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Abstract 
Let 1 2π π π= −  be the difference of two independent proportions related to 
two populations. We study the test 0 : 0H π ≥  against different alternatives, 
in the Bayesian context. The various Bayesian approaches use standard beta 
distributions, and are simple to derive and compute. But the more general test 

0 : ,H π η≥  with 0η > , requires more advanced mathematical tools to carry 
out the computations. These tools, which include the density of the difference 
of two general beta variables, are presented in the article, with numerical ex-
amples for illustrations to facilitate comprehension of results. 
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1. Introduction 

For two independent proportions 1π  and 2π , their difference is frequently en-
countered in the frequentist statistical literature, where tests, or confidence in-
tervals, for 1 2π π−  are well accepted notions in theory and in practice, although 
most frequently, the case under study is the equality, or inequality of these pro-
portions. For the Bayesian approach, Pham-Gia and Turkkan ([1] and [2]) have 
considered the case of independent, and dependent proportions for inferences, 
and also in the context of sample size determination [3]. 

But testing 1 2π π=  is only a special case of testing 0 1 2:H π π η− ≤ , with η  
being a positive constant value, which is much less frequently dealt with. In 
Section 2 we recall the unconditional approaches to testing 0H  based on the 
maximum likelihood estimators of the two proportions and normal approxima-
tions. A new exact approach not using normal approximation has been devel-
oped by our group and will be presented elsewhere. Fisher’s exact test is also re-
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called here, for comparison purpose. The Bayesian approach to testing the equality 
of two proportions and the computation of credible intervals are given in Sec-
tion 3. The Bayesian approach using the general beta distributions is given in 
Section 4. All related problems are completely solved, thanks to some closed 
form formulas that we have established in earlier papers. 

2. Testing the Equality of Two Proportions 
2.1. Test Using Normal Approximation 

As stated before, taking 0η =  we have a test for equality between two propor-
tions. Several well-known methods are presented in the literature. For exam-
ple, the conditional test is usually called Fisher’s exact test, and is based on the 
hypergeometric distribution. It is used when the sample size is small. Pearson’s 
Chi-square test using Yates correction is usually used for intermediary sample 
size while Pearson’s Chi-square is used for large samples. Their appropriateness 
is discussed in D’Agostino et al. [4]. Normal approximation methods are based 
on formulas using estimated values of the mean and the variance of the two 
populations. For example, we have 

( ) ( ) ( ) ( )
1 1 2 2

1 1 2
1 1 1 1 1 2 2 2 2 21 1

X n X nT
X n X n n X n X n n

−
=

− + −  
, and the pooled version 

( ) ( ) ( )( ) ( )( ) ( )
1 1 2 2

2 1 2

1 2 1 2 1 2 1 2 1 21 1 1

X n X nT
X X n n X X n n n n

−
=
 + + − + + + 

, both being  

approximately ( )0,1N  under 0 1 2:H π π≤ . Cressie [5] gives conditions under 
which 2T  is better than 1T , in terms of power. Previously, Eberhardt and Fligner 
[6] studied the same problem for a bilateral test. 

Numerical Example 1 
To investigate its proportions of customers in two separate geographic areas of 
the country, a company picks a random sample of 25 shoppers in area A, in 
which 17 are found to be its customers. A similar random sample of 20 shoppers 
in area B gives 8 customers. We wish to test the hypothesis that 0 1 2:H π π≤  
against 11 2:H π π> . 

We have here the observed value of 1 1.9459T =  and of 2 1.8783T =  which 
lead, in both cases, to the rejection of 0H  at significance level 5% (the critical 
value is 1.64) for 11 2:H π π> . 

2.2. Fisher’s Exact Test 

Under 0H  the number of successes coming from population 1 has the  
( )1 2 1 2 1Hyp , , ,n n t x x n x+ = +  distribution. The argument is that, in the combined 

sample of size 1 2n n+ , with 1x  successes from population 1 out of the total num-
ber of successes 1 2t x x= + , the number of x successes coming from population 
1 is a hypergeometric variable.  

