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Abstract 
GPU (Graphics Processing Unit) is used in various areas. Therefore, the de-
mand for the verification of GPU programs is increasing. In this paper, we 
suggest the method to detect bank conflict by using symbolic execution. Bank 
conflict is one of the bugs happening in GPU and it leads the performance of 
programs lower. Bank conflict happens when some processing units in GPU 
access the same shared memory. Symbolic execution is the method to analysis 
programs with symbolic values. By using it, we can detect bank conflict on 
GPU programs which use many threads. We implement a prototype of the 
detector for bank conflict and evaluate it with some GPU programs. The re-
sult states that we can detect bank conflict on the programs with no loop re-
gardless of the number of threads. 
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1. Introduction 

Nowadays, GPGPU (General-purpose computing on GPU) is one of the most 
remarkable topics in the field of HPC and in various study fields [1]. Originally, 
GPU is used for graphics processing. Beside, GPGPU is to use GPU for other 
general purpose computation. The computation power of GPU achieves results 
greatly for not only graphics processing but also other objects. 

If you want to make the most use of GPU, you should write GPU programs 
with considering the architecture of GPU. One of what you should do is not to 
make bank conflict. Bank conflict happens when some processing units in GPU 
access the same shared memory. When bank conflict happens, the program in-
struction executed in parallel is executed in sequential. As a result, it makes the 
performance lower. It is hard for programmers to find whether bank conflict 
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happens manually. If there is a bank conflict detector for GPU programs, debug-
ging is easier. 

In this paper, we propose the method to detect bank conflict. The method uses 
symbolic execution to analysis GPU programs. By executing symbolically, GPU 
programs using many threads can be executed with the number of states small 
and state explosion is lightened. We implement a prototype of our method and 
evaluate it with some tests. 

2. Related Works 

In Utah university, P. Li, G. Li and G. Gopalakrishnan study verification for 
GPU programs with symbolic execution [2]. In our study, we target GPU pro-
grams written in CUDA, the environment and language for GPU programs, and 
use ordinary symbolic execution. In Utah university’s study, they target GPU 
programs written in LLVM, the intermediate representation compiled from 
CUDA codes, and use conclic execution. Conclic execution is the technique that 
programs are executed regarding a part of variables as symbolic values and other 
part of variables as concrete values. It can make the number of states smaller 
than symbolic execution. 

In Imperial College London, A. Betts et al. study verification for GPU pro-
grams with Boogie [3]. Boogie is the verification language proposed by Micro-
soft Research [4]. They convert GPU programs to the intermediate representa-
tion written in Boogie language. Then Boogie verifier is used to check the satis-
fiability of the intermediate presentation. 

In Twente University, M. Huisman et al. study verification for GPU programs 
with separation logic [5]. Strictly speaking, permission-based separation logic is 
used. They check this logic formula while permission for to read or to write is 
added when a memory is accessed and a barrier is executed. 

There are two differences between these related works and our study. First, we 
target GPU programs written in CUDA instead of GPU programs written in 
LLVM. GPU programs written in CUDA is small than written in LLVM so that 
we can reduce the number of states. Second, we verify only bank conflict. Bank 
conflict happens in the same instruction, so we can assume all instruction is ex-
ecuted at the same time. By these two differences, the number of states in execu-
tion is smaller and the verification is easier. 

3. GPU Software 
3.1. GPU Hardware 

GPU architecture is so unique compared to CPU [1]. GPU has hundreds or 
thousands of processing units. Because the number of processing units on GPU 
is huge, eight units make a set and GPU assigns this group to jobs. In this paper, 
based on names in NVIDIA, a GPU vendor, we call processing units on GPU 
SPs (Streaming Processors) and this group SM (Streaming Multiprocessor) 
(Figure 1). 
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Figure 1. GPU Architecture. 

