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Abstract 
Hypercholesterolemia promotes atherosclerosis and precise regulation of 
cholesterol homeostasis is essential. Besides risk factor for cardiovascular dis-
ease, abnormalities in cholesterol metabolism have been associated with type 2 
diabetes. Cholesterol homeostasis in the body is maintained by de novo syn-
thesis. Furthermore, intestinal cholesterol absorption has recently been con-
sidered as an important control point in cholesterol homeostasis. Important 
insights have been gained into the mechanisms of transport of cholesterol 
from the intestinal lumen into the enterocytes. Several transporter proteins 
that appear to be key players in the control of the cholesterol absorption from 
the intestinal lumen have been identified. Here, we review intestinal choles-
terol absorption and the mechanisms underlying alterations in cholesterol 
absorption under physiological conditions and in diseases such as diabetes 
mellitus. 
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1. Introduction 

Cholesterol and its metabolites such as bile salts, steroid hormones and oxyste-
rols fulfill important biological functions [1]. Cholesterol serves as vital compo-
nent for vertebrate cell membrane structure and function [2]. Cholesterol in the 
body is produced in the liver and peripheral tissues, representing an endogenous 
pool, and absorbed from the intestine, representing dietary or biliary sources [3]. 
The liver is a major organ for the syntheses and secretion of endogenous choles-
terol [4] and secretes ~1 g of daily cholesterol. Intestine absorbs approximately 
50% of the cholesterol which represents ~400 mg of dietary cholesterol daily [5] 
[6]; the remainder is excreted in feces [7] [8].  
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Plasma cholesterol level depends on many dietary and genetic factors and is 
influenced by intestinal cholesterol absorption and hepatic cholesterol synthesis. 
Precise regulation of cholesterol homeostasis is essential, and it is well known 
that hypercholesterolemia promotes atherosclerosis and thereby represents a 
major risk factor for cardiovascular disease [9] [10] [11]. Besides risk factor for 
cardiovascular disease, abnormalities in cholesterol metabolism have been asso-
ciated with type 2 diabetes. In several cross-sectional studies, insulin resistance 
and obesity have been found to be associated with enhanced cholesterol synthe-
sis and reduced cholesterol absorption [12] [13] [14] [15] [16]. Diabetic dyslipi-
demia is typically characterized by increased very low density lipoprotein 
(VLDL) and reduced high density lipoprotein (HDL), but surprisingly no change 
in low-density lipoprotein (LDL) cholesterol levels [17].  

Cholesterol homeostasis in the body is maintained by de novo synthesis. The 
liver, which facilitates clearance of VLDL particles and cholesterol-containing 
chylomicron remnants, has been considered the major site of control in main-
tenance of cholesterol homeostasis [18]. The biosynthesis of cholesterol involves 
a variety of enzymatic reactions that are well-defined and feedback-regulated 
[19]. In recent years, the importance of the intestine which has a major impact 
on cholesterol homeostasis at the level of cholesterol absorption, fecal excretion 
and de novo synthesis is increasingly recognized in many aspects of cholesterol 
physiology [20]. Niemann-Pick C1-Like 1 (NPC1L1), which is a target of dietary 
cholesterol uptake inhibitor ezetimibe, mediates intestinal cholesterol absorption 
and biliary cholesterol re-absorption [21]. On the other hand, the heterodimer of 
ATP-binding cassette (ABC) transporters G5 and G8 (ABCG5/G8) mediates the 
efflux of cholesterol and plant sterols in the enterocytes from the diet back into 
the lumen [22]. Expression of these genes is regulated by the peroxisome proli-
ferator-activated receptors (PPARs) [23] and the nuclear liver X receptors 
(LXRs) [24]. Furthermore, direct secretion of cholesterol from the blood com-
partment into the intestine, also known as transintestinal cholesterol excretion 
(TICE), plays a major role in disposal of cholesterol via the feces, at least in mice 
[25]. An increase in intestinal absorption of cholesterol occurs in diseases such 
as diabetes mellitus leading to high plasma cholesterol and increased risk of car-
diovascular diseases. The metabolic states and biological processes that regulate 
cholesterol homeostatic pathways in the intestine are poorly understood. This 
review focuses on recent developments in research related to intestinal choles-
terol absorption and discusses recent understandings of the role of different 
transporter proteins involved in its regulation. 

