order logic) in favor of or-
thodox propositions (propositional logic) and is grounded in both metaphysical
and epistemological realism. The central theme of Reference Ontologies is estab-
lishing Truth. However, Reference Ontologies can be wrong [9].

3.2. Application Ontologies

Application Ontologies focus on reasoning and is localized to a specific compu-
tational application. Application Ontologies are philosophically grounded in
pragmatism. In essence, it admits knowledge of a solution to be whatever works
in the resolution of the problem. Application Ontologies have a strong metho-
dological emphasis on fidelity i.e. maintaining consistent expressions within a
specific computational application. However, Application Ontologies also admit
as equivalent, pragmatic alternatives to metaphysical realism, to enable their
adoption in real world computational applications [9]. For example, a mathe-
matical integration problem in calculus with limits in the closed range [−∞, +∞]
cannot be computationally realized but an approximate solution using a numer-
ical method is admitted by an Application Ontology as equivalent. This form of
informal equivalence relation might be problematic in mission critical intelligent
systems with very limited error tolerance. In the case of computing the solution
of an indefinite integral, approximations are inevitable for real world applica-
tions but the weakness of Application Ontologies in establishing knowledge is its
tendency to admit approximations even for realizable computational problems.
A reasonable conclusion from the preceding arguments is that the foundation of
establishing knowledge in engineering and specifically Software Engineering be-
gins with the definition of a formal Ontology. In the case of Software Engineer-
ing, we may prefer to define a Reference Ontology.

O. Ogundare

172

4. “Knowing” in Software Engineering

Following the discussion on the foundational notions of establishing knowledge
and the formalization of ontologies as an important step in this regard, it is im-
portant to understand what can be potentially qualified as “known” and how
they can be constructed and validated in Software Engineering.

4.1. The Nature of What Can Be Known in Software Engineering

Knowledge in Software Engineering is primarily acquired through modeling.
The directed abstraction of “real world” problem solving without the interfe-
rence of computational or software constructs or artifacts [10]. Constructing
knowledge from modeling, according to Guus, is done at a conceptual level. This
abstraction is grounded in the metaphysical nature of a Reference Ontology
(RO), the goal here is not applicability but foundational Truth. Along these lines,
the model must maintain internal consistency [11].

4.2. Knowledge Models in Software Engineering

Knowledge models in Software Engineering can be realized as a group of
closed-form mathematical transformations composing an algorithm mimicking
a problem solving “use case” in a specific problem domain. Otherwise, it could
also be viewed as a logical combination of rules, like the “if-else-then” method
(popular in expert systems), with each branch yielding an Apriori Truth or
eventually leading to one. Regardless of how the model is realized, it is impor-
tant that it is grounded in ontology and maintains internal consistency.

4.3. Validating Knowledge Models in Software Engineering (SE)

Establishing knowledge requires validation. Validating knowledge models can be
viewed as providing justification for the model in reality. According to Kathleen
Carly, validating models (computational models, engineering models, etc.) can
be assessed at different levels targeting distinct aspects of the model. She identi-
fied at least eight aspects of the model that requires validation [12]. A summary
of the prescribed knowledge validation techniques is presented as follows:

Face-Value validation: This measures how closely the model resembles the
actual problem solving method in the real world [12].

Parameter Validation: This measures how closely the model parameters fit
real world parameters [12].

Process Validation: This measures how closely the process described by the
model resembles the actual real world process [12].

Pattern Validation: This measures if the pattern of outputs generated by the
model exhibit the same pattern as in the real world [12].

Theoretical Validity: This checks the model for adherence to established
theoretical constructs and procedures [12].

