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Abstract 
The role of nonlinearities in the dynamics of the non-equilibrium systems is 
considered. Various types of nonlinearities for dynamical systems with holo-
nomic and nonholonomic constraints are studied. Features of the nonlinearity 
responsible for the evolution of the systems to the equilibrium are considered. 
The interrelation of the nonlinearities with the concepts of symmetry break-
ing is analyzed. Mathematical justification of the irreversibility of the dynam-
ics of systems is offered. Peculiarities of nonlinear nonequilibrium systems 
connected with hierarchical structure of natural objects are studied. 
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1. Introduction 

Natural systems in generally are open and nonequilibrium. Evolutionary pro- 
cesses of emergence and development of new structures are inherent to them. 
These processes are nonlinear because they are associated with increasing of the 
entropy but the increment of the entropy is determined by the infinitesimal qu-
adratic nonlinear terms [1]. Therefore, the study of the natural evolutionary 
phenomena is impossible without the development of the mathematical appara-
tus for solving systems of nonlinear differential equations. Despite the consider-
able efforts to develop methods for solving nonlinear equations [2] [3] [4] [5], 
there are no methods to solve them today. There are only a limited number of 
such equations, for which it is possible to obtain an analytical solution [5] [6].  

As a rule, for solving systems of nonlinear differential equations, they reduced 
to integrable equations by replacing the variables. The choice of the independent 
variables is determined by the nature of the symmetry of equations. Most of the 
nonlinear equations are simplified by the linearization. Sometimes the simplifi-
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cations of the models of the systems under study, or hypothesis for simplifica-
tion of the systems of equations are used. As a rule, with such simplifications, 
the nonlinear effects that determine the evolution of the system are lost. For 
example, the use of the hypothesis about holonomicity constraints in the con-
struction of the canonical formalisms for a system of material points (MP) has 
led to the exclusion of nonlinear terms, responsible for dissipative processes [7]. 
As a result, the description of the irreversible evolution of open nonequilibrium 
systems within the formalism of classical mechanics became impossible [7] [8]. 

The development of computer technology helps to solve nonlinear equations 
using numerical methods. However, numerical methods are convenient for pra- 
ctical applications or checking theoretical conclusions but they almost did not 
disclose the physical nature of the process. 

The difficulty of the analytical solutions of nonlinear equations led to the de-
velopment of qualitative methods of analysis. They, in particular, used to identi-
fy the statistical regularities of systems dynamics for the study of their phase 
portraits. These methods are effective in the study of dynamical chaos. They are 
also widely used for bifurcation analysis, for studying the characteristics of the 
nonlinear equations and for seeking of new nonlinear effects [3] [9] [10]. 

The presence of the universal laws of evolution of systems, regardless of whe- 
ther these are objects of the universe, or it is the atomic system [11], indicates on 
the universality of non-linear processes. This means the possibility the existence 
of universal methods for solving nonlinear equations. To find these techniques, 
the classification of different types of nonlinearities in line with the nature of the 
physical process can be useful. Such a classification is useful also for studying the 
nonlinear processes of evolution of systems in nature, for the development of 
physical theories of the foundations of evolutionary processes in open nonequi-
librium systems [12]. The classification of the nonlinearities and corresponding 
processes can help to simplify the corresponding equations, not excluding the 
possibility of studying the effects associated with the evolution and to develop 
analytical and numerical methods for solving nonlinear equations, basing on the 
knowledge of the nature of the processes. 

The classification of the different types of the nonlinearity is possible to realize 
by starting from the analysis of the physical nature of the corresponding nonli-
nearities. The most natural criterion for separating the different types of nonli-
nearities, inherent for the dynamical systems of classical mechanics, is divide 
these systems in connection with holonomic and nonholonomic constraints. 
Accordingly, the first type of the nonlinearities consists from those nonlineari-
ties, that inherent for the conservative Hamiltonian systems with the holonomic 
constraints. The second type of non-linearity consists of nonlinearities, which 
determines the dynamics of non-Hamiltonian systems with nonholonomic con-
straints. This type of non-linearity belongs to the dissipative systems [1] [8].  

