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Abstract 
Electrochemical polymerization of an isothianaphthene based monomer for 
low-bandgap polymer was carried out in a polymer lyotropic liquid crystal. We 
prepared hydroxypropyl cellulose/N,N-dimethylformamide (HPC/DMF) lyo-
tropic liquid crystal system as an electrolyte solution to perform electrochem-
ical polymerization of a hydrophobic monomer, although water was com-
monly employed as a solvent for HPC. Resultant polymer prepared in 
HPC/DMF shows both electro-activity and optical activity. Fourier transform 
infrared absorption spectroscopy measurement reveals that the resultant ma-
terial is composite of HPC and polyisothianaphthene based. 
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1. Introduction 

Isothianaphthene is one of the most studied polymers among conductive poly-
mers. The synthesis requires high experimental technique of ring closure reac-
tion with suppression of side reaction of polymerization [1]-[17]. Protection of 
α-positon of the thiophene ring of the isothianaphthene unit with silyl group has 
been carried out. Vanderzande group synthesized an isothianaphthene sand-
wiched monomer between thiophene units for improving stability, and carried out 
electrochemical polymerization [5] [8]. Resultant polymer shows low-bandgap 
nature derived from isothianaphthene, and shows good redox property. Isothia-
naphthene based polymer also displays good electrochromic property [18] [19] 
[20]. While crystallinity of electrochemically synthesized polymers prepared in 
common organic solvent is high, control of morphology of main-chain structure 
is difficult. To date, we have carried out electrochemical polymerization in low- 
molecular-mass liquid crystal as an electrolyte solution. The polymer thus   
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obtained reflects structure of liquid crystal electrolyte solution from molecular 
level to macroscopic level. However, a large quantity of liquid crystals needs to 
be applied for reaction medium. Further, multi-step synthesis is required for 
obtaining low molecular liquid crystals. Although reuse of the liquid crystal 
electrolyte solution is possible, purification is required. Hydroxypropyl cellulose 
(HPC) is a semi-natural polymer by modification with the propyl group [21] 
[22] [23] [24]. Hydroxypropyl cellulose (HPC) is an amphotropic polymer and 
acts as surfactant. Recently, HPC is used as a template or composite material 
[25] [26] [27]. HPC dissolves in both water and organic systems. Furthermore, 
HPC exhibits lyotropic liquid crystallinity in the water or organic solvent at ap-
propriate concentration. To perform electrochemical polymerization in liquid 
crystal, monomer needs to be dissolved in the liquid crystal electrolyte solution. 
Many monomers are soluble only in organic solvents and have hydrophobic 
property. So, electrochemical polymerization of hydrophobic monomers needs 
to perform in organic solvent. HPC/organic liquid crystal medium can overcome 
this point. High concentrated HPC in DMF solution shows lyotropic liquid cry- 
stallinity, and hydrophobic organic monomers can dissolve in the HPC/DMF 
system. So, organic monomer can polymerize in the HPC/DMF. Moreover, HPC 
shows cholesteric liquid crystal having an optically activity with helical structure 
in organic solvents. The polymer prepared in this system is expected to be chiral 
polymer. Based on this consideration, we electrochemically synthesize an iso-
thianaphthene based optically active low-bandgap polymer in HPC/DMF elec-
trolyte solution. 

2. Experimental 
2.1. Materials 

A monomer [thiophene]-[isothianaphthene]-[thiophene] was prepared by pre-
viously reported method [3]. Hydroxypropyl cellulose was obtained from Wako 
Pure Chemical Industries, Ltd. and used as supplied. Tetrabutylammonium 
perchlorate was obtained from Tokyo Chemical Industry Co., Ltd. and used as 
supplied. N,N-dimethylformamide was obtained from Nacalai Tesque, Inc. and 
used as supplied. 