To compute the significance of the observation we have to compute several 
tables corresponding to more extreme results than the observed table. It is known 
that the conditional test is less powerful than the unconditional one.  
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Numerical Example 2 
We use the same data as in numerical example 1 to test 0 : A BH π π=  vs  

1 : A BH π π>  i.e. the proportion of customers in area A is significantly higher 
than the one in area B. We have Table 1: 
the observed data ( )8Bx = , and also cases more extreme, which means  

0,1, 2, , 7Bx =  . The p-value of the test is hence  

8

0

25 20
25

-value 0.0542
45
25

B

B B

x

x x
p

=

  
  −  = =

 
 
 

∑ . 

Although technically not significant at the 5% level, this result shows that the 
proportion of customers in area B can practically be considered as lower than 
the one in area A, in agreement with the frequentist test. 

REMARK: The problem is often associated with a 2 × 2 table where there are 
three possibilities: constant column sums and row sums, one set constant the 
other variable and both variables. Other measures can then be introduced (e.g. 
Santner and Snell [7]). A Bayesian approach has been carried out by several au-
thors, e.g. Howard [8] and also Pham Gia and Turkkan [2], who computed the 
credible intervals for several of these measures. 

3. The Bayesian Approach 

In the estimation of the difference of two proportions the Bayesian approach 
certainly plays an important role. Agresti and Coull [9] provide some interesting 
remarks on various approaches. 

Again, let 1 2π π π= − . Using the Bayesian approach will certainly encounter 
some serious computational difficulties if we do not have a closed form expres-
sion for the density of the difference of two independently beta distributed ran-
dom variables. Such an expression has been obtained by the first author some 
time ago and is recalled below. 

3.1. Bayesian Test on the Equality of Two Proportions 

Let us recall first the following theorem: 
Theorem 1: Let ( )~ beta , ,  for 1, 2i i i iπ α β =  be two independent beta dis-

tributed random variables with parameters ( )1 1,α β  and ( )2 2,α β , respectively. 
Then the difference 1 2π π π= −  has density defined on ( )1,1−  as follows: 

( )

( ) ( )

( )( )( )
( )
( )( ) ( )

( )

2 11 2

1 2 1 2

11
2 1

2
1 1 1 2 1 2 1 1 2

1 2 1 2 1 2 1 2

1 1
1 2

2
1 2 2 2 1 2 1 2 1 2

, 1

    , 2,1 ; ; 1 ,1 , 0 1

1; 1 ,  0,  if 1,  1

, 1

    ,1 ,1 ; 2, ;1 ,1 , 1 0

B x x

F x x A x

p x B A x

B x x

F x x A x

α ββ β

π

β β α β

α β

β α α β β α β α

α α β β α α β β

α β

β α α α α β β α β

+ −+ −

+ − + −

−

+ + + − − + − − ≤ <

= + − + − = + > + >

− +

− − + + + − + − + − ≤ <

( ) ( )1 1 2 2, ,A B Bα β α β













=

 (1) 
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( )1 .F  is Appell’s first hypergeometric function, which is defined as 

( )
[ ]

[ ]

[ ] [ ]
1 2 1 2

1 1 2 1 2
0 0

, , ; ; ,
! !

i ji j i j

i j
i j

b b x xaF a b b c x x
i jc

+∞ ∞

+
= =

= ∑∑             (2) 

where [ ] ( ) ( )1 1ba a a a b= + + − . This infinite series is convergent for 1 1x <  
and 2 1x < , where, as shown by Euler, it can also be expressed as a convergent 
integral:  

( )
( ) ( ) ( ) ( ) ( )1 2

1
11

1 2
0

1 1 1 dc a b bac
u u ux ux u

a c a
− − − −−Γ

− − −
Γ Γ − ∫        (3) 

which converges for 0c a− > , 0a > . In fact, Pham-Gia and Turkkan [1] es-
tablished the expression of the density of the difference using (3) directly and 
not the series. Hence, the infinite series (5) can be extended outside the two cir-
cles of convergence, by analytic continuation, where it is also denoted by ( )1 .F . 