The main purpose of the work is to analyze the class of the nonlinearities, re-
sponsible for the irreversible dynamical systems of the classical mechanics. For 
this purpose, we determine the nature of the class nonlinearities which response 
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for irreversibility. The connection between the nonlinearities and irreversibility 
of the systems dynamic will be analyzed also. The characteristics of these nonli-
nearities for nonequilibrium systems (NS), taking into account their hierarchical 
structure, will be studied. 

2. Nonlinearities for Hamiltonian and Non-Hamiltonian 
Systems 

The possibility of integrating the dynamics equations of the classical mechanics 
is determined by the properties of the system itself and by the nature of the re-
striction that are imposed on the system. The restrictions are divided on the ho-
lonomic and nonholonomic. 

Holonomic constraints are such restrictions, which can be expressed through 
the full differential of the spatial variables. For systems with holonomic con-
straints, the task is reduced to the solution of independent equations for the ge-
neralized independent variables. Hypothesis about holonomicity constraints is 
used for obtain the Lagrange and Hamilton canonical equations [13].  

For Hamiltonian systems, the energy of each element is invariant. The nonli-
nearities, existing in Hamiltonian systems, causes fragmentation of scale that 
characterizes the dynamics of each individual element [12] [14]. An example of 
Hamiltonian systems is a system of non-interacting of oscillators. Therefore, the 
canonical formalisms of classical mechanics do not apply for the study of nonli-
near processes responsible for the evolution, because evolution is possible for the 
interaction elements. Interactions of components lead to the dissipation and the 
presence of attractors, which is a characteristic feature of evolution. Thus, the 
hypothesis of holonomic constraints leads to the fact that canonical Lagrange 
and Hamilton equations cannot be applied to analysis of the irreversible pro- 
cesses [14] [15] [16] [17]. 

Non-holonomic constraints cannot be expressed through the total differential 
of a function of space variables [13] [18]. Uncouple generalized variables for 
nonholonomic systems are impossible. Non-holonomic constraints mean pres-
ence a nonlinear transformation of energy between elements of the system. The 
total energy of the system elements, rather than energy of a single element, is an 
invariant of the system, i.e. the dynamic of the non-holonomic system, unlike 
holonomic, can only be nonlinear, because they are characteristic of the energy 
exchange between the system components or between interacting systems. These 
processes of the systems interaction are determined only by the nonlinear terms.  

Thus, the nonlinearities responsible for the evolution of the NS to the equili-
brium or for the interaction systems are inherent only for the systems with non- 
holonomic constraints. Since these nonlinearities responsible for the evolution 
of the system, we will call them “evolutionary nonlinearities”. 

3. The Dynamic of the MP Systems and Non-Linearity 

We will construct this work based on the mechanics of structured particles (SP), 
where SP is equilibrium system from a great enough number of the potentially 
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interaction MP [14] [15] [16]. The essence of the mechanics of SP is that the 
base elements of the bodies for the motion equations are SP, unlike classical me- 
chanics where elements of bodies are MP. This mechanics allows studying the 
nonlinear dissipative processes, which inherent to the NS, basing on the laws of 
classical mechanics [14] [15] [19]. 

The generality of the analysis of dynamics of systems of nonlinear equations 
of classical mechanics is that any non-equilibrium systems in the local thermo-
dynamics equilibrium approach with sufficient accuracy can be represented by a 
set of interacting SP [1] [20]. 

The motion of MP system is determined by the influence of two independent 
types of internal and external of forces. The internal forces are determined by 
the interaction of MP. The sum of these forces is equal to zero. External forces 
determine the motion of the system in space. The external forces may be differ-
ent for different MP due to the inhomogeneity of the external field. In this case, 
the external forces will change the internal energy of the system. The internal 
motions of the MP in the system relative to the CM, do not contribute into the 
motion of the system in space.  