 
One SM has eight SPs, one instruction buffer, and one shared memory. There 

is only one instruction buffer so that eight SPs in one SM execute the same in-
struction at the same time. Each instruction needs four clocks and Su-
per-pipeline is employed in GPU. So each of eight SPs can execute four instruc-
tions at the same time. Therefore, one SM can execute 32 instructions at the 
same time and 32 threads make one warp. GPU handles many warps containing 
thousands or millions of threads and each warp is assigned to one SM. 

3.2. GPU Programs 

GPU Programs are written in the form of SIMD (Single-Instrument Mul-
tiple-Data) [1]. In this form, computers with multiple processing elements per-
form the same operation on multiple data points simultaneously. This form is 
suitable to GPU. There are some environments to make GPU programs in form 
of SIMD. One of the environments is CUDA. CUDA is the language and pro-
gramming environment for GPU programs. we target GPU programs written in 
CUDA and execute it symbolically. 

In CUDA, there are some built-in variables to write programs in form of 
SIMD. To make the description easier, we describe only one built-in variable, 
threadIdx. This variable indicates the index of threads. Enormous threads are 
made on GPU. So threads are managed in a three-dimensional such as x-axis, 
y-axis, and z-axis. ThreadIdx is defined as a structure containing the variables, x, 
y, and z. For example, when six threads are made and each size of dimensions is 
3, 2, and 1, threadIdx’s values are the followings. (x, y, z) = (1, 1, 1), (1, 2, 1), (2, 
1, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1) Each thread uses the same program but the 
processing is changed by using threadIdx. In detail, the condition of branch and 
the address of arrays contain threadIdx. 

3.3. Shared Memory and Bank Conflict 

Shared memory of SM has 32 banks (Figure 2). N address of shared memory 
belongs to (N% 32) bank as shown in Figure 2. For example, 0 address and 32 
address belong to the same bank, 0 bank. The number of banks is 32 for the 
number of threads executed simultaneously is at most 32. One of important 
things is that at the same time, different bank can be accessed but the same bank 
cannot be accessed. If the same bank is accessed simultaneously, programs is ex-
ecuted not in parallel but sequentially. 

Bank conflict is the bug happening by the property of bank. When multiple SP 
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tries to access the same bank of shared memory, completely parallel execution 
isn’t achieved and the performance is lower. This phenomenon is called bank 
conflict. For example, bank conflict happens in Figure 3. The thread that threa-
dIdx. x is 0 accesses 0 address and the thread that threadIdx is 16 accesses 32 ad-
dress. So these two threads make bank conflict. This example is simple but as 
programs are more complicated, it is much harder to detect bank conflict ma-
nually. Therefore, a detector for bank conflict is needed. 

4. Model Checking with Symbolic Execution 
4.1. Satisfiability Modulo Theories 

Before symbolic execution, we describe SAT and SMT. Given a proposal formula 
with proposal variables and logic operators, the problem to check whether a set 
of variables meeting this formula exists is SAT (Boolean or Propositional Satis-
fiability Testing). If the set exists, it is satisfiable. If not, it is unsatisfiable. A tool 
to check SAT is called SAT solver. 

SMT is the extension of SAT with backgrounds in the area of mathematics. In 
SMT, check a first-logic formula with real number, bit operation, and data 
structure. If it is satisfiable, one example meeting this formula is got. Many SMT 
solvers have been developed and we use Z3. 

Z3 is a SMT solver developed by Microsoft Research [6]. It has such theory 
solvers as linear arithmetic, bit-vectors, arrays, and tuples. So we decided to use 
it in our algorithm. There are two points to use Z3. First, we check whether a 
loop should be expanded in symbolic execution. Second, we check whether bank 
conflict happens on each symbolic state. 

4.2. Symbolic Execution 

Symbolic execution is one of methods to execute and analysis programs [7] [8] 
[9]. The main idea of symbolic execution is to use not actual data but symbolic  
 

 
Figure 2. Shared memory and bank. 

