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ABSTRACT 

The mechanisms underlying the secondary or delayed cell death in the hippocampus and cerebral hemisphere after 
traumatic brain injury (TBI) have been poorly understood. Recent data suggesting that TBI may have relationship with 
both an inflammatory and a neurodegenerative factors are also presented. Mitogen-activated protein kinases (MAPK), 
which play a crucial role in signal transduction, are activated by phosphorylation in response to a variety of mitogenic 
signals. In this article, we review the clinical and experimental evidence for brain damage after TBI. In addition, the 
MAPK pathways, closely involved in signal transduction after TBI, which could therefore be a new and potentially ef-
fective therapeutic target in TBI. Further investigations are therefore necessary to better understand cerebral traumatic 
damage and delineate the best practice strategies needed to improve the patient outcomes after TBI.  
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1. Introduction 
Posttraumatic amnesia is a common symptom after TBI, 
and may be related to hippocampal dysfunction [1]. Par- 
ticularly, memory deficits were found in 90% of patients 
had made a good recovery after mild and moderate TBI 
[2]. Patients with mild TBI and persistent postconcussive 
symptoms have a high incidence of medial temporal lobe 
injury [3]. Magnetic resonance imaging (MRI) volumet- 
ric studies showed that predicting the association be- 
tween TBI and premature loss of brain parenchyma is im-
portant in determining the most serious injuries [4-7]. 
However, the pathology of neuronal cell death after TBI 
and the mechanism of MAPK regulation have not yet to 
be fully understood. Further investigations will be nec-
essary to elucidate the mechanism of neuronal injury 
after TBI. We herein review the pathophysiology of TBI 
and alteration of MAPK after TBI. These findings sug- 
gested that a distinct MAPK cascade might participate in 
the pathophysiological disorder after TBI. In addition, 
the MAPK cascades could therefore be a new and poten- 
tially effective therapeutic target in TBI.  

2. Discussion 
2.1. Selective Vulnerability in the CA3 Neurons 

after Experimental TBI 
In the review by Lighthall et al. [8] regarding experi- 

mental TBI models, the authors described and character-
ized the pathophysiologic changes using a fluid percus-
sion injury (FPI) method and a controlled cortical impact 
(CI) technique. Chen et al. [9] described the characteri-
zation of an experimental model of closed head injury in a 
mouse model. The posttraumatic accumulation of cerebral 
edema, the disruption of the blood-brain barrier, histopa-
thology, motor and cognitive functions were investigated 
up to 30 days following closed head (CH) injury. In ad-
dition, Dixon et al. [10] characterized a new FPI model 
of experimental brain injury to systematically examine 
the physiologic and histopathologic responses in rats at 
two levels of injury severity. These reports suggested that 
the modified injury model could reproduce the posttrau-
matic sequelae observed in rats and that some of the data 
obtained in this model were essentially similar to those 
observed in human brain injuries. Hicks et al. [11] sys-
tematically characterized the pattern of neuronal injury at 
sequential time points to identify the selectively vulner-
able regions and to determine the temporal contribution 
of primary and delayed neuropathological events follow-
ing LFP brain injury in rats. The frequency of injured 
neurons was greatest in the ipsilateral cortex, hippocam-
pus, and thalamus, and a visible loss of Nissl-stained 
neurons was observed in these regions starting at 12 
hours after injury. Several experimental studies have su- 
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ggested that a selective vulnerability to TBI was ob-
served in hippocampal CA3 neurons [11-13]. Immonen 
et al. [14] suggested that the assessment of early quanti-
tative MRI changes in the hippocampus and in the peri-
focal area might help to predict the long-term outcome 
after experimental TBI. The injured neurons were shown 
as Nissl-stained dark neurons. Ooigawa et al. [15] stud-
ied the fate of Nissl-stained dark neurons after TBI. In 
the hippocampus the number of dead neurons was ap-
proximately the same number as that of the Nissl-stained 
dark neurons. The data suggested that not all Nissl- 
stained dark neurons inevitably died after TBI. Lowen-
stein et al. [16] showed that neurons of the dentate hilus 
were vulnerable to a brief, unilateral impact to the ex-
tradural surface of the brain using FPI model. This neu-
ronal loss was highly selective since the adjacent dentate 
granule and pyramidal neurons appeared relatively unaf-
fected. In particular, the mechanism of posttraumatic 
selective vulnerability of hippocampal CA3 neurons has 
not yet been fully elucidated.  