Since the internal energy and the motion energy are independent, the energy 
of the system should be presented as the sum of the energy of motion of the sys-
tem and of the internal energy. We can do this presentation of the energy with 
the help of independents macro- and micro-variables. The energy of the system 
that provided in these variables has the form [14] [15]: 

tr env ins
N N NE T U E= + +                      (1) 

where 2 2tr
N N NT M V= , NM mN= ; m  is a mass of MP (let’s assume m = 1); 

N  is a number of MPs into SP; ins ins
N N NE T U= +  is internal energy;  

2
1 2Nins

N iiT mv
=

= ∑   is a kinetic component of the internal energy;  

( ) ( )1int
1 1

N N
N ij ij iji j iU r U r−

= = +
= ∑ ∑  is MPs interaction energy; ij i jr r r= −  is a dis-

tance between i -th and j -th MP; envU  is the potential energy of the external 
field, which depends on the micro- and macro-variables in general. By differen-
tiating Equation (1) with respect to time and performing some conversion, we 
obtain [14] [15]: 

ins env env
N N N N NV M V E V F+ = − −Φ                (2) 

where ( )( )1
Nins

N i i ii i
E v mv F r

=
= +∑ 

    is a change of the internal energy; ( )i i
F r  

is a force which acts on i -th MP; ( )1
N

N iiR r N
=

= ∑ , N NV R=   are coordi-
nates and velocities of the CM; i N ir R r= +  , i N iv V v= +   are coordinates and 
velocities of MPs; ,i iv r  , are coordinate and velocity of i -th MP relative to the 
CM; ( )1 ,Nenv env

i N iiF F R r
=

= ∑  ; ( )1 ,Nenv env
i i N ii v F R r

=
Φ = ∑   ; env env

i iF U r= ∂ ∂  
(Here we call as a force the gradient of the potential energy. Therefore, these 
forces are negative in relation forces which determined from forces potential 
function [18]).  

Let’s assume that R r>>  , then ( )( ) envenv
i i

F r F R r= +  , where R  is a scale 
of non-homogeneity of the external field. As we can see, envF  is expanded on a 
small parameter. By retaining the terms of the zero and first order, we obtain  
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( ) ( )
0 0

0 0

env env env env env
i i i i iR iR

F F F r F F r= + ∇ ⋅ = + ∇ ⋅  .  Since 1 1 0N N
i ii iv r

= =
= =∑ ∑   

and 0 0 01
N env env env

i ii F NF F
=

= =∑ , the following expression for Equation (2) takes 
place [15]: 

( ) ( )0 1 .Nins env env
N N N N N i i ii R

V M V E V F r F v
=

+ ≈ − − ⋅∇∑ 

           (3) 

We see that the second term on the right hand side of Equation (5) depends 
on the micro- and macro-variables. It is different from zero only when the exis-
tence of a gradient of external forces. It is because a change of internal energy of 
the bodies is possible only due to the difference of the external forces acting on 
the different elements of the system. It is not just a bilinear but bisymmetrical as 
it depends on the variables of two different groups of symmetry. The motion 
equation for the system can be obtained from Equation (2) [15]: 

env
NN N NM V F Vα= − −                    (4) 

where ( ) 2env ins
N N NE Vα = Φ +   is a coefficient which determines the change of 

the internal energy. 
The first term in the right hand side of Equation (4) is a potential force, which 

applied to the CM of the system. The second term is determine the change of the 
SP’s internal energy and depends on both micro- and macro-variables. This 
nonlinear term is appeared due to taking into account of the internal energy of 
the system.  

Equation (4) generalizes equation Aristotle and Newton. As Aristotle equation 
says that the speed of a body is proportional to the force. According to Equation 
(4) is true when the frictional force becomes equal to the driving force.  

Newton’s equation states that the acceleration is proportional to force. This 
case is realized when external forces are uniform, or when the internal forces are 
large, so that the system can be considered a solid. 