Here, we denote the above density (1) by ( )1 1 2 2~ , , ,π ψ α β α β . 
Proof: See Pham-Gia and Turkkan [1]. 
The prior distribution of π  is hence ( )1 1 2 2, , ,ψ α β α β , obtained from the two 

beta priors. Various approaches in Bayesian testing are given below. 

Bayesian Testing Using a Significance Level 
While frequentist statistics frequently does not test 0 1:    vs.   :H Hπ η π η≤ > , 
for 0η >  and limits itself to the case 0η = , Bayesian statistics can easily do it. 

a) One-sided test:  
Proposition 1: To perform the above test at the 0.05 significance level, using 

the two independent samples { } 1
1, 1

n
i i

X
=

 and { } 2
2, 1

n
i i

X
=

, we compute  

( )1 2 1 2 1 1 2 2, ,pπ π π π α β α β∗ ∗ ∗ ∗
− − , where i i ixα α∗ = +  and i i i in xβ β∗ = + − , 1, 2i = . 

This expression of the posterior density of π , obtained by the conjugacy of bi-
nomial sampling with the beta prior, will allow us to compute ( )P π η>  and 
compare it with the significance level α . 

For example, as in the frequentist example of Section 2.1, we consider  

1 25n = , 1 17x = , 2 20n = , 2 8x =  and use two non-informative beta priors, 
that is, ( )Beta 0.5,0.5 .  

We note first that 1 2ˆ ˆ17 25 0.68,  8 20 0.40π π= = = = , giving ˆ 0.28π = . 
We obtain the prior and posterior distributions of 1π  and 2π  (Figure 1). 

We wish to test: 

0 1: 0.35   vs   : 0.35H Hπ π≤ >                    (4) 

We have 1 1 2 217.5,  8.5,  8.5,  12.5α β α β∗ ∗ ∗ ∗= = = = : 1H  has posterior proba-

bility ( ) ( )
1

0.35

Pr 0.35 ;17.5,8.5,8.5,12.5 d 0.2855x xπ ψ> = =∫ , and we fail to reject 

0H  at the 0.05% level. This means that data combined with our judgment is not 
enough to make us accept that the difference of these proportions exceeds 0.35. 
Naturally, different informative, or non-informative, priors can be considered 
for 1π  and 2π  separately, and the test can be carried out in the same way. 

b) Point-null hypothesis: 
The point null hypothesis 0 1:    vs.   :H Hπ η π η= ≠  to be tested at the sig-

nificance level α  in Bayesian statistics has been a subject of study and discussion  
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(a) 

 
(a) 

Figure 1. (a) Prior ( )Beta 0.5,0.5  and posterior ( )Beta 17.5,8.5  of 

1π  and (b) Prior ( )Beta 0.5,0.5  and posterior ( )Beta 8.5,12.5  of 

2π . 

 
in the literature. Several difficulties still remain concerning this case, especially 
on the prior probability assigned to the value η  (see Berger [10]). We use here 
Lindley’s compromise (Lee [11]), which consists of computing the ( )1 100%α−  
highest posterior density interval and accept or reject 0H  depending on whether 
η  belongs or not to that interval. Here, for the same example, if 0.35η = , us-
ing Pham-Gia and Turkkan’s algorithm [12], the 95% hpd interval for π  is 
( )0.0079;0.5381− , which leads us to technically accept 0H  (see Figure 2), al-
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though the lower bound of the hpd interval can be considered as zero and we 
can practically reject 0H . 

We can see that the above conclusions on π  are consistent with each other. 

