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Abstract 
In this study, Indium Tin Oxide (ITO) thin films were deposited by electron 
beam evaporation on white glass substrates with thicknesses of about 50, 100 
and 170 nm. We investigated structural properties by X-ray Diffraction (XRD) 
and X-ray reflectivity (XRR). The results showed that ITO thin films have a 
crystalline structure with a domain that increases in size with increasing 
thickness. For uniform electron density, as the thin film roughness increases, 
reflectivity curve slope also increases. Also thinner film has more fringes than 
thicker film. The roughness determines how quickly the reflected signal de-
cays. XRR technique is more suitable for very thin films, approximately 20 nm 
and less. 
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1. Introduction 

Indium oxide doped with tin (In2O3 90%: SnO2 10%) is briefly called ITO that is 
from the most famous transparent conductive oxides. Grown layers’ complete-
ness depends on the quality of interfaces which in turn depend on numbers of 
properties such as crystal structure and defects existence in thin film. In order to 
optimize above characteristics such as high transparency and low electrical re-
sistance parameters such as thickness, doping type and level, and other condi-
tions should be optimized deposited [1]-[6]. ITO has been specified optical 
property of conductive oxides such as In2O3 that heavily depends on caused im-
perfect density by external doping or their growth conditions. Originally, the 
addition of fluorine and tin atoms has been reported for external doping [7]. 
ITO films have played an important role in deciding their characteristics and 
achieving highly crystalline and morphologically uniform thin films on flexible 
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or suitable substrates for two applications [8] [9]. Also ITO thin films find dif-
ferent applications in optoelectronic system, for example, organic light-emitting 
diodes (OLEDs) [7] [10] [11], transparent electrodes, transparent heating ele-
ments, coating electrodes in optoelectronics instruments (flat panel displays 
(FPDs)), photovoltaic cells, charge-coupled tools, electro-luminescence instru-
ments [12] [13] [14], photo-diodes [15] [16] [17], windows with energy efficient, 
electro chromic instruments, liquid crystal displays (LCDs) [18], image sensors 
[19] [20], solar cells [21]-[28], gas sensors, photo crystal and photo electro crys-
tal and heat reflector mirrors [29] [30] [31]. ITO thin films can be produced by 
different deposition techniques such as direct current (DC) and radio frequency 
(RF) magnetron sputtering although a variety of production methods have been 
used for making ITO films [32]-[41], for example electron beam evaporation 
[42] [43] [44], chemical vapor deposition [45] [46], spray pyrolysis [47] [48] and 
reactive thermal evaporation [49]. One of the techniques, important for studying 
physical and structural feature of thin films is X-ray reflectivity (XRR). Also XRR 
is a highly efficient technique to research the structure of thin films from atomic 
scales to micrometer to obtain interface structures of thin film, density, thick-
ness, and interfacial roughness. In the other word, the roughness of an interface 
is considered as a very important parameter in many industrial applications and 
quality of interfaces estimated by that [50] [51]. The ITO has proven to be an 
advanced semiconducting material opening a new window in many electronic 
and optical industries due to its large optical band gap and the plasma frequency 
lying in the near IR spectral region [52]. Spray pyrolysis technique offers a sim-
ple and inexpensive experimental arrangement, ease of adding various doping 
materials, high growth rate and mass production capability for uniform large- 
area coatings which are desirable for industrial applications [53] [54] [55]. Al-
though the dominant commercial market for laser glass is in large laser systems 
for inertial confinement fusion research with application to fusion energy and 
weapons physics science [56], these materials have also found their way into a 
number of industrial and laboratory environments. For example, one leading 
application is in the field of laser shock peening [57]. Structural characteristics of 
thin films are technologically very important. Characteristics of these films are 
necessary to design the films with required physical properties. Grazing inci-
dence X-ray reflectivity (GIXR) technique is becoming popular for structural 
characteristics of thin inorganic and organic films. This is a non-destructive tool 
for structural characteristics of thin films and multi-layer structures. In GIXR 
technique, the X-ray beam is incident on the sample at a grazing angle and the 
interfered reflected beam is collected by an X-ray counter. The interference oc-
curs due to the presence of interfaces in the sample. The interference periods 
depend on the thickness of the layers and the amplitude of the interference os-
cillations depends on the contrast of the electron density between the layers and 
the interfacial roughness. Thus, the GIXR data contain structural information 
about the film such as thickness, density and roughness of the film and its indi-
vidual layers [58]-[64]. This study focuses on structural properties of ITO thin 
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films deposited by electron beam evaporation technique. 