Let us compare the mechanics of SP [14] with classical mechanics of MP. For 
MP, the work of external forces goes only on its acceleration. However, for the 
system MP the work of external forces goes both on its acceleration and on the 
change of the internal energy. Therefore, the motion energy each MP, non-uni- 
quely determine the motion energy of SP because part of the energy of MP be-
long to the internal energy of SP. The sum of forces acting on MPs changes the 
motion energy of the system. But the internal energy is changes only in the case 
when we have difference of these forces for different MP. It is possible only in 
the non-homogeneous external field of forces and similar as excitation of the 
strings or oscillator [5] [7]. If the gradient of external forces is absent, Equation 
(6) is transformed into a reversible Newton equation. In an inhomogeneous field 
of force the motion equation is defines the transformation of the motion energy 
into the internal energy; i.e. the motion energy is not invariant. The invariant of 
the motion of the system is the total energy.  

Nature of the “evolutionary nonlinearity” can be easily understood by the ex- 
ample of the oscillator in a non-uniform field of the force. To understand this 
nature the energy of oscillator should be expressed in terms of micro- and ma-
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cro-variables as the sum of the motion energy and the internal energy. In the 
non-uniform external forces when the characteristics scales of irregularities of 
the forces are commensurate with the characteristics scale of oscillator, both 
types of energy are related. Depending on the initial phase, the oscillator is able 
to pass through the potential barrier, even when the energy of motion is less 
than the height of the barrier. This transition is carried out due to transforma-
tion of the internal energy into the motion energy [7]. Thus, these nonlinearities 
define the dissipation and symmetry violation of time [14] [21]. 

We start from the condition that the symmetry breaking always connected 
with the violation of the invariance of the measure corresponding to this sym-
metry group. A measure of the translational symmetry in classical mechanics is 
the phase volume, or motion energy of the system. The violation of the inva-
riance of the motion energy is a breaking of the time symmetry. In our case, a 
breaking of the time symmetry is due to transformation of the motion energy 
into internal energy. Such a transformation is determined by the second bilinear 
term of Equation (5), which is simultaneously dependent from the micro- and 
macro-variables.  

4. Evolutionary Nonlinearity for Nonequilibrium Systems  

Let us consider the dynamics of the nonequilibrium systems. In the approach of 
the local thermodynamic equilibrium, nonequilibrium system can be submitted 
as a set of the equilibrium subsystems SP, which in the relative motion to each 
other (Figure 1) [1] [20]. Then to describe the dynamic of nonequilibrium sys-
tems, we can use the motion equations for SP Equation (6). For nonequilibrium 
systems, the work of the external forces will go on the motion and on the change 
of the internal energy. The energy of nonequilibrium systems is equal to the sum 
of the SP energy. The energy of SP consists from the SP motion energy in the 
external field of force, from the motion energy of SP in the field of force of 
another SP, and from the internal energy. 
 

 
Figure 1. Schema of the nonequilibrium system. 
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Let us consider nonequilibrium system consists from N  MP. All MP redi-
stributes between K SP. i.e. p = 1, 2, 3 … K, where p is a number of SP. Each 
p-SP is consists from Lp number of MP, i.e. l = 1, 2, 3 … Lp; 0R  is a coordinates 
of CM for nonequilibrium system; ( )0 1

N
iiR r N

=
= ∑ ; Rp is coordinates of CM 

for p-SP relative to the CM of nonequilibrium system; PLR  is a coordinates of 
l-MP relative CM of p-SP; 0R  is a coordinate of CM of nonequilibrium system. 
The velocity of i -МP is equal to i N p plv V V v= + +  where ( )1

Lp
p l plV v L

=
= ∑  

is a velocity of CM for p-s SP relative to the CM of nonequilibrium system, plv  
is a velocity of l -s MP relative to the CM of p-s SP. In these variables, the ener-
gy of nonequilibrium system can be written as: 

{ }2 2 2
1 1 1

1
,1 1 1

2 2 2

     .
I JI J

K K Lp
N N p p plp p l

K K K env
P P P NP P P

E M V M V mv

U U U

= = =

−

= = =

= + +

+ + +

∑ ∑ ∑

∑ ∑ ∑
         (5) 

Here pM  is a mass of p-SP; ( )1
, ,1 1

Lp Lp
P ip jp ip jpip jp ipU U r−

= = +
= ∑ ∑  is a potential 

energy of p-SP, which determined by interaction all its MP; ,Ip jpr  is a distance 
between ip  and jp  MP; ( ), , ,1 1

Pi Pj

i j Pi Pj Pi PjPi Pj

L L
p p l l l ll lU U r

= =
= ∑ ∑  is energy of po-

tential interaction of ip  and jp  SP. The indexes 
ipl  and 

jpl  belong to MP 
from different SP, i j≠ .  