5. Conclusion

Guus Schreiber claims that attempts at describing the nature of knowledge are

O. Ogundare

173

irrelevant to its application to “problem solving” or inventing new technologies.
His justification lies in the perceived inarticulate nature of engineers when asked
to expound a topic they have learned, compared to scientists, fall short in pro-
viding rigorous detail yet constantly apply these concepts to building faster and
more efficient technologies. Essentially, he seems to be saying that we do not
need to be able to explain knowledge to apply it [10]. In spite of the truth of the
aforementioned, without the ability to learn the nature of knowledge, construct
and validate it, establishing fidelity in AI and Software Engineering models will
remain problematic. Sound epistemology will open up the future to even more
engineering marvels.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References

[1] Figueiredo, A. (2008) Toward an Epistemology of Engineering. In: 2008 Workshop
on Philosophy and Engineering, The Royal Academy of Engineering, London,
94-95.

[2] Forsythe, D.E. (1993) Engineering Knowledge: The Construction of Knowledge in
Artificial Intelligence. Social Studies of Science, 23, 445–477.
https://doi.org/10.1177/0306312793023003002.

[3] http://research.uc.edu/sciencefair/resources-forms/topic-suggestions/scientific-met
hod-v-engineering-design-procedures.aspx

[4] Aurum, A., et al., Eds. (2013) Managing Software Engineering Knowledge. Springer
Science & Business Media, Berlin.

[5] IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std.610, 12-1990.

[6] Cuadrado-Gallego, J., Rodríguez, D., Garre, M. and Rejas, R. (2007) Epistemological
and Ontological Representation in Software Engineering. International Conference
on Computational Science, Springer Berlin Heidelberg, 1162-1169.
https://doi.org/10.1007/978-3-540-72586-2_162

[7] Kuhn, T.S. (2012) The Structure of Scientific Revolutions. University of Chicago
Press, Chicago. https://doi.org/10.7208/chicago/9780226458144.001.0001

[8] Guarino, N. (1998) Formal Ontology and Information Systems. Proceedings of
FOIS, 98, No. 1998.

[9] Menzel, C. (2003) Reference Ontologies-Application Ontologies: Either/Or or Both/
And? KI Workshop on Reference Ontologies and Application Ontologies, CEUR
Workshop Proceedings, Vol. 94, Hamburg,

[10] Schreiber, G. (2000) Knowledge Engineering and Management: The Common
KADS Methodology. MIT Press, Cambridge.

[11] Wielinga, B.J., Schreiber, A.Th. and Breuker, J.A. (1992) KADS: A Modelling Ap-
proach to Knowledge Engineering. Knowledge Acquisition, 4, 5-53.
https://doi.org/10.1016/1042-8143(92)90013-Q

[12] Carley, K.M. (1996) Validating Computational Models.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.195.6257

https://doi.org/10.1177/0306312793023003002.
http://research.uc.edu/sciencefair/resources-forms/topic-suggestions/scientific-method-v-engineering-design-procedures.aspx
http://research.uc.edu/sciencefair/resources-forms/topic-suggestions/scientific-method-v-engineering-design-procedures.aspx
https://doi.org/10.1007/978-3-540-72586-2_162
https://doi.org/10.1007/978-3-540-72586-2_162
https://doi.org/10.1007/978-3-540-72586-2_162
https://doi.org/10.7208/chicago/9780226458144.001.0001
https://doi.org/10.7208/chicago/9780226458144.001.0001
https://doi.org/10.7208/chicago/9780226458144.001.0001
https://doi.org/10.7208/chicago/9780226458144.001.0001
https://doi.org/10.1016/1042-8143(92)90013-Q
https://doi.org/10.1016/1042-8143(92)90013-Q
https://doi.org/10.1016/1042-8143(92)90013-Q
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.195.6257

	How Do You Know What You Know: Epistemology in Software Engineering
	Abstract
	Keywords
	1. Introduction
	2. Examining the Differences between Scientific & Engineering Paradigms
	3. Ontologies in Software Engineering
	3.1. Reference Ontologies
	3.2. Application Ontologies

	4. “Knowing” in Software Engineering
	4.1. The Nature of What Can Be Known in Software Engineering
	4.2. Knowledge Models in Software Engineering
	4.3. Validating Knowledge Models in Software Engineering (SE)

	5. Conclusion
	Conflicts of Interest
	References