3.2. Bayesian Testing Using the Bayes Factor 

Bayesian hypothesis testing can also be carried out using the Bayes factor B, 
which would give the relative weight of the null hypothesis w.r.t. the alternative 
one, when data is taken into consideration. This factor is defined as the ratio of 
the posterior odds over the prior odds. With the above expression of the differ-
ence of two betas given by (1) we can now accurately compute the Bayes factor 
associated with the difference of two proportions. We consider two cases: 

a) Simple hypothesis: 0 1:    vs   :H a H bπ π= = . Then 
( )
( )

p a
B

p b
π

π

π
π

= , which  

corresponds to the value of the posterior density of π  at a , divided by the val-
ue of posterior density of π  at b . As an application, let us consider the fol-
lowing hypotheses (different from the previous numerical example):  

0 : 0.35H π =  vs. 1 : 0.25H π = , where we have uniform priors for both 1π  and 

2π , and where we consider the sampling results from Table 1. We obtain the 
posterior parameters 1 1 2 218,  9,  9,  13α β α β∗ ∗ ∗ ∗= = = = . Using the density of the 
difference (1), we calculate the Bayes factor,  

( )
( )

1 1 2 2

1 1 2 2

0.35 , , ,
0.8416

0.25 , , ,
B

ψ α β α β

ψ α β α β

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
= = . This value indicates that the data slightly  

favor 1H  over 0H , which is a logical conclusion since ˆ 0.28π = . 
 

 
Figure 2. Prior ( )0.5,0.5,0.5,0.5ψ  and posterior ( )17.5,8.5,8.5,12.5ψ  

distributions of π . The red dashed lines correspond to the bounds of the 
posterior 95%-hpd interval. 
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Table 1. Data on customers in area A and B. 

  Area  

  A B Combined Response 

Response 
Yes 17 8 25 

No 8 12 20 

 Totals 25 20 45 

 
b) Composite hypothesis: As an application, let us consider the hypotheses 

(4), that is, 0 : 0.35H π ≤  vs. 1 : 0.35H π > . 
In general, 0 0:H π ∈Θ  vs. 1 1:H π ∈Θ , where 0 1 RΘ ∪Θ = . We have  

( )0 0Pr posteriorp π= ∈Θ  and ( )1 1Pr posteriorp π= ∈Θ  (or 1 01p p= − ) as 
posterior probabilities. Consequently, we define the posterior odds on 0H  
against 1H  as 0 1p p . Similarly, we have the prior odds on 0H  against 1H ,  

which we define here as 0 1z z . The Bayes factor is 0 1

1 0

p zB
p z

= . Again, we use the  

sampling results from Table 1, yielding the prior and posterior distributions 
presented in Figure 1 with ( )Beta 0.5,0.5  prior separately for both propor-
tions. 

Now, using (4), ( )1 1 2 2, , ,π ψ α β α β∗ ∗ ∗ ∗∼ , we can determine the required prior  

and posterior probabilities. For example, ( )
0.35

0 1 1 2 2
1

, , , dp t tψ α β α β∗ ∗ ∗ ∗

−

= ∫  gives  

0 0.7145p = . In the same way, we obtain 0 0.745z = , using the prior  
( )1 2,1 2,1 2,1 2ψ . Since 1 01p p= −  and 1 01z z= − , we have 1 0.2855p =  

and 1 0.255z = . Finally, the Bayes factor is 0.8566B = , which is a mild argu-
ment in favor of 1H . 

4. Prior and Posterior Densities of π η−  

The testing above can be seen to be quite straightforward, and is limited to some 
numerical values of the function ( ).ψ  that can be numerically computed. But 
to make an in-depth study of the Bayesian approach to the difference  

( )1 2π η π π η− = − + , we need to consider the analytic expressions of the prior 
and posterior distributions of this variable, which can be obtained only from the 
general beta distribution. Naturally, the related mathematical formulas become 
more complicated. But Pham-Gia and Turkkan [13] have also established the 
expression of the density of 1 2X X+ , where both have general beta distribu-
tions. 

