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Abstract 
In this article, the extension to three dimensions (3D) of the blending technique that 
has been widely used in two dimensions (2D) to calibrate ocean chlorophyll is pre-
sented. The results thus obtained revealed a very high degree of efficiency when pre-
dicting observed values of ocean chlorophyll. The mean squared difference between 
the predicted and observed values of ocean chlorophyll when 3D technique was used 
fell far below the tolerance level which was set to the difference between satellite and 
observed in-situ values. The resulting blended field did not only provide better pre-
dictions of the in situ observations in areas where bottle samples cannot be obtained 
but also provided a smooth variation of the distribution of ocean chlorophyll through-
out the year. An added advantage is its computational efficiency since data that 
would have been treated at least four times would be treated only once. With the ad-
vent of these results, it is believed that the modelling of the ocean life cycle will be-
come more realistic. 
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1. Introduction 

The ocean environment can be considered as a continuous physical system subject to 
changes depending on atmospheric and weather conditions. To describe changes in a 
continuous physical system, there is a need to study partial differential equations. [1] 
and [2] who have done much work on representation of physical systems using partial 
differential equations (PDE) make it clear that all physical systems exist in three space 
dimensions, and that representations in one or two space dimensions entails a large 
degree of approximations. It is on this basis that this research was motivated. Therefore 
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in this research, the two dimensional blending technique that was implemented by [3] 
in the case of predicting Sea Surface Temperature (SST) and also used by [4] who pio-
neered the calibration of Ocean Chlorophyll, is extended to three-dimensions (3D). The 
inspiration for this is that, since the in situ field is expected to have a smooth relation-
ship with satellite as one move from one location to another, this smoothness may also 
apply across time (day of data collection) since the data fields run throughout the year. 
Thus time was seen as a possible additional dimension which could influence the rela-
tionship between satellite and in situ data fields. The idea of including time as a third 
variable had been proposed and implemented by [5] in their attempt to calibrate re-
motely sensed ocean chlorophyll-a data using the non-parametric approach of penal-
ized regression spline described by [6]. In another instance, [7] also suggested the ex-
tension of the blending technique to three dimensions in order to render it more realis-
tic. With the inclusion of time as a third variable, the blending problem now becomes a 
three-dimensional problem. 

To perform the three-dimensional blending will require that the data fields are ex-
tracted in three-dimensions. In order to achieve this, data are required throughout the 
period of a year. Extraction and processing of the data were done using latitude, longi-
tude and time (averaged over weeks) as variables for both the satellite and in situ fields, 
following the same procedure as in the two-dimensional case described in [8]. Using 
the successive 8-day interval approach, the year has 46 weeks. Thus the dimensions of 
the extracted working fields were 241 67 46× × . The external latitudes and longitudes 
that had very few or no observations were removed, leaving a real working area of 
230 65 46× × . After extraction, the number of observations in the in situ field was 3999, 
and after some pre-processing the number dropped to 3450, the others being identified 
by the satellite as land. The total number of points in the working arena is 687,700, out 
of which 374,164 points are on the sea surface, with the in situ observations contribut-
ing only about 0.9% of the total observations in the ocean area. 

2. The Blending Procedure  

During the blending process, we employ the use of the partial differential equation 
(PDE) in three-dimensions. This was necessary since the intension was to perform 
blending in three dimensions. This was achieved by introducing the time variable as the 
third dimension. By doing this, the belief is that the resulting blended field will be a 
better predictor since it is expected that chlorophyll concentration could also vary as 
the seasons or times of the year changes.  

The general linear equations governing physical fields take the form:  
2 2 2

2 2   2U U U U UB C D E
x y x yx y

A FU G∂ ∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂∂ ∂
+           (1) 

where U is the final blended field. From here the various types of PDE (that is; Para-
bolic, Elliptic and Hyperbolic) can be formed by attributing values which may be nega-
tive, positive or zero to each of the parameters from A to G.  

In this article, emphasis is laid on the elliptic type of the partial differential equation 
and most importantly the Poisson equation. [9] states that the most often encountered 
of the elliptic PDE and indeed of all PDEs in applied physical sciences and physics, is 
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the Laplace’s equation. This is a special case of the Poisson equation and it arises when 
all the terms on the right hand side of the Poisson equation equal zero. The prototypical 
elliptic equation in three dimensions is the Poisson equation of the form:  

( )
2 2 2

2 2 2 , ,U U U x y z
x y z

ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
,                     (2) 

where the source term ρ  is given. Thus, if this source term is equal to zero, the equa-
tions become Laplace’s equation. The cross product term is not included because there 
is no theoretical foundation to expect convergence in such a case as seen in [10]. [3], 
who used the Poisson equation in the analysis of Sea Surface Temperature, stated that 
the advantage of the Poisson equation lies in its mode of solution and it also has the 
important benefit of behaving well numerically. Thus, when the equations are ex-
panded by finite differencing into a set of linear algebraic equations, they can be solved 
iteratively to obtain a unique solution. This behaviour is especially convenient since the 
set of equations varies as the boundary points respond to changes. 