2. Materials and Methods 

In this study, due to high melting point of Indium Tin Oxide (ITO; SnO2, In2O3, 
Merck), the electron beam evaporation method instead of thermal evaporation 
technique was used. Indium Tin Oxide (weight ratio; 90% In2O3 and 10% SnO2) 
was used as the evaporation source. Before the exposure of substrates in the 
vacuum chamber, they were immersed in an acid bath and hydrogen peroxide 
for 20 minutes, and then cleaned in pure acetone for 5 minutes. Finally, they 
were washed with distilled water and then dried. In order to ensure about the 
absence of lipid, the substrates were ultrasonically defeated in bath of alcohol Ethy- 
lic. After installing the substrates in the vacuum chamber of deposition, the initial 
pressure was adjusted to 1 × 10−6 mbar. Then by flowing of inert gas the substrate 
surface was bombarded. The cleaning process of substrate was performed to im-
prove the substrate adhesion and prevent contamination of layers. Control of the 
partial pressure of the oxygen (purity 99.99%) was regulated in stable amount 6.2 
× 10−5 mbar. The film deposition was carried out in deposition rate 0.10 nm·s−1 to 
produce thin films with thicknesses of about 50, 100 and 170 nm. Film thicknesses 
were measured with a quartz crystal microbalance. The substrate temperature, 
during the film deposition, was kept constant at 400˚C for 1 h. 

Characterization 

Structures of ITO thin films were studied using X-ray diffraction (XRD; Philips 
Powder Diffractometer type PW 1373 goniometer) and X-ray reflectivity (XRR; 
XPERT-PRO reflectometer). The X-ray wavelength was 1.5405 Å and the dif-
fraction patterns were recorded over the 2θ range 20˚ - 70˚ with a scanning 
speed of 0.04˚ min−1 for all thin films. The XRR diffraction patterns were rec-
orded over the 2θ range 0˚ - 4˚ with a scanning speed of 0.002˚ min−1 for thin 
films with nominal thicknesses of 50 and 100 nm and a scanning speed of 0.001˚ 
min−1 for thin film with thickness of 170 nm.  

3. Results and Discussions 
3.1. XRD Characterization 

The structural studies of the ITO thin films were carried out using X-ray diffrac-
tion. Figure 1 shows the X-ray diffraction pattern of ITO thin film, clearly de-
monstrating a crystalline structure. 

The most useful information to be extracted by the XRD method is a grain 
size calculation, using the peak width at half height. Peak width at half height 
depends on the number of coherent reflector plates the crystalline structure. 
Using the Scherrer equation, the crystalline domain size (which can be equal to 
or smaller than the grain size) can be calculated from measurement of the width 
of the observed X-ray diffraction peaks: 

.
Cos
KD

B
λ
θ

=                             (1) 
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Figure 1. X-ray diffraction pattern of ITO thin film with deposition rate 
0.10 nm·s−1 and In2O3 spectra peaks. 

 
In which the D represents crystalline domain size (nm), λ is the wavelength of 

the X-ray probe beam (0.15405 nm), B is the peak width at half height (phase 
peak) in terms of radians, K is the shape factor (approximately 0.94) and θ is the 
diffraction angle. Tables 1-3 present the values of K and λ are constant and de-
terminate for each of 5 standard major peaks. Also B and θ values were obtained 
by the use of XPowderProVer.2010.01.30 software. The results of analysis ma-
terial by X-ray diffraction are shown in Figure 1, which can be indexed as the 
primitive cubic system by comparison with data from ITO (JCPDS No. 06-0416) 
[65]. The diffraction peaks at 2θ = 21.88˚, 30.84˚, 35.81˚, 51.32˚, 60.96˚, corres-
pond to (211), (222), (400), (440) and (622) planes respectively. The average size of 
nanoparticles 20 to 34 nm was obtained. X ray diffraction pattern of thin films 50, 
100 and 170 nm is shown in Figure 2. The results show decreasing X-ray diffrac-
tion peak widths with increasing thickness, corresponding to more regular crystal-
line structure of the material and reduced structural. 