4.1. The Difference of Two General Betas 

The general beta (or GB), defined on a finite interval, say (c, d), has a density:  

( ) ( ) ( ) ( ) ( )1 1 1; , ; , , ,   , 0,   gbf x c d x c d x d c B c x dα β α βα β α β α β− − + − = − − − > ≤ ≤   (5) 

and is denoted by ( )~ , ; ,X GB c dα β . It reduces to the standard beta above 
when 0c =  and 1d = . Conversely a standard beta can be transformed into a 
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general beta by addition of, or/and, multiplication with a constant. 
Theorem 2: Let ( )~ , ; ,X GB a bα β  and any two scalars θ , λ . Then 
1) ( )~ , ; , ,X GB a bθ α β θ θ+ + +  

2) ( )~ , ; ,X GB a bλ α β λ λ  when 0λ > . Otherwise, ( )~ , ; ,X GB b aλ β α λ λ  
when 0λ < . 

Proof: 
1) We have  

( ) ( )
( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

1 1 1

1 1 1

, ,

, ,

X Xf y f y

y a b y b a B

a y b

y a b y b a B

a y b

θ

α β α β

α β α β

θ

θ θ α β

θ

θ θ θ θ α β

θ θ

+

− − + −

− − + −

= −

 = − − − − − 
≤ − ≤

 = − + + − + − +  
+ ≤ ≤ +

 

2) For 0λ > , 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 11

1

1 , ,

, ,

X Xf y f y

y a b y b a B a y b

y a b y b a B a y b

λ

α β α β

β α βα

λ
λ

λ λ α β λ
λ

λ λ λ λ α β λ λ

− − + −

− + −−

=

 = − − − ≤ ≤ 

 = − − − ≤ ≤ 

 

When 0λ < , 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1

1 1 1

1

1 , ,

, ,

X Xf y f y

y a b y b a B a y b

y b a y a b B b y a

λ

α β α β

β α α β

λ
λ

λ λ α β λ
λ

λ λ λ λ α β λ λ

− − + −

− − + −

= −

 = − − − − ≤ ≤ 

 = − − − ≤ ≤ 

 

Q.E.D. 
Pham-Gia and Turkkan [13] gave the expression of the density of 1 2X X+ , 

where 1X  and 2X  are independent general beta variables. The density of  

1 2X X− , which is only mentioned there, is explicitly given below. 
Proposition 2: 
Let ( )1 ~ , ; ,X GB c dα β  and ( )2 ~ , ; ,X GB e fγ δ . For the difference  

1 2X X−  defined on ( ),c f d e− − , there are two different cases to consider, de-
pending on the relative values of c e−  and d f− , since 1X  and 2X  do not 
have symmetrical roles. 

Case 1: 

c f d f c e d e− ≤ − ≤ − ≤ −                    (6) 

Case 2: 

c f c e d f d e− ≤ − ≤ − ≤ −                    (7) 

Theorem 3: Let 1X  and 2X  be two independent general betas with their 
supports satisfying (6). Then 1 2Y X X= −  has its density defined as follows: 

For ,c f y d f− ≤ ≤ −  
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( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )

1 1

1

1

,

, ,

              ,1 ,1 ; ; ,

y c f d f y B
f y

d c f e B B

c f y y c f
F

d f y f e

α δ β

α β δ

δ α

δ γ α β

δ β γ α δ

+ − −

+ −

− − − −
=

− −

 − − − −
− − +  − − − 

      (8) 

For ,d f y c e− ≤ ≤ −  

( ) ( )( ) ( )
( ) ( )

( )

1 1

1

1

,

              ,1 ,1 ; ; ,

y d f d e y
f y

f e B

c d d cF
y d f d e y

δ γ

δ γ δ γ

β δ γ α β

− −

+ −

− + − −
=

−

 − −
− − +  − − − − 

      (9) 

and for ,c e y d e− ≤ ≤ −  

( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

1 1

1

1

,

, ,

              ,1 ,1 ; ; ,

d e y y d f B
f y

d c f e B B

d e y y d e
F

d c y d f

β γ δ

β δ γ

β γ

δ γ α β

β α δ β γ

+ − −

+ −

− − − −
=

− −

 − − − −
− − +  − − − 

     (10) 

where ( )1 .F  is Appell’s first hypergeometric function already discussed. 
Proof: 
The argument uses first part 2) of Theorem 1 to obtain that  

( )2 ~ , ; ,X GB f eδ γ− − − . Then, it uses the exact expression of the density of the 
sum of two general betas (see Theorem 2 in the article of T. Pham-Gia & N. 
Turkkan [14]). 

