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Abstract 
 
The significant challenge in human computer interaction is to create tangible interfaces that will make digital 
world accessible through augmented physical surfaces like walls and windows. In this paper, various acous-
tic source localization methods are proposed which have the potential to covert a physical object into a 
tracking sensitive interface. The Spatial Likelihood method has been used to locate acoustic source in real 
time by summing the spatial likelihood from all sensors. The source location is obtained from searching the 
maximum in the likelihood map. The data collected from the sensors is pre-processed and filtered for im-
provement of the accuracy of source localization. Finally a sensor fusion algorithm based on least squared 
error is presented to minimize the error while positioning the source. Promising results have been achieved 
experimentally for the application of acoustic tangible interfaces. 
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1. Introduction 
 
With ordinary interface devices (e.g. keyboard, mouse 
and touch screen), the interaction of humans with com-
puters is restricted to a particular device at a certain loca-
tion within a small movement area. A challenge in hu-
man computer interaction research is to create tangible 
interfaces that will make the interaction possible via 
augmented physical surfaces, graspable objects and am-
bient media. In this paper acoustics-based remote sensing 
technology is presented since vibrations are the natural 
outcome of an interaction and propagate well in most 
solid materials. This means that the information pertain-
ing to an interaction can be conveyed to a remote loca-
tion [1-3] using the structure of the object itself as a 
transmission channel and therefore suppressing the need 
for an overlay or any other intrusive device over the area 
one wishes to make sensitive. 

Time Difference of Arrival (TDOA) is commonly 
used for source localization without using a universal 
timing mechanism as shown in Figure 1. The principle 
of the TDOA localisation is to measure the time delays 
between the arrivals of the signals to the various sensors. 
These delays result from the distance differences from 
the acoustic impact sources to the sensors at known loca-
tions. To determine time delay of real signals, cross cor- 

relation is commonly used. But in this application its 
result usually contains multiple peaks and therefore there 
is no guarantee that the peak will occur at the correct 
time difference. This problem of noisy cross correlation 
can be handled by accumulating the entire cross correla-
tion vector of each sensor pair rather than selecting the 
single peak of each one. The summation of vectors from 
multiple sensor pairs yields a likelihood map. The high-
est likelihood in the map is the estimate of the source 
location. 

The likelihood mapping method has been developed 
for room acoustics based on two different mathematical 
formulations. In [3] the processing is performed in the 
time domain and known by accumulated correlation, and 
in [4] the processing is performed in the frequency do-
main and known by spatial likelihood function.  

In this paper the likelihood mapping method is en-
hanced for Tangible Acoustic Interface and referred to as 
the Enhanced Likelihood Mapping (ELM). The ELM is 
more robust in searching for the most likely source posi-
tion and less prone to be affected by data fluctuation 
comparing to the TDOA method. Finally a sensor fusion 
algorithm based on least squared error is used to mini-
mize the error of the estimated time differences while 
positioning the source. 
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Figure 1. Tangible Acoustic Interface (TAI) model diagram. 
 
2. ELM Theory 
 
If the source signal is s(t), then the received signal can be 
defined as  

       i i i ig t h t s t n t    ,         (1) 

where ni is independent zero mean white Gaussian noise 
with variance i , theoretically gi(t) can be regarded as 
an estimator for i  where /i iq u v    given ui the 
ith sensor location. Based on Bayes’ Rule, the posterior 
probability that the source is located at q is  
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Since the denominator is a normalization constant, if 
assuming the prior  ,P q s  is uniform, then maximizing 
(2) becomes maximizing the likelihood 
 1, , | ,NP g g q s . With gi is considered as independent 

random variable, it can be shown that  
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Substituting s with its maximum likelihood estimate 
given by 
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in (3), and assuming equal i  for all sensors, then tak-
ing the logarithm yields,  
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is the accumulated correlation and  
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is a constant representing the combined energy of the 
signals. Accordingly the estimated location can be found 
from the maximum of (5).  

The theory of the algorithm is based on treating the 
cross correlation as an observational estimate of 
 1, , | ,NP g g q s  which is related to the posterior es-

timate as given in (1) under the same assumption for the 
prior probability ),( sqP [4]. Thus by substituting the time 
difference ( )ij q  between sensors i and j given as a 
function of source location q in General Cross Correla-
tion (GCC) formula [5], the spatial likelihood function in 
the frequency domain for a pair of sensors is obtained as  

2 ( )*( ) ( ) e dijj f q
ij i jSLF q f G G f








       (7) 

The advantage of (7) is that it allows for the filtering 
processes ( )f  to be performed inclusively in the fre- 
quency domain. 
 
3. ELM Algorithm 
 
Given N sensors, the usable number of time differences 
is given by M none-repeated combinations of sensor 
pairs given by  
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With three sensors, three time differences are available. 
By adding a fourth sensor, the time delay difference is 
doubled to six. The ELM algorithm allows for sensors 
fusion by utilizing M time difference information to im-
prove accuracy and robustness of the estimated location.  