3.2. XRR Analyses 
3.2.1. X-Ray Interaction with Matter 
The material index of refraction in the X-ray region can be written as: 

1n iδ β= − +                            (2) 

where 2 2πerδ ρλ≈ , here λ is the X-ray wavelength (λ = 1.54 Å), er  is the 
classical electron radius or Thompson scattering length (2.82 × 10−5 Å), ρ  is 
effective electron density and 4πµβ λ≈ , where µ is the X-ray absorption 
length. Since the X-ray wavelength is comparable with atomic dimensions and 
the roughness of thin film surface, X-ray specular reflection can be described by 
Fresnel laws of classical optics. XRR critical angle is related to the effective elec-
tron density ρ by relation [66]:  

2 π.c erθ δ λ ρ= = ×                       (3) 

Equation (2) is resulting the evaluation of Snell’s law for small angles 
( )sinθ θ≈  [67]. The critical angle for a layer is a function of its electron density, 
if one is known, the other can be determined using XRR. Figure 3 shows, the  
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Table 1. Characteristics of ITO thin film at thickness 50 nm. 

Peaks angle 2θ (deg.) FWHMB (Rad.) FWHMB (˚) Nanoparticles size D (nm) 

21.88 0.01713 0.982 8.60 

30.84 0.00296 0.170 50.65 

35.81 0.01135 0.651 13.40 

51.32 0.01029 0.590 15.60 

60.96 0.00861 0.494 19.49 

 
Table 2. Characteristics of ITO thin film at thickness 100 nm. 

Peaks angle 2θ (deg.) FWHMB (Rad.) FWHMB (˚) Nanoparticles size D (nm) 

21.88 0.02344 1.344 6.29 

30.84 0.00277 0.159 54.15 

35.81 0.01156 0.663 13.15 

51.32 0.00889 0.510 18.05 

60.96 0.01262 0.724 13.30 

 
Table 3. Characteristics of ITO thin film at thickness 170 nm. 

Peaks angle 2θ (deg.) FWHMB (Rad.) FWHMB (˚) Nanoparticles size D (nm) 

21.88 0.00493 0. 283 29.87 

30.84 0.00266 0.153 56.28 

35.81 0.00669 0.384 22.71 

51.32 0.00375 0.215 42.83 

60.96 0.00791 0.454 21.21 

 

 
Figure 2. X-ray diffraction pattern of ITO thin films with deposition 
rate 0.10 nm∙s−1 for thicknesses of 50, 100 and 170 nm. 

 
experimental data of ITO thin films with nominal thicknesses of 50, 100 and 170 
nm. The critical angles directly were obtained from XRR logarithmic curve. 
Then, the mean electron density (MED) of thin films was obtained from Equa-
tion (2) (Table 4). 
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Figure 3. XRR data of ITO thin films in different thicknesses. 

 
Table 4. Calculated structural parameters of ITO thin films for thicknesses 50, 100 and 
170 nm. 

Roughness (nm) Real thickness (nm) MED (e/Å3) Layer 

10.2 57 5.1 50 nm 

10.7 120 5.1 100 nm 

9.3 180 4.8 170 nm 

 
By the way, up proceedings were not carried out for thin film 250 nm due to 

the detection absence of Kiessig fringes. The following equation describes refrac-
tion coefficient n. Materials scattering property is with electron density ρ and 
scattering amplitude 0r  for each electron. 