Q.E.D. 
We denote the above density given by (8), (9) and (10) by  
( )1 1 2 2, , , ; , , ,c d e fπϕ α β α β  

Note: The corresponding case 2, when relation (7) is satisfied, is given in Ap-
pendix 1 (Theorem 3a). 

To study the density of ( )1 2π η π π η− = − + , a particular case that will be 
used in our study here is the difference between ( )1 1 1~ , ;0,1X GB α β  and  

( )2 2 2~ , ; , 1 , 1 1X GB α β η η η+ − ≤ ≤ , with η  being a positive constant. 
In this case both Theorem 2 and Theorem 3 apply since c e d f− = −  and 

the middle definition section of ( )1 1 2 2, , , ; , , ,c d e fπϕ α β α β  disappears. 
Theorem 4: Let ( )1 1 1~ , ;0,1X GB α β  and ( )2 2 2~ , ; , 1X GB α β η η +  be two 

independent general beta distributed random variables. Then the density of  

1 2Y X X= − , defined on ( )1 ,1η η− + −   , is:  
1) for 1 ,yη η− − ≤ ≤ −  

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

1 2 21 1
1 2

1 1 2 2

1 2 1 2 1 2

1 ,
, ,

1
  ,1 ,1 ; ; , 1

y y B
f y

B B

y
F y

y

α β αη η α β
α β α β

η
β β α α β η

η

+ − −+ + − −
=

+ + 
− − + + + + 

 

2) for 1 ,yη η− ≤ ≤ −  
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( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

2 1 21 1
2 1

1 1 2 2

1 1 1 2 2 1

1 ,
, ,

1
              ,1 ,1 ; ; 1 ,

y y B
f y

B B

y
F y

y

α β βη η α β
α β α β

η
β α β α β η

η

+ − −− − +
=

− − 
− − + − − + 

 

and we denote this distribution by  

( )1 1 2 2~ , , , ;Y ηξ α β α β η .                    (11) 

Proof: 
This is a special case of Theorem 3. 

Q.E.D. 
An equivalent form using Theorem 4 leads to a slightly different expression, 

which gives however, the same numerical values for the density of π η−  (see 
Theorem 4a in Appendix 1). 

4.2. Prior and Posterior Distributions of π η−  

Let ,  1, 2i iπ =  be two independent beta distributed random variables, the first 
being a regular beta, ( )1 1 1~ beta ,π α β , and the second being a general beta, 

( )2 2 2~ , ; ,1GBπ α β η η+ . 
Binomial sampling, with these two different beta priors, leads to the following  
Proposition 3: The prior distribution of ( )1 2π η π π η− = − +  is  
( )1 1 2 2, , , ;ηξ α β α β η , given by (11), and its posterior distribution is  
( )1 1 2 2, , , ;ηξ α β α β η∗ ∗ ∗ ∗  with i i ixα α∗ = +  and ,  1, 2.i i i in x iβ β∗ = + − =  
Proof: 

( )1 2π π η− +  is the difference of two random variables with respective distri-
bution ( )11beta ,α β  and ( )2 2 ; ,, 1GB ηα ηβ + , The prior distributions of π η−  
is hence ( )1 1 2 2, , , ;ηξ α β α β η , as given by (14).  

Binomial sampling affects these 2 distributions in different ways. For the first, 
the posterior is ( )1 1 11 1beta ,x n xα β+ + −  while the posterior distribution of the 
second is ( )2 2 2 2 2 ; ,, 1x n xGB α ηβ η+ + − +  (see Proposition 3a in Appendix 
2). Figure 3 shows the prior and the posterior of 2 0.35π + . 