2. Intestinal Cholesterol Absorption 

Most dietary cholesterol (85% - 90%) exists in the form of the free sterol, with 
only 10% - 15% existing as esters of cholesterol. Enterocytes absorb only free 
cholesterol which is minimally soluble in an aqueous environment [26] [27] and 
must be partitioned into bile salt micelles prior to absorption. Thus, cholesteryl 
esters must be hydrolyzed by cholesterol esterase to release free cholesterol for 



J. Iqbal et al. 
 

62 

absorption. Mixed micelles, composed of free cholesterol along with triglyce-
rides, phospholipids, ionized and nonionized fatty acids, monoacylglycerols, and 
lysophospholipids [28], are transported to the brush border of the enterocyte, 
where cholesterol is absorbed. Absorption of cholesterol depends on the pres-
ence of bile acids in the intestinal lumen [29] and correlates directly with the to-
tal bile acid pool [30]. 

Before its interaction with transporter proteins responsible for uptake and 
subsequent transport across the cellular brush border, cholesterol must pass 
through a diffusion barrier at the intestinal lumen-enterocyte membrane inter-
face. The transfer of cholesterol across the unstirred water layer is facilitated by 
bile salt micelles. Cholesterol is taken up by the enterocyte with relatively high 
efficiency compared with structurally similar phytosterols [31] and had long 
been considered an energy-independent, simple, passive diffusion process. 
However, discovery of multiple genes [32] [33] [34] that participate in the regu-
lation of cholesterol absorption and several molecules that appear to inhibit it 
[35] strongly suggests that a transporter facilitated mechanism is involved. This 
notion is also supported by interstrain and interindividual variations in the effi-
ciency of intestinal cholesterol absorption [36]. 

Several proteins have been investigated for their potential roles as intestinal 
cholesterol transporters using genetically modified animal models. Through 
these studies, investigators have gained important insights into the mechanisms 
of transport and identified several transporter proteins that appear to be key 
players in the control of the cholesterol absorption from the intestinal lumen 
such as NPC1L1 [32] and the ATP-binding cassette proteins ABCG5 and 
ABCG8 [33] [34]. The first step in cholesterol absorption in the intestine appears 
to be through NPC1L1, a glycosylated protein localized at the brush-border 
membrane of the enterocyte [37] and highly expressed in the jejunum [21]. The 
identification of NPC1L1 as a putative cholesterol transporter [32] was facili-
tated by the discovery of ezetimibe [32] [35], a cholesterol absorption inhibitor 
which reduces diet-induced hypercholesterolemia [38]. NPC1L1 acts as a unidi-
rectional transporter of cholesterol and non-cholesterol sterols [39]. Cholesterol 
has been shown to bind to the N-terminal domain of NPC1L1 [40]. The deletion 
of Npc1l1 in mice results in a reduction in fractional cholesterol absorption [32] 
(i.e., the percentage of cholesterol absorbed from the intestine, which is deter-
mined using a dual-isotope feeding technique). Various mechanisms have been 
suggested to impair NPC1L1 cholesterol uptake in twenty rare NCP1L1 alleles 
found in the low cholesterol absorbers [41]. 

Once cholesterol has been taken up by the enterocytes through NPC1L1, it 
may be excreted back into the intestinal lumen rather than being further 
processed for absorption into the lymphatic circulation. ABCG5 and ABCG8, 
mostly confined to the human small intestine and liver [33], function as a hete-
rodimer and are critical for the control of cholesterol, and in particular 
non-cholesterol sterols, absorption. Rare mutations in the genes encoding hu-
man ABCG5 and ABCG8 transporters result in high levels of plant sterols in 
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blood and other tissues. This condition, known as β-sitosterolemia [33] [34], is 
caused as a result of enhanced absorption of sterols from the intestines and de-
creased removal in bile, and manifests itself in children as tendon xanthomas or 
in young adults as severe coronary heart disease [42]. Abcg5 and Abcg8 defi-
ciency in mice has minimal effect on the efficiency of cholesterol absorption [43] 
[44] but results in reduced biliary cholesterol secretion [43] and enhanced phy-
tosterol absorption [43] [44]. However, the pharmacological induction or over-
expression of Abcg5/g8 in mice [45] [46] results in a reduction in fractional 
cholesterol absorption. 