From the above theory and by introducing Hilbert en-
velop detection operator , the proposed ELM algorithm 
for TAI can be formulated in compact form for both of 
time domain and frequency domain as follows and the 
algorithm architectures are shown in Figure 2. 
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where ( ) ( )BPF
BPFg h t g t   is the band pass filtered 

signal resulting from the convolution of the signal g and 
the impulse response of the band pass filter ( )BBFh t . 

( )f  is the weighting filter. The estimated locations 
ˆ ˆ,x y  can then be found by locating the maximum of (9) 

or (10). 
Considering the example of having four sensors lo-

cated on the surface of a tangible object as in Figure 1, 
the theoretical time difference for all sensor pairs can be 
computed numerically from the hyperbola defined by 
(11). However, by summing the spatial likelihood from 
all pairs, the source location can be more reliably ob-
tained from the maximum in the likelihood map as 
shown in Figure 3. 
 
4. Filtering Process in ELM 
 
In the previous section the ELM algorithm is verified for 
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Figure 2. Algorithm diagram for (a) tELM  and (b) fELM . 



M. YANG  ET  AL. 

Copyright © 2011 SciRes.                                                                                  OJA 

37

 

Figure 3. Spatial Likelihood of the source at (0.2 m, 0.3 m). 
 
TAI application using raw signals. However, the local-
ization accuracy and robustness can be further improved 
by use of various filters. The purpose of the pre-filtering 
is to remove the noise from the signal as a result of low 
frequency components and the high frequency compo-
nents from the non linear response of the sensors. The 
use of the popular IIR filter found to be adequately suc-
cessful. The designed digital filter is a 10th order band- 
pass Elliptic filter with lower cut off frequency of 500 
HZ and upper cut off frequency of 8 KHz. It is clear that 
pre-filtering has significantly improved the reliability of 
the estimation as can be seen from the smoothness 
achieved in the likelihood map in Figure 4 where the 
local maximum becomes more distinctive compared to 
the multiple peaks in Figure 3 using just raw signals.  

The second filtering type employed here is the Phase 
Transform (PHAT) given by  

1 2

1

( ) ( )PHAT X f X f
            (12) 

This PHAT processor performs well in a moderately 
reverberant room. It has been used extensively to localize 
acoustic source in a room [6] and in robotics applications 
[7]. This is achieved by substituting the filtering process 

( )PHAT f  given in (12) into (10). The resulting map of 

fELM  produced for the same signals used for generat-
ing Figure 3 is shown in Figure 5. It is apparent that 
sharper peak is obtained compared to the pre-filtering 
method in the time domain. A significant advantage of 
using fELM  over tELM  is that PHAT process 
doesn’t require any design parameters, while the 
pre-filtering in tELM requires knowledge of the dominant 
signal components and noise which is normally obtained 
by analyzing the signals. That means if these parameters 
have been considerably changed as a result in changing 
the object material for example, the filter of tELM  (IIR, 
FIR or wavelet) has to be redesigned but it doesn’t for  

 
Figure 4. Spatial Likelihood of the source at (0.2 m, 0.3 m) 
using filtered signals. 
 

 
Figure 5. Spatial likelihood map using PHAT process. 

 
PHAT. 
 
5. Temporal Smoothing 
 
Further enhancement in the ELM algorithm is achievable 
by treating the dispersion effect in solids. Theoretically, 
in non dispersive multiple input system the output of the 
cross correlation reaches the maximum at time lag equal 
to the time difference between the arrival of the input 
signals. On the other hand, in dispersive system, where 
the wave propagation velocity is a function of frequency, 
the output peak of the cross correlation envelop occurs at 
the time lag equals to the group delay of the wave [8]. 
This fact can be interpreted in practice using Hilbert 
transform.  

The analytical signal of a given function z(t) is defined 
by  

( ) ( ) ( )Z t z t jz t               (13) 

where the imaginary part in (13) is the Hilbert transform 
of ( )z t  given by  
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the envelope function of z(t) is defined as 
1/22 2ˆ( ) ( ) ( )t z t z t                (15) 

The Equation (15) can be used in (9) or (10) to reduce 
the error in cross correlation caused by dispersion.  

To visualize the difference between algorithms and the 
effect of dispersion treatment, the ELM algorithm is ap-
plied to impact signals shown in Figure 6 and scratch 
signals shown in Figure 7. With raw signals the algo-
rithm produces multiple peaks in the likelihood map with 
several sharp local maxima comparable to the global 
maximum as shown in Figures 6(a)-7(a). By condition-
ing the input signals, the local maxima are compressed as 
shown in Figures 6(b)-7(b). When Hilbert envelop is 
applied, it is observable that the peak is enhanced by 
shifted local maxima towards the global peak and the 
overall ELM surface is smoothed as shown in Figures 
6(c)-7(c). It is clear from Figures 6(d)-7(d) that PHAT 
process produces sharper peak with lower side lobes. The 
Temporal Smoothing has significantly improved the 
ELM results as seen from the enhanced global maximum 
and reduced local maxima. 