2.2. Calcium-Dependent Excitotoxic Processes 
after TBI 

Several studies suggested that TBI induced acute neuro- 
degeneration [17] which lead to progressive atrophic 
changes of the injured cerebral hemisphere [18]. Calcium- 
dependent excitotoxic processes and induction of inflam-
matory cytokines significantly contribute to pathologic res- 
ponses, such as apoptotic programmed cell death [19] and 
glial reaction following TBI [20]. However, the bioche- 
mical cascades underlying posttraumatic signal trans- 
duction, which causes these pathological alterations are 
poorly understood. Matsushita et al. [21] suggested that 
TBI induced neuronal depolarization and excessive exci-
tatory neurotransmitter release, which enhanced gluta-
mate toxicity and led to an increase in intracellular cal-
cium levels [22]. The surge of glutamate might be derived 
from cortical impact depolarization [23], which immedi-
ately induced cytokine genes [24] and neurotrophic genes 
expression within the bilateral cerebral hemisphere [25, 
26]. The NMDA receptor is clearly involved in the 
pathophysiology of TBI [27,28], thus suggesting that an 
injury-induced reduction in the expression of the NMDA 
receptor was one likely mechanism for the impaired ex-
perience-dependent neuroplasticity observed in the im-
mature brain following TBI. Calcium-dependent excito-
toxic processes and induction of inflammatory cy- toki-
nes significantly contribute to pathological responses 
such as apoptotic cell death and glial reactions after TBI. 
As reviewed by Raghupathi et al. [29], the apoptosis of 
neurons and glia contributed to the overall pathology of 
TBI in both humans and animals. While excitatory amino 
acids, increases in intracellular calcium, and free radicals 

can all cause cells to undergo apoptosis, in vitro studies 
have determined that neuronal cells can undergo apop- 
tosis via many other pathways. However, the biochemi- 
cal cascades underlying posttraumatic signal transduction, 
which causes these pathological alterations are poorly un-
derstood. The surge of glutamate might be derived from 
cortical impact depolarization [30], which immediately 
induced cytokine gene expression [31] and neurotrophic 
gene expression within the bilateral cerebral hemisphere 
[32,33].  