From Theorem 4, we obtain the expression of the posterior density  
( ).35 17.5,8.5,8.5,12.5;0.35ξ  of π η−  as follows: 

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

29 7.5

1

16 11.5

1.35 0.35 17.5,12.5
17.5,8.5 8.5,12.5

1.35            12.5, 7.5, 7.5;30; , 1.35 ,
0.35

                                                  1.35 0.35

0.65 0.35 8.5,8.5
17.

x x B
B B

xF x
x

x
f x

x x B
B

+ − −

+ − − + + 
− ≤ < −

=
− +

( ) ( )

1

5,8.5 8.5,12.5

0.65          8.5, 16.5, 11.5;17;0.65 , ,
0.35

                                                    0.35 0.65

B

xF x
x

x













 − − − −  + 
 − ≤ <

      (12) 

Figure 4 shows the above density.  



T. Pham-Gia et al. 
 

11 

 
(a) 

 
(b) 

Figure 3. (a) Prior ( )0.5,0.5,0.35,1.35GB  distribution of 2 0.35π +  and 

(b) Posterior ( )8.5,12.5;0.35,1.35GB  distribution of 2 0.35π + . The 

posterior of ( )1 2π π η− +  is hence given by Theorem 4, as  

( )1 1 2 2, , , ;ηξ α β α β η∗ ∗ ∗ ∗ . 

5. Conclusion 

The Bayesian approach to testing the difference of two independent propor-
tions leads to interesting results which agree with frequentist results when 
non-informative priors are considered. Undoubtedly, all preceding results can be  

0.4 0.6 0.8 1.0 1.2

0
1

2
3

4

2 0.35

P
rio

r D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0
1

2
3

4

2 0.35

P
os

te
rio

r D
en

si
ty



T. Pham-Gia et al. 
 

12 

 
Figure 4. Posterior density ( ).35 17.5,8.5,8.5,12.5;0.35ξ  of  

( )1 2 0.35π π− + . 

 
generalized to other measures frequently used in a 2 × 2 table. 
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Appendix 1 

Below is the expression of the density of 1 2Y X X= −  when (7) is satisfied, in-
stead of (6). This expression, with the one given in Theorem 3, covers all cases.  

Theorem 3a: Let 1X  and 2X  be two independent general betas with their 
supports satisfying (10). Then 1 2Y X X= −  has its density defined as follows: 
for ,c f y c e− ≤ ≤ −  

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( )

1 1

1

1

,

, ,

              ,1 ,1 ; ; ,

y c f c e y B
f y

f e d c B B

c f y y c f
F

c e y d c

α δ γ

δ γ α

α δ

α β δ γ

α γ β α δ

+ − −

+ −

− − − −
=

− −

 − − − −
− − +  − − − 

      (13) 

For ,c e y d f− ≤ ≤ −  

( ) ( )( ) ( )
( ) ( ) ( )

1 1

11 ,1 ,1 ; ; ,
,

y c e d e y e f f ef y F
y c e d e yd c B

α β

α β γ α β δ γ
α β

− −

+ −

+ + − −  − −
= − − +  − − − −−  

 (14) 

For ,d f y d e− ≤ ≤ −  

( ) ( )( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1 1

1

1

,

, ,

              ,1 ,1 ; ; ,

d e y y c e B
f y

f e d c B B

d e y y d e
F

f e y

β γ α

γ α β

β γ

δ γ α β

γ δ α β γ

+ − −

+ −

− − − −
=

− −

− − − − 
− − + − 

       (15) 

Proof: 
By rewriting ( ) ( )2 1Y X X= − − − , we can apply the above Theorem 2 and 

Theorem 3. 
Q.E.D 

A parallel, and equivalent, result to Theorem 4 is given below: 
Theorem 4a: The density of 1 2X X η− −  is:  
For 1 ,yη η− − ≤ ≤ −  

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

1 2 21 1
1 2

1 1 2 2

1 1 2 1 1 2

1 ,
, ,

1
   ,1 ,1 ; ; , 1

y y B
f y

B B

y
F y

y

α β αη η α β
α β α β

η
α α β α β η

η

+ − −+ + − −
=

+ + 
− − + + + + 

 

For 1 ,yη η− ≤ ≤ −  

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

2 1 11 1
2 1

1 1 2 2

1 2 2 1 2 1

1 ,
, ,

1
   ,1 ,1 ; ; 1 ,

y y B
f y

B B

y
F y

y

α β αµ η α β
α β α β

η
α β α α β η

η

+ − −− − +
=

− − 
− − + − − + 

 

and we denote ( )1 1 2 2~ , , , ;Y ηξ α β α β η∗ . 
Proof: 
Similar to the proof of Theorem 4. 