Recent data have strongly suggested that ABCA1 plays a role in the control of 
cholesterol absorption. ABCA1, which was initially thought to be localized to the 
apical membrane [47], has also been shown to be present in the basolateral 
membrane [48]. Studies in Caco-2 cells and in the apoA1 knockout mice showed 
that basolateral efflux of free cholesterol occurs in high-density apoB-free/ 
apoA-I containing lipoproteins [49] [50]. Deletion of intestinal Abca1 resulted in 
a 30% decrease in plasma HDL cholesterol levels suggesting a role of ABCA1 in 
the biogenesis of HDL in the intestine [51]. Furthermore, enterocytes deficient 
in ABCA1 absorb smaller amounts of cholesterol suggesting its role not only in 
HDL biogenesis but also in cholesterol absorption [51]. 

Recent studies have suggested that intestine plays a role in the removal of 
excess cholesterol from the peripheral tissues to the feces by direct non-biliary 
excretion of plasma-derived cholesterol into the intestinal lumen [25] [52]. Flux 
of cholesterol from circulating lipoproteins through the intestine and into the 
lumen for subsequent excretion or reabsorption is known as transintestinal cho-
lesterol excretion (TICE) [52]. Studies have indicated that fecal sterol loss does 
not absolutely require biliary cholesterol secretion, and other pathways such as 
TICE can adequately compensate for biliary insufficiency to maintain normal 
fecal cholesterol loss [53] [54]. Although TICE can occur throughout the small 
intestine, but most of the TICE happens in the proximal intestine [55]. Around 
20% - 33% of basal fecal sterol loss has been estimated due to TICE in both hu-
man [56] and mice [57]. It has been shown that the non-biliary TICE pathway 
can be stimulated by activation of LXR [57] and PPARδ [58], ezetimibe admin-
istration [59], and fasting [60]. However, the precise underlying mechanisms 
and pathways for the induction of TICE are still unknown. 

Fatty acid translocase CD36 has also been implicated as the cholesterol trans-
porter in brush-border membranes. Overexpression of CD36 in COS-7 cells has 
been shown to enhance cholesterol uptake from micellar substrates [61]. Fur-
thermore, significant reduction in cholesterol transport from the intestinal lu-
men to the lymphatic system was observed in CD36-null mice [62]. Observation 
that intestine-specific overexpression of scavenger receptor class B type I (SR-BI) 
in mice leads to an increase in cholesterol absorption in short-term absorption 
experiments [63] suggest that SR-BI play a role in the control of cholesterol ab-
sorption. Besides, brush-border membrane vesicles prepared from the proximal 
intestine of SR-BI knockout mice [61] and Caco-2 cells pre-incubated with anti-
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bodies to SR-BI [64] showed decreased cholesterol uptake. Targeted disruption 
of SR-BI in mice, however, has little effect on in vivo cholesterol absorption [65], 
suggesting that SR-BI might not be essential for absorption of cholesterol from 
the intestine. 

3. Regulation of Intestinal Cholesterol Absorption and  
Synthesis 

The intestine plays an important role in the tight control of whole-body choles-
terol homeostasis. Reducing the expression of NPC1L1 at the level of transcrip-
tion may reduce cholesterol absorption. In response to cholesterol intake, ente-
rocytes regulate cholesterol absorption by modulating the activity of NPC1L1 
through a sterol sensing domain and a sterol regulatory element in the promo-
ter. The PPAR regulates expression of Npc1l1 [66]. Fenofibrate, a PPARα agon-
ist, inhibits cholesterol absorption through the transcriptional regulation of 
NPC1L1 by binding to a response element upstream of the human NPC1L1 gene 
[67]. GW610742, a synthetic PPARδ/β agonist, reduces cholesterol absorption by 
decreasing Npc1l1 expression without altering the expression of Abcg5 and 
Abcg8 [66]. A cholesterol-rich diet suppresses the expression of Npc1l1 in mice, 
whereas its expression is enhanced in the cholesterol-depleted porcine intestine 
[68]. Upon cholesterol deprivation, NPC1L1, present mostly in intracellular 
membranes, is translocated to the plasma membrane where it can pick up cho-
lesterol and transport it to the ER for esterification and packaging into nascent 
lipoproteins [69]. The efficiency of cholesterol absorption is higher in type 2 di-
abetic subjects with coronary artery disease compared to those without this dis-
ease [70]. NPC1L1 mRNA expression is elevated in patients with type 2 diabetes 
[71]. Furthermore, these patients also have reduced expression of the cholesterol 
efflux transporters ABCG5 and ABCG8, suggesting that cholesterol absorption is 
higher. 