2.3. Mitogen-Activated Protein Kinase Pathways 
after TBI 

Recent studies have indicated that TBI induced the ex- 
pression of neurotrophin-related mRNA and receptors 
[34-36] in the rat hippocampus, which triggered down-
stream mitogen-activated protein kinases (MAPK) cas-
cades through interactions with specific high-affinity ty-
rosine kinase receptors [37]. The MAPKs are serine/ thre- 
onine protein kinases that promote a large diversity of 
cellular functions in many cell types, which play a cru-
cial role in signal transduction, are activated by phos- 
phorylation in response to a variety of mitogenic signals. 
The cascades are composed of extracellular signal-regu- 
lated protein kinase (ERK), c-Jun NH(2)-terminal kinase 
(JNK), and p38 pathways (Figure 1). ERK is activated in 
response to growth factors [38], oxidative stress [39], and 
intracellular calcium influx [40]. Activated ERK can 
interact with cytoplasmic components or can translocate 
to the nucleus. Evidence has shown that sustained ERK 
is translocated to the nucleus [41,42] and nuclear trans- 
located ERK can promote neuronal cell death, regulating 
transcription [43], which plays an important role in the 
survival, proliferation, and differentiation of various cells 
[44]. Recently, a new member of MAPKs, ERK5 has 
been identified and implicated in neuronal survival [45]. 
Rapid ERK5 activation was observed in the hippocampal 
CA3 and dentate gyrus regions after cerebral ischemia 
[46]. On the other hand, JNK and p38 are activated in 
response to the presence of inflammatory cytokines [47], 
glutamate toxicity [48]. JNK and p38 cause alterations in 
transcription factors which lead to neuronal apoptosis 
[49]. Several studies suggested the activation of JNK and 
p38 cascades induced neuronal injury following cerebral 
ischemia [50,51] and spinal cord injury [52]. Mandell et 
al. [53] demonstrated that the focal mechanical injury 
induced a rapid activation and spreading of astroglial 
ERK activation in a defined in vitro model and suggested 
that the similar mechanism may result in astroglial acti- 
vation following TBI. However, there has been no re- 
ports focusing on the expression and distribution of 
phosphorylated-MAPKs following TBI in vivo. Otani et  
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Figure 1. Mitogen-activated protein kinases (MAPKs) play 
a crucial role in the transduction of signals through protein 
kinases and protein phosphatases. The MAPK pathways are 
a ubiquitous group of protein serine and threonine kinases 
that regulate gene expression through transcription factor 
activity. The stimulus may transduce to the nucleus to 
regulate gene expression through a distinct set of MAPK 
signal transduction cascades, including extracellular signal- 
regulated kinases 1 and 2 (ERK1, ERK2), p38 mitogen- 
activated protein (p38), and the c-Jun NH2-terminal kinase 
(JNK). These pathways are important mediators of the sig- 
nal transduction responsible for cell growth and prolife- 
ration. The nuclear targets of these MAPK signaling path- 
ways are transcriptional factors, such as transcriptional 
factor activator protein-1 (AP-1) and nuclear factor-kappa 
B (NFκB), which regulate the expression of various genes. 

al. [53] demonstrated that the focal mechanical injury 
induced a rapid activation and spreading of astroglial 
ERK activation in a defined in vitro model and suggested 
that the similar mechanism may result in astroglial acti- 
vation following TBI. However, there has been no re- 
ports focusing on the expression and distribution of phos-
phorylated-MAPKs following TBI in vivo. Otani et al. [54] 
demonstrated that the immunoreactivity of ERK and JNK 
significantly increased following TBI in the rat hippo-
campus. The data presented in that article suggested 
ERK- and JNK-, but not p38-phosphorylation, to be as-
sociated with the molecular sequelae of TBI, and that the 
discrepancy in the MAPK alterations reflected differ-
ences in selective vulnerability between the mechanical 
and ischemical events in the rat hippocampus. Thus, re-
cent studies have suggested that the activation of JNK 
and p38 pathways without an activating ERK pathway 
induced selective CA1 vulnerability to transient forebrain 
ischemia [55,56]. In addition, the authors investigated, 
for the first time, the activation of the MAPK pathways 
in the rat hippocampus following experimental TBI. 