The first term in Equation (5) is motion energy of nonequilibrium system. 
The second term is a sum of internal kinetic energy of SP. The third term defines 
of the kinetic component of the internal energy of each MP. The fourth term is 
the sum of the internal potential energy of all SP. It is determined by summing 
the indices corresponding for SP. The fifth term is the potential energy of inte-
raction of SP. The term 

1
Kenv env

N ppU U
=

= ∑  is a sum of the potential energies of 
all SP in the field of external forces, env

pU  is a potential energy p-SP in the field 
of external forces.  

As in the case of SP, the motion equation of the nonequilibrium system can be 
obtained from the energy Equation (5) which represented by the hierarchy of the 
micro- and macro-variables. The internal energy of the nonequilibrium system 
is divided into the sum of the SP motion energies and their internal energy. This 
means that the energy of the external field go on the change the motion energy 
of nonequilibrium system, on the change of the energy of SP relative motion and 
on the change of the internal energy of SP. The last two types of energy is the in-
ternal energy of the nonequilibrium system, i.e. in the nonequilibrium system, in 
contrast to the SP, there is an additional hierarchical level. It leads to a hierarchy 
of energy and entropy of the nonequilibrium system. 

The phase space of nonequilibrium system is determined by coordinates and 
velocity of CM for SP. It was called S-space [14]. The dimension of S-space is 6K 
−1. For SP, in addition to changing of the velocity of the CM, the internal energy 
also changes. The micro- and macro-variables are independent. The compres-
sion determined by the extended Liouville equation for the SP [19]. Only when 
the internal energy of the SP is not changed, the S-space coincides with the usual 
phase space. Therefore, the one point of the S-space corresponds to different 
values of internal energy of the SP. This ambiguity is possible to eliminate if to 
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the S-space add by the space of the micro variables, determining motion of all 
MP relative of CM for SP.  

5. The Nature of the Irreversibility of Nonequilibrium  
Systems 

The physical nature of the irreversibility of SP dynamics in an inhomogeneous 
field of external forces was enough to set out in detail in [14] [22]. Here, based 
on evolutionary nonlinearity, consider the nature of the irreversibility of the NS. 

According to the statistical physics, the closed NS tend to equilibrium, which 
corresponds to zero relative velocities of all SP. That is, the kinetic energy of the 
relative motions of the SP, tr

KT →  0 when t →∞  [1]. This is proved by the 
variation of the entropy of the NS under the condition its maximum value in the 
equilibrium state, i.e. in the statistical physics, the proof of the equilibration of 
the NS is constructed using the condition that the equilibrium corresponds to 
the maximum entropy and the state with the maximum entropy corresponds to 
a state in which the system is the maximum time. At the same time, under the 
laws of mechanics, the equilibration of the NS explains by the fact that when the 
SP in an inhomogeneous field of force its internal energy can increase due to the 
non-linear transformation of the motion energy into internal energy [14].  

Now let us show how the equilibration of the system follows from the evolu-
tionary nonlinearity. For this purpose we consider the motion SP in an inhomo-
geneous field of forces. According to Equations (3) and (4) the motion energy of 
the SP can be converted into the internal energy. Suppose that the value of this 
transformation is equal to trE∆ . The value trE∆  is determined by bilinear 
terms of the expansion of the field of external forces, which depend on micro- 
and macro-variablesles. So it trE∆  has the second order of smallness. It can be 
written as 2~trE ε∆ , where 1ε << , is a small parameter, for example, the ratio 
of the characteristic scale of the SP to the characteristic scale of inhomogeneity 
of the external field of forces. We emphasize that this conclusion corresponds to 
the change in entropy of the system, which has a second order of smallness [1] 
[20]. 