 

 
Figure 3. Example causing bank conflict. 
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values as inputs and to represent the values of program variables as symbolic 
formula. As a result, the final outputs calculated by programs represent func-
tions with symbolic values. In symbolic execution, a state of programs in execute 
has the symbolic values of variables and the path condition. A path condition is 
a symbolic formula which means the condition to execute this state. Symbolic 
execution tree is made as a result of symbolic execution. It is an execution tree 
with symbolic formula. 

4.3. Model Checking with Symbolic Execution 

Model checking is one of formal methods to check whether a program meets a 
property. In model checking, use a model to represent the system and a property 
met in the system. Generally, a model is an automaton such as Kripke structure 
and a property is written in temporal logic. 

In our study, a model is a symbolic execution tree and a property is written in 
temporal logic. For the states which access shared memory, the conjunction of 
the negation of the symbolic formula representing the property and the path 
condition is checked by SMT solver. If the conjunction is unsatisfiable, the 
property is met. If the conjunction is satisfiable, the property isn’t met and we 
can get the counter-example. This counter-example is an example of an input 
which doesn’t meet the property. 

5. Our Algorithms 

In our study, bank conflict on GPU programs is detected. To detect it, we use 
model checking with symbolic execution. There are some reasons to use it. 

The first reason is to reduce the state explosion. Bank conflict happens be-
tween any pair of threads. The number of states is enormous considering all 
combinations of all threads. If we assume that the number of threads is n, the 
number of two-threads combinations is ( )1 2n n − . In addition, a branch on 
programs makes more states and it is easy to guess that the state explosion gets 
worse. By using symbolic execution, only one pair of threads having threadIdx 
with symbolic values is needed. This is the main reason to use symbolic execu-
tion. 

The second reason is that we target GPU programs written in CUDA. Inputs 
of programs is usually undecidable, so it is convenient to set symbolic values to 
inputs. If inputs aren’t given, we can detect bank conflict. 

5.1. Overview 

The overview of our study is shown in Figure 4. First, we convert GPU pro-
grams to the control flow graph. Then, symbolic execution is done on the graph 
and the graph is converted to the symbolic execution tree. We will describe how 
to execute symbolically in the next subsection. Finally, for each state of the 
symbolic execution tree, we check whether bank conflict happens by using SMT 
solver. Strictly speaking, for each state of the tree, we give the conjunction of the 
path condition and the condition for detecting bank conflict to SMT solver. If  



K. Hamaya, S. Yamane   
 

164 

 
Figure 4. Overview of our algorithm. 

 
the solver says satisfiable, bank conflict happens. If the solver says unsatisfiable, 
bank conflict doesn’t happen. A condition for detecting bank conflict is shown 
in the later subsection. 

5.2. Symbolic Executor 

It describes symbolic executor in our study. It takes a control flow graph as in-
puts and outputs the symbolic execution tree. Each state of a symbolic execution 
tree contains a program counter, values of program variables, and a path condi-
tion. Initially, an initial state is made. This path condition is True and program 
variables are assigned different symbolic values. Symbolic execution is done in 
the following rules. 

1) In an assignment expression, the path condition isn’t changed but values of 
program variables are calculated. 

2) In a branch expression if (e) S1 else S2, the state is divided into two state, 
“the state that the condition is true” and “the state that the condition is false”. In 
“the state that the condition is true”, the path condition pc is updated to pc ∧  
e. In “the state that the condition is false”, the path condition pc is updated to pc 
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∧  e. In both states, the values of program variables aren’t changed. 
3) In a loop expression, the loop is expanded until the condition is met. SMT 

solver is used to check whether a loop is expanded. If the condition is satisfiable, 
expand the loop. If not, stop expanding the loop. 

5.3. Model Checking 

We check whether bank conflict happens in each state of the symbolic execution 
tree. For it, 1) we convert a path condition for one thread convert into the path 
condition for two threads and 2) we check satisfiability of the conjunction of two 
path conditions and the condition for detecting bank conflict. 