0
2

2π ,    1r n
k
ρδ δ= = −                       (4) 

where 2πk λ=  and radiation wavelength λ  depends on wave vector k. Elec-  

tron density ρ  is in order 31
Å
eρ  in condensed material. In other word, with  

r0 = 2.82 × 10−5 Å and k approximately 4 Å−1, δ  is in order 610−  and less than 1 
that it describe the refraction phenomenon is visible in range X ray weakly. 
Snell’s law with small angles α′  and α  is according to equation 
cos cosnα α′= . The critical angle is cα α=  for external general reflection 
with control 0α′ =  and with expansion to cosines: 

04π
2 .

r
k
ρ

α δ= =                       (5) 

By using up parameter magnitudes, cα  is in order 1 m radian. Vertical axis 
shows reflected X-ray intensity from the surface and interfacial layers measured by 
the detector, according to the angle 2θ (Figure 3 and Figure 4). The first noted 
notice that attracts attention is Kiessig fringes absence of thin film of 250 nanome-
ters. Thus, XRR technique is more suitable for thin film of less than 100 nm and 
preferably will have very good results for ultra-thin films (less than 20 nm) [58]. 

Figure 5 and Figure 6 have been shown schematic of film structure informa-
tion and detector from film surface with X-ray reflectivity technique. The point  
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Figure 4. Simulated curve of ITO thin films in different thicknesses. 

 

 
Figure 5. Thin film structure information with X-ray reflectivity 
technique. 

 

 
Figure 6. Schematic of X-ray reflectivity detector from thin film sur-
face. 

 
in Figure 4 is critical angle adjustment of films that it illustrates the same quality 
of films in the crystal structure and conditions of film deposition. In the other 
word, the films are relatively uniform electron density (Equations (4) and (5)). 
In early look at the curves; difference in the Kiessig fringes is obvious for each 
sample. According to Equations (4), (5) and with known critical angle, they are 
calculated electron density, refraction coefficient and film thickness according to 
Kiessig fringes of X-ray reflectivity curves. Also reflectivity curve slope is the 
same roughness of thin film surface. Reflectivity curve slope increases with the 
increasing of thin film roughness [68] [69]. 

3.2.2. Roughness and Thickness 
Generally, there are three ways to data analyses of X-ray reflectivity for thin 
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films: 
1) The model of dynamic scattering by using of recursive formula.  
2) The model of Distorted Wave Born Approximate (DWBA). 
3) The model of reverse furrier transform by Born Approximate (BA). 
In present work, the GENX software by DWBA was used to data analyses and 

real thickness of films, also Simulation and fitting X-ray reflectivity data and 
data analysis were carried out using MATLAB software by curve fitting tool 
(smooth) that simulated curves are shown in Figure 6. The Kiessig fringes result 
from constructive and destructive interference of X rays reflected from the two 
interfaces as a consequence of the angular-dependent phase shift. Their period is 
determined by the thickness of the layer. The film thickness is the same distance 
two consecutive peaks incurve and it has reverse relation with its magnitude. In 
the other word, thinner film has more fringes than thicker film (Figure 6). 

To measure the thickness, according to Snell’s law for two consecutive peaks 
of the reflectivity curves: 

2 sindλ θ=                            (6) 

where, d is the thickness of film. Due to the small angle approximation for 
Snell’s law ( )sinθ θ≈ , we have used: 

2 .dλ θ=                             (7) 

Therefore, the thickness of each film is obtained (Table 4). Interference 
fringes are created by the phase difference between X-rays reflected from differ-
ent surfaces. Roughness determines how quickly the reflected signal decays. A 
rougher surface produces more diffuse scatter, causing the reflected beam inten-
sity to decay more with Theta (Figure 6). The roughness of each thin film was 
calculated as shown in Table 4 [68]. 

3.2.3. Optical Theory 
The optical absorption coefficient, α is obtained using the optical absorbance A 
from ( ) 2.303 A dα ν = , d is the film thickness and A was obtained from the 
equation ( )lnA I I=



, I


 and I are the primary and secondary intensity of 
beams, respectively. The film energy gap Eɡ, is calculated using the formula 
from Davis and Mott ( )nh B h Egα ν ν= −  that for direct transition n = 2 and 
for an indirect transition n = 0.5, hν is the input photon energy and B is given by 

04π e bB cE nσ= , 0σ  is the extrapolated dc conductivity at T = 0 K, c is the 
light speed, Eₑ is the extent of the band tailing and nb is the refractive index of 
the material [70] [71] [72] [73] [74] [75]. Also for the amorphous materials in 
the high absorption region ( )4 1 10 cmα −≥ , α can be described using the Davis 
and Mott formula, if the multiple reflections are neglected, the transmittance, T 
of the film is given by: 

( ) ( )2 2exp ex(1 ) 1 p .( )T dR RA α− = −= − −                 (8) 

R is the reflectance that can be determined from measurements of both A and 
T using above equation, which can be rewritten in the following form: 

( ){ }0.5
1 exp .R T dα= −                         (9) 
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The reflectance R of the material of refractive index, n and extinction coeffi-
cient, k is given by: 

( )
( )

2 2

2 2

1
.