If the field of external forces is small, the equilibrium violation for SP can be 
ignored. This means that the energy of its motion is irreversible converted into 
the internal energy. But with sufficient quantities of forces and their gradients, 
equilibrium of the SP can be broken. In this case, it can represent as a set of 
equilibrium subsystems having nonzero relative velocity. Then the increase in 
the internal energy of the system trE∆  is the sum of the increments of energy 
relative motion of equilibrium subsystems and their internal energies. We write 
it like this: tr tr h

insE E E∆ = ∆ + ∆  where tr
insE∆  is the increment of energy relative 

motions of equilibrium subsystems, and hE∆  is increment of internal energy 
of equilibrium subsystems. Consequently, the inequality: tr

insE∆  < trE∆  have a 
place.  

Only the energy of the relative motions of equilibrium subsystems can go back 
into the energy of motion of the full system because the internal energy of the 
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equilibrium system cannot be going into the motion energy of this system due to 
momentum conservation. Let the return energy is equal to tr

retE∆ . The value 
tr
retE∆  is also determined by a nonlinear function of the micro- and ma-

cro-variables that characterize the motion of the whole system and equilibrium 
subsystems consequently. Here are the micro variables determining the motion 
equilibrium subsystems with respect of CM system, and macro-variables deter-
mine the motion of the CM of SP. Since forward and reverse energy flows are 
determined by bilinear terms, then tr

retE∆  also will be determined by the terms 
not less than quadratic power terms trE∆ . But trE∆  is a term of at least second 
order of smallness. Therefore, tr

retE∆  is not lower than fourth order. Hence we 
have 4tr

retE ε∆ ≤ . Consequently, for sufficiently large systems the inequality 
tr
retE∆  << trE∆  will take place. This leads to equilibration, and hence to an in-

crease in entropy of SP in the non-homogeneous field of the external forces.  
Let us explain why the increase of the internal energy becomes irreversible 

only for the big enough systems.  
According to the law of statistical physics, the fluctuations in the value of the 

energy are proportional to the 1 N , where N -is a number MP in a system 
[1]. This means that fluctuations trE∆  and tr

retE∆  will be determined by the 
value 1 N . The inequality trE∆  > tr

retE∆  holds only on average. For suffi-
ciently small N , the fluctuating value of the reverse flow of energy relative 
movements SP into the energy of motion, tr

retEδ  at some point of the phase 
space may be greater than the value of the fluctuating motion the flow of energy 

trEδ into internal energy (where the sign, δ , used to indicate the fluctuations of 
the corresponding quantities). That is, for sufficiently small N , in some cases 
there may be inequality tr tr

retE Eδ δ> , despite the fact that in average the value of 
trE∆  in two orders of magnitude higher than tr

retE∆ . However, with increasing 
number of particles in the system, the fluctuations are reduced and the inequali-
ty tr

retE∆  < trE∆  not violated. But according to the numerical calculations 
D-entropy, this conclusion is also following from motion equations for SP Equa-
tions (3) and (4) [14] [22]. Thus, the tendency of the system to an equilibrium 
state corresponding to the maximum probability arises from the laws of me-
chanics! 

It is necessary to emphasize that the only condition that was used for proving 
of violations of equality forward and reverse energy flow in a sufficiently large 
system, moving in a non-uniform force field, was the condition of inability to 
transform the internal energy of an equilibrium system in its kinetic energy. It is 
equivalently to the statement of inability transformation of the thermal energy 
into the body’s energy of motion due to law of momentum conservation. This 
provided us an opportunity to introduce the concept of entropy in classical me-
chanics. Let us briefly explain how this was done.  