These findings suggest that a distinct MAPKs cascade 
might therefore participate in the selective vulnerability 
of hippocampal CA3 neurons following TBI. Raghupathi 
et al. [57] demonstrated the regional activition of JNK 
and ERK signaling pathways using immunoblotting and 
immunohistochemistry following TBI. Most of the phar- 
macological studies implicating ERK have been carried 
out using PD98059 or U0126 (which inhibits mitogen- 
activated protein kinase/ERK kinase, an upstream acti-
vator of ERK1). Initially, ERK activation was considered 
as a promoter of neuronal survival and memory [58]. 
However, it is now clear that ERK activition can also par-
ticipate in a variety of neuronal death signals [59]. Mori T 
et al. [60] provided the evidence that perturbations in 
MAPK signal-transduction pathways were involved in 
the pathophysiology of TBI. Treatment with PD98059, 
which inhibits the ERK pathway, significantly increased 
cell survival in vitro. ERK pathway inhibition with 
PD98059 resulted in a significant reduction in the corti-
cal lesion volume 7 days after trauma. The p38 kinase 
and JNK inhibitor SB203580 had no detectable benefi-
cial effect. These data indicated that critical perturbations 
in MAPK pathways mediated cerebral damage after 
acute injury, and that ERK was a novel therapeutic target 
in TBI. Otani N et al. [61] studied the effects of inhibi-
tion of ERK phosphorylation using MAPK/ERK (MEK) 
inhibitor U0126 on the histopathological and behavioral 
outcome after TBI. Thus, the administration of U0126 
improved the histopathological and motor functional per- 
formance 3, 4, and 5 days after TBI. The authors sug-
gested that the inhibition of the ERK phosphorylation 
could therefore be a new and potentially effective thera-
peutic target in TBI. Several studies have shown that 
U0126 enhanced the regional cerebral blood flow by 
inducing smooth muscle cells to block the effects of en-
dothelin-mediated vasoconstriction [62]. U0126 has also 
been shown to reverse the permeability of endothelial 
cell monolayers increased by vascular endothelial growth 
factor [63]. In addition, ERK upregulates the extracellu-
lar matrix degrading enzyme matrix metalloproteinase-9, 
which exacerbates the histopathological findings and 
motor performance after TBI [64]. These results suggest 
that the neuroprotective effects induced by U0126 may 
be mediated through a reduction in the vascular perme-
ability thus leading to edema formation after TBI. Accu-
mulating data indicate that extracellular proteolysis also 
plays a critical role in the pathophysiology of neuronal 
cell death after TBI. The two major systems that modify 
the extracellular matrix in the brain are the plasminogen 
activator (PA) and matrix metalloproteinase (MMP) axes. 
Deleterious effects include the disruption of blood-brain 
barrier integrity, amplification of inflammatory infiltrates, 
demyelination, and possible interruption of cell-to-cell 
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and cell-to-matrix interactions that may trigger cell death. 
In contrast, PA-MMP actions may contribute to the ex-
tracellular proteolysis that mediates parenchymal and 
angiogenic recovery after TBI [65]. Asahi et al. [66] 
showed that the MMP is involved in the pathophysiology 
of TBI. In particular, MMP-9 knockout mice were pro-
tected against TBI. Several authors have so far demon-
strated that the resident brain cells secrete MMP after 
injury, astrocytes are the main source of MMP-9 activity, 
and the MAPK pathway is activated after mechanical 
injury, mediating the secretion of MMP-9. These data 
indicate that the MAPK pathway triggers the upregula-
tion in MMP-9 after trauma, and further suggest that tar-
geting the upstream signaling mechanisms that regulate 
deleterious MMP-9 activity may reveal new therapeutic 
opportunities for TBI [64,67]. 

2.4. Induction of Inflammatory Cytokines 
after TBI 

Brain trauma results in neuronal apoptosis and axonal 
tract damage. These pathologies are worsened by the 
inflammatory cascade set into motion by the initial injury 
[68]. Two pro-inflammatory cytokines released after TBI 
are tumor necrosis factor-α (TNF-α) and interleukin-1β 
(IL-1β) [69,70], which induced astrogliosis [71]. Several 
studies have documented rapid increases in TNF-α and 
IL-1β levels after TBI [72-74]. These pro-inflamma- tory 
cytokines stimulated inflammatory cells to release dam-
aging reactive oxygen and nitrogen species, to raise the 
glutamate levels to excitotoxic levels, to impair the abil-
ity of glia cells to buffer extracellular potassium, to com-
promise the blood-brain barrier, and to attract more in-
flammatory cells into the brain [75,76]. Interestingly, 
recent study showed that over-expression of GFAP in- 
duced by TNF-α was significantly attenuated by the ERK 
inhibitor PD98059. The authors in this article suggested 
that TNF-α might upregulate GFAP through the ERK 
pathway [77]. Double immunostaining results in the pre- 
sent study showed that the immunoreactivity for p-ERK 
was almost exclusively localized in astrocytes surround- 
ing the contusional region after 6 hours of TBI. We spe- 
culated that the induction of p-ERK in astrocytes in the 
late period of TBI has an important role of astroglial re-
action led to astrogliosis, which are beneficial for neu- 
ronal survival and repairment of damaged blood-brain 
barrier [78]. Cyclooxygenase-2 (COX-2), a rate-limiting 
enzyme converting arachidonic acid to prostaglandins 
and a key player in neuroinflammation, has been impli- 
cated in the pathogenesis of TBI, which modulate synap- 
tic transmission and plasticity and cause neurodegenera- 
tion after TBI. The actions of these COX-2 metabolites 
are likely mediated by MAPK and inositol 1,4,5-trisphos- 
phate (IP3) signal transduction pathways. In addition, 