Since the resulting matrix arising from this finite-differencing is sparse, it can be 
solved easily using the successive over-relaxation method. A somewhat more physical 
way of looking at the method, which also enhances convergence, is by making use of 
the diffusion equation. Therefore writing Equation (2) as a diffusion equation, with t as 
the time-step, the following equation is obtained.  

( )
2 2 2

2 2 2 , ,U U U U x y z
t x y z

ρ∂ ∂ ∂ ∂
= + + −

∂ ∂ ∂ ∂
.                  (3) 

As t →∞ , the solution to this problem is a solution to original elliptic Equation (2). 
Equation (3) can then be represented using finite differencing as: 

( )

1
, , , ,

1, , 1, , , 1, , 1, , , 1 , , 1 , , , ,2 6

n n
i j k i j k

n n n n n n n
i j k i j k i j k i j k i j k i j k i j k i j k

U U

t U U U U U U U tρ

+

+ − + − + −

=

∆
+ + + + + + − − ∆
∆

 

where ∆  represents the difference between two points in either the i , j or k direc-
tions and t∆  represents the time-step from one iteration to another. The solution of 
the system of linear simultaneous equations, resulting from this expression when all the 
boundary conditions have been applied, can be obtained by the over-relaxation method. 
[11] has established the procedures for obtaining the stability criterion and the over- 
relaxation parameter which are the two determinant elements used in facilitating con-
vergence to the solution when solving PDEs by the successive over-relaxation (SOR) 
method in three dimensions.  

After having obtained the stability criterion and the over-relaxation parameter for 
the three-dimensional case, the Gauss-Seidel scheme for solving the system of simulta-
neous equations resulting from this can be written in its extrapolated Liebmann form as 
follows: 

( )1 1 1 1
, , , , 1, , 1, , , 1, , 1, , , 1 , , 1 , ,

2

, ,

1 6
6

            .
6

n n n n n n n n n
i j k i j k i j k i j k i j k i j k i j k i j k i j k

i j k

U U U U U U U U Uα

ρ

+ + + +
+ − + − + −

= + + + + + + −

∆

− 

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As seen in [12], this can be written in short form as 
1

, , , , , ,
n n n
i j k i j k i j kU U Rα+ = +  

where  
1) 2

, , , , , ,
n
i j k i j k i j kR U ρ∇= −  is the residual which must be less than a stated tolerance 

limit ε  for convergence to be attained, and 2
, ,i j kU∇  is calculated from the recently 

obtained U as 2 1 1 1
, , 1, , 1, , , 1, , 1, , , 1 , , 1,n n n n n n

i j k i j k i j k i j k i j k i j k i j kU U U U U U U+ + +
+ − + − + −∇ = + + + + +  

2) The superscript n is the iteration number, while 
3) α  is the over-relaxation parameter. 
This scheme is then iterated until convergence is attained. The convergence set thus 

obtained is the blended field of the process. [13] provides some guidelines on how to 
build computer codes to solve systems of algebraic equations. Meanwhile a general idea 
of how to write programs in Fortran is provided by [14] while [15] provides an engi-
neering approach to Fortran programming. Program written were then interfaced in 
the R programming environment for statistical analysis and graphical display of the re-
sults obtained. [16] [17] [18] were used as guides to writing the R-codes. 

3. Blending in 3D 

Following the procedure for solving the three-dimensional PDE using the relaxation 
method as described in [12], the blending process was carried out using the observed 
data fields. In addition [8] had shown that the “corrector factor” method performs bet-
ter than the original blending technique in the prediction of ocean chlorophyll, hence 
this technique was also employed. The image plots in Figures 1-12 show the distribution  
 

 
Figure 1. Predictions for month of January. 
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Figure 2. Predictions for month of February. 
 

 
Figure 3. Predictions for month of March. 
 
of chlorophyll density from the satellite, in situ, the normal blended and corrector fac-
tor blended fields for the twelve months of the year using the 3D blending method. 

These plots are not monthly means, but are selected weeks which fall within the  
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Figure 4. Predictions for month of April. 
 

 
Figure 5. Predictions for month of May. 
 
months and have been selected in such a way that each week should fall approximately 
in the middle of the month. The motivation behind this is to see how the availability of 
observations from both the satellite and in situ fields could influence the resulting  
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Figure 6. Predictions for month of June. 
 

 
Figure 7. Predictions for month of July. 
 
blended fields from both the normal blending and the corrector factor methods. This 
will also be able to indicate any existing trend in the ocean chlorophyll concentration 
from month to month throughout the whole year. This objective is achieved in the case  
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Figure 8. Predictions for month of August. 
 

 
Figure 9. Predictions for month of September. 
 
of three-dimensions; in situ and satellite observations from neighbouring weeks have 
some influence on the chosen week since the blending process moves across data for 
the whole year. Thus the effects of the observed values cut across the whole year result-
ing in a smooth transition from month to month. This trend can be seen in the gradual  
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Figure 10. Predictions for month of October. 
 

 
Figure 11. Predictions for month of November. 
 
change of colour in the plots of the density of chlorophyll plots from Figures 1-12. 
Lower values are seen during the winter and autumn periods with higher densities in 
spring and summer as expected. 
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Figure 12. Predictions for month of December. 