The entropy in classical mechanics was called as D-entropy. D-entropy is de-
fined as the ratio of the increment of internal energy of the system at the expense 
of the energy of motion to the value of the internal energy. Expression of 
D-entropy has the form [17]: 
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{ }1 1[ .p

p

K Ld p
p ks k pp l sS L F v dt E

= =
∆ = ∑ ∑ ∑∫            (6) 

pE  is internal energy of p-SP; s  is external MP for p-SP which interaction 
with the k -th MP from p-SP; p

ksF -is a force changing the velocity of k -th MP 
relative of CM p-SP. This force acted from the s -МP another SP; kv  is a ve-
locity k -th МP relative CM of SP.  

The amount of D-entropy is determined by summing over the part of the 
work of external forces that is goes to the change internal energy of the NS. D- 
entropy is a deterministic because its follows from the motion equations of the 
system.  

Determination of D-entropy is acceptable for small systems. However, for 
them the D-entropy, in contrast from the entropy of Clausius, may be both posi-
tive and negative. The oscillator is example of small systems. The energy of the 
relative motion of the elements of oscillator, which is the internal energy of the 
oscillator, in a non-uniform field of force can goes into its motion energy [7]. 
For systems from a sufficiently large number of MP, D-entropy up to a numeri-
cal factor is equal to the entropy of Clausius and can be expressed in terms of 
temperature and function of heat.  

D-entropy can be used to determine the limits of applicability of the thermo-
dynamic description of the system, the limits of applicability of the laws of sta-
tistical probability. This is confirmed by the numerical calculations of the change 
of the internal energy of the system depending from the number of MP when the 
system is moving in the inhomogeneous field of external forces. 

6. Hierarchical Structure of Matter 

The possibility of transformation of the motion energy of the NS into the inter-
nal energy depends on the characteristic scale of the inhomogeneity of the ex-
ternal field of forces fλ  and the characteristic scales of the NS (Figure 1). 

Let the scale of the NS is nsλ . If f nsλ λ>>  then internal energy of the NS 
does not change and all the work of the field of external forces goes on motion of 
the NS.  

When sp f nsλ λ λ<< ≤ , where spλ  is a characterized scale of SP (Figure 1), 
the internal energy of the NS system is increased by increasing the energy of the 
relative motion of the SP. In this case, the external field of force does not change 
the internal energy of the SP.  

If f spλ λ≤  the external field of force changes not only the energy of the rela-
tive motion of SP, but also change the internal energy of the SP.  

It is follows from the mechanics of the SP that according to the laws of classic-
al mechanics, the matter is infinitely divisible [14]. The infinite divisibility of 
matter follows from the impossibility of formation of an attractor for systems 
from elements that no have a structure [23]. The idea of the infinite divisibility 
subsequently expressed also in the work, which substantiates the existence of the 
mass for photon [23]. The infinite divisibility means that MP should be regarded 
as a system consisting from elements that also have a structure, and so to the  
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infinity. That is, the bodies represent the infinite hierarchy of embedded systems 
with the hierarchy of the characteristic scales 1 2n nλ λ λ λ−<< << << , which 

11, 2, n  is a numbers of the hierarchical levels that tends to infinity. The degree 
of hierarchy corresponds to the degree of non-linearity. Each hierarchical level, 
as a rule, corresponds to other forces. For example, the hierarchy molecules, 
atoms, the nucleus are determined by respective molecular, atomic, nuclear 
forces. For the hierarchy of forces with increasing scale the forces reduced 

1 2 1n nf f f f−<< << << . Matter is stable due to the large difference of forces on 
each hierarchical level. This difference is connected with evolutionary nonli-
nearities. The degree of hierarchy, “n”, which manifests itself in a concrete evo-
lutionary process, is determined by the order of the expansion of the external 
forces. Than higher harmonics of the force expansion, the deeper on the hierar-
chical ladder is the change in internal energy of the system. In practice, the value 
“n” will be limited by the required accuracy for describe the dynamics system. 