recent work [79,80] shows that PGE2-G-enhanced hip- 
pocampal GABAergic and glutamatergic synaptic trans- 
missions are not mediated via PKA and PKC pathways, 
but appear to be mediated through ERK, p38, IP3, and 
NF-κB signal transduction pathways. Yang et al. [81] 
demonstrated that the PGE2-G-induced increase in hip- 
pocampal LTP is attenuated by an IP3 inhibitor, indicat- 
ing the involvement of the IP3-mediated mobilization of 
intracellular Ca2+ in PGE2-G-induced increase in LTP. 
The involvement of ERK and p38 pathways is further 
supported from the molecular evidence. PGE2-G induces 
a time-dependent phosphorylation of ERK and p38MAPK, 
and this phosphorylation is attenuated by ERK and p38 
inhibitors. TBI leads to the development of gliosis, but 
little is known about the signal transduction mechanisms 
that underlie this process. Gliosis is characterized by hy- 
pertrophic and hyperplastic changes of astrocytes in re- 
sponse to brain injury. ERK was widely expressed in 
adult brain with high levels apparent in neocortical neu- 
ronal cell bodies and dendrites [82]. Johanson et al. [83] 
suggested a retrograde axonal transport of p-ERK might 
play a role in neurotrophic signal transmission from the 
nerve terminal to the cell body in the rat sciatic nerve. 
The retrograde axonal transport of p-ERK is of limited 
value because it may take much time to reach the soma 
of neurons [84]. An induction of p-ERK was observed in 
astrocytes surrounding pyramidal CA3 neurons and con- 
tusional area at 6 hours after TBI [54,85], which might 
be derived from intracellular signal transduction in re-
sponse to TBI. Mandell et al. [86] assessed that ERK 
phosphorylation triggered an astroglial reaction which 
led to reactive astrogliosis, which has both beneficial and 
detrimental consequences for the functional recovery of 
neurons. A recent study indicated that reactive astrocytes 
have a beneficial effect on both neuronal survival and the 
repair of the damaged blood-brain barrier [87]. The pro- 
longed phosphorylation of p-ERK in astrocytes might 
thus play a crucial role in the promotion of cell survival 
in the late period of TBI. Reactive astrogliosis is the most 
prominent response to diverse forms of TBI. TBI induced 
GFAP gene expression, which might be a sensitive mo- 
lecular marker for evaluating the global response in pro- 
gressive glial scarring in the rat brain [88]. On the other 
hand, several reports showed that there were close rela- 
tionships between inflammation, cytokine production, 
and astrogliosis [89]. Reactive astrocytes induced the 
expression of a variety of molecules such as neurotrophin 
and growth factor families [90]. Mandell et al. [53] in-
vestigated the mechanism of ERK activation with the pri- 
mary cultured astroglial monolayers subjected to focal 
mechanical injury and demonstrated that cortical focal 
lesion induced a rapid spreading of astroglial ERK acti- 
vation.  
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3. Conclusions 

We herein review the pathophysiology of TBI and altera- 
tion of MAPK after TBI. These findings suggested that a 
distinct MAPK cascade might participate in the patho- 
physiological disorder after TBI. In addition, the MAPK 
cascades could therefore be a new and potentially effec- 
tive therapeutic target in TBI. However, the pathology of 
neuronal cell death after TBI and the mechanism of 
MAPK regulation has not yet to be fully understood. 
Further investigations will be necessary to elucidate the 
effect of MAPK pathway after TBI. 
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