1) Two path conditions are needed because bank conflict happens between 
two threads. The variables in CUDA are local variables, shared memory va-
riables, device public variables, and built-in variables. Local variables and 
built-in variables are peculiar to one thread, so these variables of two threads has 
different symbolic values. Shared memory variables and device public variables 
are common in threads, so these variables have the same symbolic values. 

2) The condition for detecting bank conflict is the conjunction of three condi-
tions. The first condition is for two symbolic variables, a_vaddr and b_vaddr. 
These variables indicate the address of shared memory in which we check 
whether bank conflict happens. These variables are based on the state of sym-
bolic execution tree. The second condition is the following. 

0 blockDim 32, 0 32, 0 32tn a b≤ ≤ ≤ < ≤ <              (1) 

threadIdx _ 32a tn a= ∗ +                      (2) 

threadIdx _ 32b tn b= ∗ +                      (3) 

The variable, threadIdx_a, indicates one of two threads and the variable, 
threadIdx_b, indicates the other. To consider threadIdx in one warp, two threa-
dIdxs need to be chose in a warp. For it, introduce the variables, tn, a, and b. The 
third condition is the following. 

diff _ _ ,  diff %32 0a vaddr b vaddr= − =              (4) 

This condition indicates that the two addresses of shared memory belong to 
the same bank. By this condition, we can check whether bank conflict happens. 
If SMT solver says satisfiable, bank conflict happens and the counter-example 
means the actual values of programs variables. If SMT solver says unsatisfiable, 
bank conflict doesn’t happen. 

6. Implementation 

We develop a prototype of our model checker to detect bank conflict. We pre-
pare seven GPU programs to evaluate the prototype. These programs are a part 
of test cases for GPU programs, Gklee Tests, published by Utah University [10]. 
We made experiments as the number of threads on GPU change to evaluate how 
a change of the number of threads affects the verification time. We consider two 
group of the result. The first group is the group that GPU programs contain no 
loop and other group is that contain a loop. 
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Figure 5 shows the result of evaluation for GPU programs containing no loop. 
Programs containing no loop are the five of seven GPU programs. Thanks to 
regard the number of threads on GPU as the symbolic value, as the number of 
threads increases, the number of states to be checked is fixed. Because the num-
ber of states is fixed, the verification time is also fixed. We achieve the aim that 
the state explosion is reduced if the number of threads increases. 

Figure 6 shows the result of evaluation for GPU programs containing a loop. 
Programs containing a loop are the two of seven GPU programs. In this group, 
an increase in the number of threads makes the number of loop unrolling and 
leads to an increase in the number of states. It is found that we cannot solve the 
state explosion by loops. In our algorithm, a loop is expanded until the loop 
condition is unsatisfiable. If the loop condition is related to the number of 
threads, the number of loop unrolling is larger as the number of threads is larg-
er. Hence we expect that these two programs had the loop involved in the num-
ber of threads and symbolic executor made a larger number of states than Group 
1. Therefore, we need to handle a loop unrolling well to reduce the number of 
states. 
 

 
Figure 5. Group 1. 

 

 
Figure 6. Group 2. 
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7. Conclusions 

In the paper, we describe GPU architecture, model checking with symbolic ex-
ecution, and, the method to detect bank conflict. In our method, we convert 
GPU programs written in CUDA to the control flow graph to execute symboli-
cally and execute symbolically the programs on the control flow graph. Then we 
check whether bank conflict happens on each states of the symbolic execution 
tree given by a symbolic executor. 

We evaluated the prototype of this method. The result shows that we can 
detect bank conflict on programs with no loop regardless of the number of 
threads. It means we achieve to avoid state explosion due to increasing of the 
number of threads. However, when we analyze the programs containing a loop, 
state explosion happens. Hence we need to reduce the number of states by han-
dling a loop unrolling well. 

As the future work, we try to think about the method to reduce the number of 
states by using counter-example guided abstraction refinement (CEGAR) [11]. 
CEGAR is one of good methods to check programs with handling a loop well. 
Besides, we try to detect other bugs on GPU programs. 
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