The LXRs and their target genes regulate pathways involved in the metabol-
ism of cholesterol [24]. To activate gene transcription, these receptors form a 
heterodimer with the retinoid X receptor after activation by their natural ligands 
(e.g., oxysterols) [72] that bind to specific LXR response elements in the promo-
ter regions of their target genes. LXRs control cholesterol efflux by regulating 
expression of ABCA1 and ABCG1 [73] and its upregulation results in increased 
transfer of intracellular cholesterol to HDL particles [74]. Activation of LXRs al-
so regulates expression of ABCG5 and ABCG8 [75] and promote the efflux of 
cholesterol to limit cholesterol absorption. 

Besides regulation of cholesterol absorption by PPARs and LXRs, esterifica-
tion of intracellular cholesterol by two ER membrane-localized enzymes, acyl- 
CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2, has also been shown to 
regulate absorption of cholesterol [76]. Even though ACAT1 is expressed ubi-
quitously [77], its level of expression in the mouse small intestine is very low 
[78]. On the other hand, expression of ACAT2 is very high in the small intestine 
and liver [79] [80]. ACAT2, which is specific for cholesterol but not plant sterols, 
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is the predominant enzyme responsible for the synthesis and secretion of cho-
lesterol esters with lipoproteins. The rate of cholesterol absorption is significant-
ly reduced in ACAT2 deficient mice [81]. Substrate availability significantly en-
hances the rate of cholesterol esterification of these enzymes and it is inhibited 
by product accumulation which is relieved by microsomal triglyceride transfer 
protein (MTP) [82]. MTP transfers cholesterol esters from the ER membranes to 
nascent apoB-lipoproteins and its importance in cholesterol absorption has been 
well documented [83]. Reesterification of absorbed cholesterol within the ente-
rocytes is important for bulk entry of cholesterol into nascent chylomicrons. It is 
an important regulator of cholesterol absorption from the intestine that en-
hances the diffusion gradient to favor the entry of intraluminal cholesterol into 
the cell. Thus, the rate of cholesterol absorption is significantly reduced by dele-
tion of Acat2 [81] or pharmacological inhibition of ACAT [84]. 

After liver, intestine is an important organ for cholesterol synthesis and makes 
up 25% of de novo cholesterol synthesis. Cholesterol is synthesized in the en-
doplasmic reticulum (ER) by the concerted action of several enzymes in the me-
valonate pathway. Cholesterol synthesis is regulated by the rate limiting enzyme 
in the synthetic pathway called 3-hydroxy-3-methylglutaryl co-enzyme A 
(HMG-CoA) reductase which converts HMG-CoA into mevalonate. This en-
zyme is tightly regulated at both transcriptional and post-translational levels and 
is the pharmacological target for cholesterol lowering drugs such as statins. In-
hibition of HMG-CoA reductase has been shown to increase cholesterol absorp-
tion through a lowering of ABCG5/G8 and an increase in NPC1L1 [85]. Studies 
have suggested that the intestine may play an important role in the diabetes-  
induced increase in plasma cholesterol levels. In streptozocin-induced diabetic 
rats, de novo cholesterol synthesis in the intestine, and not in the liver, is in-
creased two- to three-fold [86]. Similar results of increased cholesterol synthesis 
in the intestine have been observed in different diabetic animal models [87]. Ac-
tivity of HMG-CoA reductase increases in the intestine of diabetic rats [88]. 
However, in the liver, HMG-CoA reductase activity is normal in moderately di-
abetic rats [89]. These observations suggest that an enhancement of intestinal 
cholesterol synthesis may be a general phenomenon in diabetic animals. 