2.2. Electrochemical Polymerization 

Electrochemical polymerization of a monomer [thiophene]-[isothianaphthene]- 
[thiophene], abbreviated as T-ITN-T, was carried out in hydroxypropyl cellulose 
(Figure 1). Constituents of electrolyte solution are summarized in Table 1. 
Firstly, tetrabutylammonium perchlorate (TBAP) (supporting salt) and mono-
mer was dissolved in N,N-dimethylforma- mide (DMF) (Figure 2(a)). Next, 
hydroxypropyl cellulose was added to the electrolyte solution containing mo-
nomer and supporting salt (Figure 2(b)). The solution was stirred mechanically 
by glass rod for 1 min at room temperature (Figure 2(c)). A polarizing optical 
microscopy image of the lyotropic liquid crystal solution is shown in Figure 3. 
Then, electrochemical polymerization was carried out by using sandwich cell  
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Figure 1. Scheme of electrochemical polymerization of [thiophene]-[isothianaphthene]- 
[thiophene]. 

 
Table 1. Constituents of electrolyte solution. 

Monomer 

Matrix Solvent Supporting salt 

HPCb 
N,N-dimethylformamide 

(DMF) 
( ) −+

44 9 4C H N ClO

(TBAPc) 

 
(T-ITN-Ta) 

7.5 mg 

701.0 mg 403.7 mg 4.1 mg 

a[thiophene]-[isothianaphthene]-[thiophene]; bHydroxypropyl cellulose; cTetrabutylammonium perchlo-
rate. 

 

 
Figure 2. Experimental diagram for preparation of electrolyte solution containing mo-
nomer. 

 

 
Figure 3. Polarizing optical microscopy image of electrolyte solution. 
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method with two ITO glass electrodes (ITO = indium tin oxide) developed by 
our group previously. Direct current (dc) voltage of 2.5 V was applied across of 
the cell for 60 min. A thin film was deposited on an anode side of the electrode. 
After the electrochemical reaction, the sandwich cell was soaked into the water 
to remove the residual HPC from the film surface. After a 30 min, the sandwich 
cell was disassembled easily. The resultant was washed with water, and acetone 
to yield a thin film deposited on the ITO coated glass, abbreviated as 
P(T-ITN-T)/HPC. 

2.3. Measurements 

Optical texture observations were carried out by using an ECLIPS LV 100 high- 
resolution polarizing microscope (Nikon). Fourier Transform Infrared absorp-
tion was obtained with a FT-IR 4600 (Jasco) by using the KBr method. UV-vis 
absorption spectroscopy was carried out by using V-630 (Jasco). Cyclic voltam-
metory were carried out with a μAUTOLAB TYPE III (ECO Chemie). Electrolyte 
solution contained 0.1 M TBAP in acetonitrile. Circular dichroism spectroscopy 
was carried out with a J-720 (Jasco). 

3. Results and Discussion 
3.1. Polarizing Optical Microscopy Observation 

The polymer thus obtained shows clear fingerprint texture under polarizing 
optical microscopy (POM) in Figure 4. The fingerprint pattern is derived from 
cholesteric liquid crystal of HPC helical aggregation, indicating occurrence of 
transcription of helical structure of HPC during the electrochemical polymeriza-
tion. In this case, HPC acts as a helical template. 

3.2. Fourier Transform Infrared Absorption 

Fourier transform infrared (FT-IR) absorption spectroscopy measurements of 
 

 
Figure 4. Polarizing optical microscopy (POM) image of obtained polymer film. 
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HPC (matrix), T-ITN-T (monomer) and P(T-ITN-T)/HPC are shown in Figure 
5. HPC shows broad O-H vibration absorption around 3450 cm−1 due to hy-
droxyl group in the pyranose unit. Absorption band around 2960 cm−1 is due to 
CH2 and CH stretching vibration. The polymer shows absorption band at 3430 
cm−1 due to the O-H stretching vibration of cellulose unis. This result revealed 
that the resultant material is composite of P(T-ITN-T) and HPC. HPC compo-
nent cannot be separated after washing of the film with solvents. 