Q.E.D 
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Appendix 2 

Proposition 3a: 
Suppose that ( )2 2 2~ Bin ,X n π  and 2π  has the prior distribution  
( )2 2beta ,α β  then the posterior distribution of 2π η+  is  
( )2 2 2 2 2 ; ,, 1x n xGB α ηβ η+ + − + . 

Proof: 
The prior distribution of 2π η+  is ( )2 2 ;, , 1GB α β η η +  (see Theorem 2) with 

the pdf 

( ) ( ) ( ) ( )2 2

2

1 1 1
2 2 2 2 2 2 2, 1 ,  1f x B α β

π η π α β π η η π η π η
− − −

+ = − + − ≤ ≤ +   , 

The likelihood function is 

( ) ( ) ( ) 2 22
2 2 2 2

2
2 2 2 2 2 2

2

1 ,  0,1, ,n xx
X X

n
f x f x x n

xπ η πθ π π π −
+

 
= = − = 

 
  

Thus the marginal distribution of 2X , the number of success, with 2π θ η= − , 
has density: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2 22

2 2 2 2 2

2 2 2 2 2

2

1 1 12
2 2 2 2

2 2

2

1 1 12

2 2

2

1 1 12

2 2

2

2
2 2 2

2 2

2 2, 1 1 d
,

1 1 d
,

, ,    

,

1 d
,

,

 n xx

x n x

x n x

n
x

B

n
x

B

n
x

B

n
x

x

K x n

B
B

η α β

η

η α β

η

η α β

η

α β θ η η θ π π θ
α β

θ η η θ θ η η θ θ
α β

θ η η θ θ
α β

α β
α β

+ − − −

+ − − −

+ − −+ + −

=

=

=

=

 
 
  − + − −

 
 
  − + − − + −

 
 
  − + −

 
 
 + +

∫

∫

∫

( )2 2n x−

 

Therefore, the posterior distribution of θ  given 2 2X x=  is 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

2 2 2

2 2

2 2 2 22

2 2 2 2 2

2 2
2

2 2

1 1 1 2
2 2 2 2

2

2 2

2

2
2 2 2 2 2

2 2

2
1 1

2 2 2 2 2

,

, 1

,

,

,

wit

1

,
,  1

1
, 1

h 

,

X
X

n xx

x n x

f x f x
f x

n
B

x
n
x

K x

x n x
B

x n

n

B

B x

π η
π η

α β

π

β

η

α

θ θ
θ

α β

α β θ η η θ π π

α β
α β

π θ η η θ η

θ η η θ
η θ η

α β

+

+

− − −

+

−

+ − + − −

=

 
− + − −    

 =
 
 
  −+

= − ≤ ≤ +

− + −
= ≤

−+
≤

+
+

+
 

This is the p.d.f. of ( )2 2 2 2 2 ; ,, 1x n xGB α ηβ η+ + − + . 
Q. E. D. 

End 



 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org   

http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Inferences on the Difference of Two Proportions: A Bayesian Approach
	Abstract
	Keywords
	1. Introduction
	2. Testing the Equality of Two Proportions
	2.1. Test Using Normal Approximation
	Numerical Example 1

	2.2. Fisher’s Exact Test
	Numerical Example 2


	3. The Bayesian Approach
	3.1. Bayesian Test on the Equality of Two Proportions
	Bayesian Testing Using a Significance Level

	3.2. Bayesian Testing Using the Bayes Factor

	4. Prior and Posterior Densities of 
	4.1. The Difference of Two General Betas
	4.2. Prior and Posterior Distributions of 

	5. Conclusion
	Acknowledgements
	References
	Appendix 1
	Appendix 2