4. Pharmacological Targeting of Intestinal Cholesterol  
Absorption 

Cholesterol is an important biological component of cell membranes, and plays 
an important role in several biosynthetic pathways such as steroid hormone and 
bile acid synthesis. However, high levels of cholesterol are associated with in-
creased atherosclerosis. Besides risk factor for cardiovascular disease, abnormali-
ties in cholesterol metabolism have been associated with type 2 diabetes. There-
fore, maintenance of cholesterol homeostasis is critical for preventing such dis-
eases. Intestine has been shown to play an important role to maintain its ho-
meostasis [20] and has emerged as a dynamic organ with tremendous therapeu-
tic potential for lowering cholesterol. 
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In a substantial proportion of individuals, statin therapy is not sufficient to 
prevent the risk of cardiovascular disease [90]. Therefore, a particular interest 
has been shown to understand the processes that govern the transcellular 
movement of cholesterol across the absorptive cells of the intestinal tract for de-
veloping new drugs for the treatment of coronary artery disease. Ezetimibe has 
been shown to specifically decrease cholesterol absorption after binding to 
NPC1L1 [91]. Furthermore, ezetimibe has been shown to inhibit the develop- 
ment and progression of atherosclerosis in ApoE knockout mice by reducing 
cholesterol absorption and plasma cholesterol levels [92]. Similarly, a significant 
reduction in cholesterol absorption and significant protection from the devel-
opment of atherosclerosis was observed in NPC1L1 and ApoE double knockout 
mice [93]. In humans, ezetimibe monotherapy or combined treatment with sta-
tins has been very effective to decrease hypercholesterolemia [94] [95]. 

Cholesterol absorption has been shown to be increased in both animal and 
human diabetes [96] due to an increase in NPC1L1. Ezetimibe treatment or 
NPC1L1 deficiency has been shown to improve many metabolic disorders be-
sides hypercholesterolemia in rodents. Hepatic steatosis and insulin sensitivity 
was improved in leptin receptor deficient Zucker obese rats treated with ezeti-
mibe [97] [98]. Furthermore, ezetimibe treatment or NPC1L1 deficiency was 
shown to attenuate insulin resistance in mice fed a high fat diet [99] suggesting 
that inhibition of cholesterol absorption through NPC1L1 could be a potential 
therapeutic approach to treat metabolic diseases. 

Rats with induced diabetes have been shown to have impaired expression of 
ABCG5/G8 that was partially reversed with insulin treatment [100]. Similarly, 
this trend in impairment was found in Zucker diabetic rats [101] and in type 2 
diabetic subjects [71]. Plant sterols and stanols have been effectively shown to 
lower plasma cholesterol levels in familial hypercholesterolemia patients through 
ABCG5/G8 transporters [102]. Use of these sterols and stanols as cholesterol- 
lowering agents and as biomarkers of cardiovascular disease have been reviewed 
[103] [104]. Although ezetimibe and plant sterols reduced plasma cholesterol to 
a similar extent, however, a greater protective effect was shown by ezetimibe on 
atherosclerotic lesion area [105]. Some studies have raised concerns over the use 
of plant sterols that accumulate in vascular lesions with increasing supplementa-
tion [106]. Therefore, use of plant sterols as a therapeutic intervention needs 
further evaluation. 

5. Summary 

The intestine is an attractive target for reducing cardiovascular risk because it 
contains several transporters that regulate cholesterol absorption. Cholesterol 
absorption from intestinal lumen into enterocytes and secretion to plasma cir-
culation is a complex process. Several transporters on the apical surface of 
brush-border membranes regulate the amount of cholesterol taken up by the 
enterocytes. An essential role for NPC1L1 in cholesterol absorption is well estab-
lished. Once absorbed, cholesterol is either effluxed back into the lumen by 
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coordinated activity of the two ABC half transporters, ABCG5 and ABCG8, or 
transported from the plasma membrane to intracellular compartments where it 
can be packaged into lipoproteins, or secreted directly on the basolateral side by 
ABCA1. Identification NPC1L1 as a cholesterol transporter on apical brush- 
border membranes have been fruitful for the improvement of treatment strate-
gies to suppress cholesterol absorption in reducing hypercholesterolemia and 
lowering the risk of cardiovascular disease. Recently, NPC1L1 has been the focus 
of research beyond cholesterol absorption and atherosclerosis and its inhibition 
has shown beneficial effects in animals on many components of the metabolic 
syndrome. Further studies need to be done to find better approaches to decrease 
metabolic diseases by regulating intestinal cholesterol absorption. 
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