1

n k
R

n k

− +
=

+ +
                         (10) 

The absorption coefficient α is related to k by: 

4πkα λ=                            (11) 

where λ is the wavelength. Using above equations the values of R, n, and k are 
calculated, respectively.  

But, if the absorption edge in numerous amorphous materials in the low ab-
sorption region ( )4 1 10 cmα −< , follows the Urbach rule given by [73] [76]: 

( ) exp
e

h
E

ν να
 

∝  
 

                        (12) 

where hν is the photon energy and eE  is the terminative width of localized sit-
uations in the band causing from absence of long-range order (wonky depend-
ing on temperature) [77]. For optimizing the optical and physical properties of 
nanomaterials, the most important parameter to control is the interfacial system 
free energy of the system (solution) [78]. Whit Gibb’s adsorption equation 

di iy y µ= ∑  that µ  is the chemical potential of the adsorbed species and y is  

the superficial adsorption density. d
d i

G
n

µ =  where G is Gibb’s free energy and  

in  is the amount of substance of the component or specie i. Using Gibb’s ad-
sorption equation, the variation of water oxide surface (interfacial) tension with 
ionic strength (I) maximum surface charge density ( )maxσ , and pH has been 
developed from Gibbs adsorption equation.  

It is given as  

( ) ( )
2

0 max
max

0.117sih 1.15 pH
25.7 1 6 Cosh 1.15 1 .ny y y L I I pHσ

σ

 ∆ 
 ∆ = − = − − ∆ −         

maxσ , y, I is given in respectively 2
C

m
, 2

mJ
m

, mol
L

 and 0y  means interfa-  

cial tension at equilibrium [78]. The size of the nanoparticles is directly related 
to the conditions for nucleation that include pH, ionic strength and concentra-
tion of precursors. Solid phases (particles, crystals thin films) evolve from solu-
tions through nucleation and growth processes. The total change in free energy  

of the system is given as ( )3 24 π 4π
3 vG r F r y S θ ∆ = − ∆ +  

, 34 π
3 vr F− ∆  is the  

chemical component while 24πr y  is the surface component vF∆  is the free 
energy per unit volume. With assume that the new phase is there-fore and  

spherical has a volume of 34 π
3

r . 24 π
3

r  is the surface component of the free 

energy due to surface tension ( ) ( ) ( )22 Cos 1 Cos
4

S
θ θ

θ
+ −

=  where θ is the  

wetting angle ( )S θ  differentiates the expression for change in free energy of 
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the system from that of homogeneous nucleation [78] [79]. 

3.2.4. Suggestions 
Using of X-ray reflectivity technique for various thin films study and investiga-
tion, the films should be very thin (approximately 20 nm and less). 

4. Conclusion  

In this work, ITO thin films were deposited by electron beam evaporation on 
white glass substrates with thicknesses of about 50, 100 and 170 nm. Using XRD 
and XRR, as the thickness were increased; the changes in structural properties of 
the ITO thin films were investigated. The results showed that ITO thin films 
maintained the crystalline structure and they had crystalline structure with a do- 
main that increased in size with increasing thickness. The distance between the 
Kiessig fringes is inversely proportional to the thickness of film. Hence, thicker 
films have smaller fringes compared with thinner films. The films with relatively 
uniform electron density, with increased reflectivity curve slope, increase thin 
film roughness. Roughness determines how quickly the reflected signal decays. 
Performed proceedings for each three thin films were not carried out for thin 
film 250 nm due to the detection absence of Kiessig fringes. Thus, XRR tech-
nique is more suitable for thin film of less than 100 nm and preferably will have 
very good results for ultra-thin films (less than 20 nm). 
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