 

Although scratch signals produce more local maxima 
than the impact signals, the proposed ELM algorithm has 
significantly improved the results as seen from the en-
hanced global maximum and reduced local maxima. The 
result shows that Hilbert envelope can be regarded as an 
effective temporal smoothing filter, and has considerably 
better improvement on revealing the global peak when 
used with pre-filtering. 
 
6. Time Difference Based Localisation 
 
The accuracy of the time difference based localization 
vastly depends on the level of error in the time difference 
values. Therefore it becomes crucial to develop a reliable 
algorithm to estimate time differences with less error as 
possible. An efficient algorithm is developed for esti-
mating time differences based on spectral estimation.  

 
6.1. Linear Cross Spectral Phase 
 
The classical time difference estimation can be improved 
by pre filtering the signals or applying the most popular 

 

 
(a)                                                (b) 

 

 
(c)                                                (d) 

Figure 6. ELM of impact signals using (a) raw signals, (b) conditioned signals, (c) as in (b) with Hilbert envelop and (d) 
PHAT. 
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(a)                                                (b) 

 

 
(c)                                                (d) 

Figure 7. ELM of scratch signals using (a) raw signals, (b) conditioned signals, (c) as in (b) with Hilbert envelop and (d) 
PHAT. 
 
PHAT process using GCC which involve filtering in the 
frequency domain then returning to the time domain to 
extract the time difference (9) and (10). An alternative 
method for estimating the time difference is the Linear 
Cross Spectral Phase (LCSP). The LCSP algorithm esti-
mates the time difference entirely in the frequency do-
main making the estimation process more efficient and 
robust than the time domain algorithms particularly for 
tracking a continuous source.  

Let the received signal g(t) assumed a broad sense sta-
tionary process. The cross spectral density of signals gi(t) 
and gj(t) can be found from 

     *
ij i jP f G f G f            (16) 

where G(f) if the Fourier transform of g (t). Since gj(t) is 
time delayed from gi(t) by  , then in terms of the auto 
spectral density Aii(f) of gj(t), Equation (16) can be ex-
pressed by   

       2e j f
ij ii ijP f A f P f f        (17) 

The time difference   appears only in the phase an-
gle   of (17) as linear function of the frequency f. Since 
the group velocity is used to compute the length differ-
ence, the group delay must be extracted from the phase 

function in (17) as given by [9] 

 d

d

f

f


                  (18) 

The cross spectrum and auto spectrum functions can 
be effectively estimated based using Short Time Fourier 
Transform (STFT). Then Equation (18) can be computed 
numerically for the quantities given in samples using 
linear regression of the form  

   /i i i if f f f f    [10,11]. 

 
6.2. Maximum Likelihood Positioning 
 
Given M pair of sensors, the Maximum Likelihood algo-
rithm (ML) proposed here for TAI can handle the error 
by minimizing the error between the given time differ-
ence ˆm  of the mth pair and the ideal time difference 

( )m q  associated with the searched location q. If the 
estimated time differences is modeled by the random 
variable ˆm m me    where me  is zero-mean additive 
white Gaussian noise with known standard deviation 

m , then by assuming the time differences from each 
pair of sensors are statistically independent, the likeli-
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hood function can be expressed by the conditional prob-
ability density function given by [12]  
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taking the log of both sides of (19) yield  
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     (20) 

The ML estimation of location q is the position that 
maximizes the likelihood function (20) or equivalently 
that minimizes the second term since the first term is not 
a function of q which results in the following localization 
criterion 

   2
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ˆ ( )
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m m

ML q
m m

q
J q

 
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 
 
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Here MLJ  is a weighted least error estimator. If no sta-
tistics considered or m  is the same for all sensor pairs, 
then the denominator is constant and (21) is reduced to 
the following formula 

   2
1

ˆ ˆarg min ( )
M

ML q m m
m

J q q 


   
 
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A significant difference between ML and ELM can be 
observed that ML doesn’t suffer from side lobes but on 
the cost of sharpness which means that the ML algorithm 
provides more stability while ELM algorithm provides 
higher accuracy. The similarity between the ML maps of 
the impact and scratch signals is due to the dependence 
of the ML algorithm on the time differences already es-
timated not on the signal themselves. 

7. Conclusions 

In this paper, the in-solid acoustic source localization is 
developed based on measuring the time difference of 
arrivals between spatially separated sensors. For efficient 
operation of TAI with this approach, two methods are 
proposed for the source localization. In the one-step 
method the ELM performs the localization based on two 
algorithms, one encounters time domain processing with 
conventional post filtering and the other employs PHAT 
filtering in the frequency domain. In the two-steps 
method, TDOA values are found first using either GCC 
or LCSP then based on these values the source is local-
ized using ML algorithm. The effect of dispersion is 
treated by introducing Hilbert envelop smoothing. A 
criterion is proposed to detect outlier estimations that can  

happen from domestic noise as door shut. 
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