3.3. UV-Vis Absorption 

In situ UV-vis absorption measurements were carried out during cyclic voltam-
metry measurement. Change in the UV-vis of P(T-ITN-T)/HPC at various ap-
plication potential are shown in Figure 6. The polymer shows absorption band 
at around 550 nm due to π - *π  transition of main chain. A new absorption 
band at 960 nm is derived from polaron band (radical cation) at oxidation 
process (Figure 6(a)). The absorption intensity of polaron band increases with 
application of voltages, indicating progress of electrochemical oxidation (dop-
ing). On the other hands, reduction process (Figure 6(b)) shows decrease of ab-
sorption intensity of the polaron band. The electrochemically reduced state at 0 V 
of the composite has a bandgap of 1.5 eV, which is in the range of low-bandgap 
conjugated polymers. 

Changes in intensity of absorptions are repeatable through electrochemical 
doping/dedopoing (redox) process. To confirm the repeatable electrochromic 
property, change in absorption intensity at 550, 730 and 1030 nm upon repeating 
application of voltage between 0 and 1.0 V (vs. Ag/Ag+) was examined for 750 s 
 

 
Figure 5. FT-IR spectra of hydroxypropyl cellulose (HPC) (black line), monomer (T-ITN-T) 
(blue line) and P(T-ITN-T)/HPC (red line). 
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Figure 6. UV-vis absorption spectra of P(T-ITN-T) at various applied potentials (vs. 
Ag/Ag+). Oxidation process (a) and reduction process (b). 

 
at a scan rate of 50 mV/s (Figure 7). 

3.4. Cyclic Voltammetry 

Cyclic voltammetry (CV) analysis of P(T-ITN-T)/HPC was carried out at vari-
ous scan rates of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mV/s. The CV result is 
shown in Figure 8. First oxidation wave indicates that the polymer film was oxi-
dized and polarons (radical and cation) were generated. At reduction process, 
reduced wave was confirmed, indicating that the polymer film was reduced. The 
polymer film exhibits repeatable redox behavior in the applied potential range 
from 0 to 1.0 V (vs. Ag/Ag+). 

3.5. Circular Dichroism Absorption 

Circular dichroism (CD) absorption spectroscopy measurement was carried out 
for as prepared polymer film and reduced polymer film. The CD spectra of the 
film are shown in Figure 9. The reduced film was prepared by hydrazine vapor 
for 30 min. Reduction allows increase of the absorption band at around 400 nm 
due to decrease of fraction of polarons in the main-chain accompanied by  
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Figure 7. Time dependence of the UV-vis absorption intensity at 550, 730 and 1030 nm 
of P(T-ITN-T)/HPC film during repeated potential cycled between 0 and 1.0 V (vs. 
Ag/Ag+) for 750 s at a scan rate of 50 mV/s. 

 

 
Figure 8. Cyclic voltammogram of P(T-ITN-T)/HPC at various scan rates of 10, 20, 30, 
40, 50, 60, 70, 80, 90, and 100 mV/s vs. Ag/Ag+ reference electrode in 0.1 M/TBAP aceto-
nitrile solution. TBAP = tetrabutylammonium perchlorate. 

 

 
Figure 9. CD spectra of P(T-ITN-T). As prepared state (solid line) and reduced state 
(dashed line). 
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de-doping, indicating optical activity of the composite can be changed by the 
reduction.  

4. Conclusion 

Synthesis of a P(T-ITN-T)/HPC composite film by electrochemical polymeriza-
tion in a HPC liquid crystal medium was successfully carried out. The POM ob-
servation for the composite film shows a fingerprint texture resembling the cho- 
lesteric liquid crystal and indicates that transcription of a helical structure of 
HPC is occurred. In situ UV-vis absorption spectra and cyclic voltammetry show 
that the polymer has repeatable electrochromic property. The CD spectroscopy 
measurements suggest that synthesis of the optical active composite is achieved 
from a monomer having no asymmetric carbon. The optical bandgap of P(T-ITN- 
T)/HPC is estimated to be 1.5 eV, which is in the range of low-bandgap conju-
gated polymers. 
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