The nonlinear terms defining the process of transformation of the body’s mo-
tion energy into their internal energy are functions of the variables hierarchical 
levels. Therefore, D-entropy, and different types of energies are defined, in gen-
eral, by the variables for the all hierarchical levels. The dynamics of the body is 
determined by the dualism of energy on any hierarchical level, because the work 
of external forces for any hierarchical element going both on its motion and on 
the change of the internal energy. 

Evolution of the bodies is connected with the non-linear transformation of the 
flows of external energy into internal energy of its structural elements arranged 
in the hierarchy. Therefore, the description of the evolution is a self-consistent 
nonlinear dynamic task. That is, the field of forces created by the structure the 
nested hierarchical elements of the system, defines the structure of the system, as 
well as the structure of the system is determined by the hierarchy of the field of 
forces. 

The conditions of stationary of the body structures, requires a balance of in-
coming and out-going energy flows at all hierarchical levels. These flows are 
hierarchically chain of non-linear transformations of the body’s motion energy. 
Therefore, for stationary the compensation of dissipative processes for the all 
hierarchical levels is necessary. It is only known the electromagnetic radiation 
for the body, which can to compensate the energy inflow into the bodies [20].  

A key role in the dynamics of systems plays symmetry. The nature of the 
transformation of energy at all hierarchical levels is determined by the external 
symmetries and symmetries of these levels. The nature of spontaneous symmetry 
breaking in the microcosm [23] [24] is similar to the nature of symmetry break-
ing in classical mechanics. The heterogeneity of the external fields of forces de-
termines the symmetry breaking of the time. 

7. Conclusions 

In the framework of classical mechanics, all systems divided into two categories— 
1) systems with holonomic constraints and 2) systems with nonholonomic con-
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straints. This fact defines an obvious criterion to classify the types of nonlinearity.  
So, there are fundamentally different types of nonlinearities that characterize the 

dynamics of the classical systems. The first type is nonlinearities that belong to the 
systems with holonomic constraints. The nonlinearities of the Hamiltonian sys-
tems belong to the first type of nonlinearities, since the requirement of holono-
micity of the constraints is used in the derivation of Lagrange equation. Hamilto-
nian systems are reversible. For them, the volume of the phase space is preserved. 
The nonlinearities inherent to the Hamiltonian systems do not lead to evolution, 
because evolution is impossible without the dissipative processes. 

Another type of nonlinearity, which we have called “evolutionary nonlineari-
ties”, is only possible for systems with nonholonomic constraints. A distinctive 
feature of “evolutionary nonlinearity” is that the corresponding nonlinear terms 
depend on variables of different symmetry groups, which is connected with the 
different hierarchical levels of the body. In the classical mechanics, the “evolutio-
nary nonlinearities” have a place when the system of MP is moving in a nonho-
mogeneous field of force. The presence of the gradient of field of force leads to 
engagement of the micro- and macro-variables defining the system dynamics and 
the dynamics of its internal structure. This leads to the transformation of the sys-
tem motion energy into the internal energy. Thus, the “evolutionary nonlinearity” 
is inherent for the dissipative processes. They lead to the formation and develop-
ment of structures accompanied by production of D-entropy in all hierarchical le-
vels of the system. They determine the irreversibility of the system dynamics and 
violation of time symmetry. 

The irreversibility of the dynamics of systems occurs when a sufficiently large 
number of MP in a system have a place. This is due to the fact that direct flow of 
energy into the system is determined by the non-linear terms of the second or-
der, and the reverse flow of internal energy into kinetic energy of the system is 
determined by the terms of more than fourth order of smallness. With an in-
creasing number of MP, the fluctuations of these flows decrease. Therefore, for 
sufficiently large numbers of MP, the value of the fluctuation of reverse flow 
energy not more than the value of the direct flow of energy 

The condition of the infinite divisibility of matter implies that the bodies are 
represented by a number of embedded systems. Their dynamics are determined 
by the “evolutionary nonlinearities”, and by the hierarchical order, which cor-
responds to the degree of heterogeneity of the field of forces. 

Dynamics systems are determined by the principle of dualism of symmetry at 
all hierarchical levels, as the work for any hierarchical level and on the change of 
its internal energy. 
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