4. Validating the Performance of the 3D Blending Technique 

The resulting blended field from both the original blending method and the correc-
tor factor blending method were then subjected to a validation study to assess their 
ability to predict the observed in situ chlorophyll. Randomly selected test sets each of 
size 500 were taken from the in situ field. The remaining field is then introduced 
into the blending process. The box plots in Figure 13 show the range of the mean 
squared differences between predictions from both methods and the observed in situ 
values.  

The range of the mean squared differences between the real satellite and in situ fields 
in the samples is also plotted to give an indication of the improvements provided by 
both processes. 

From the validation study, it is clear that the resulting blended field from the correc-
tor factor method is still the best even in the case of the three dimensional blending. To 
prove its power of prediction over the original blending method, the corrector factor 
predictions were much closer to the observed in situ values than the predictions from 
the original blending method though both methods show a great improvement on the 
prediction of in situ as opposed to the raw satellite field. The codes for running the 
validation study and plotting of the results were written in R as developed by [19]. 

5. Comparing 2D and 3D  

The idea here is to verify the authenticity of the three-dimensional blending which has 
been introduced. The expectation is that the predictions from the three-dimensional 
blending should closely match the predictions from the two-dimensions at any chosen 
point. In this case, the monthly predictions from the three-dimensions are plotted and  



M. A. Onabid 
 

201 

 
Figure 13. A box plot of the mean squared difference between predicted and observed in situ 
values from both the normal blending and the corrector factor methods using blending in three- 
dimensions; this can be compared with the corresponding box plot from the differences between 
the observed satellite and in situ samples. 
 
to be compared with monthly blended fields obtained from the two-dimensional 
blending. The images are shown in Figure 14 and Figure 15. Recall that the data fields 
in three dimensions contain data for the whole year divided into 46 weeks. Hence the 
selection of monthly data is based on the weeks that fall in the middle of the month and 
not on monthly averages. Since the selected data fields are maintained for both proc-
esses, the effect is expected to be the same. Data used for the two-dimensional blending 
here were extracted from the three dimensional data fields according to the selected 
weeks described above. The images plotted here are from the three-dimensional blended 
field selected according to the weeks chosen to represent each month in the two-dimen- 
sional blending. 

From the image plots, it is very clear that the predictions from both methods are very 
close to each other in areas where observations exist for both data fields. In the case 
where observations are present only from the in situ field, their effect on the predicted 
field is more prominent in the two-dimensional case than in the three-dimensions. This 
can be seen from the plots of predictions for the months of November, December and 
January where there are some in situ observations around the North East Atlantic in 
areas where satellite could not provide readings during these periods. This feature is 
not outstanding in the three-dimensional case. The reason for this difference is that in 
two-dimensional blending these observed in situ values stand independently as the only 
boundary values in an area where the satellite field initially had no observations, thus 
their effect dominates the blending process for that chosen week, whereas in the case 
of three-dimensions, in situ and satellite observations from neighbouring weeks have 
some influence on the chosen week since the blending process moves across data for  
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Figure 14. Predictions from the 2D blending technique. 
 
the whole year. Thus the effects of the observed values cut across the whole year result-
ing in a smooth transition from month to month. This can be seen from the gradual 
change of colour within and between the monthly plots. A trend can be seen with re-
spect to the density of chlorophyll throughout the year. Lower values are seen during 
the winter and autumn periods with higher densities in spring and summer as expected. 

6. Conclusions 

In this research, the blending technique traditionally used in two dimensions to predict 
ocean chlorophyll concentration in areas where ship and buoy could not obtain values 
has been successfully extended to three dimensions. This was based on the fact that 
most physical and environmental problems exist in three dimensions, thus representing 
blending procedure in three dimensions would render it more realistic. The “corrector 
factor” method which was shown by [8] to be a better way of implementing the blend-
ing technique was used. The resulting blended field did not only provide better predic-
tions of the in situ observations in areas where bottle samples could not be obtained but 
also provide a smooth variation of the distribution of ocean chlorophyll throughout the 
year.  

In addition, the three-dimensional technique has the advantage that it reduces com-
puter time and memory since a process that could have been done twelve times by 
months or at least four times by season if the normal two-dimensional method was to  
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Figure 15. Predictions from the 3D blending Technique. 
 
be used will simply be done once by employing the three-dimensional technique. Apart 
from this computational advantage, the physical advantage was seen when predictions 
over a year’s period were made using both the two and three-dimensional blending. 

Another advantage of the three-dimensional blending over two dimensions is that it 
maintains a smooth variation between data from month to month thus providing a 
trend for the whole year rather than producing independent monthly or quarterly trend 
which is obtained when using the two-dimensional technique. 

This implies that the three-dimensional blending method can serve as a better ap-
proach to the blending procedure in particular and to all other processes which employ 
the use of the elliptic partial differential equations in their operations. With the advent 
of these results, it is believed that the modelling of the ocean life cycle will become more 
realistic. 

7. Future Work 

The improvement realised by the 3D Technique could be made more realistic by in-
troducing the penalised technique. This could render these results more accurate as 
shown by [7]. 
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