
Journal of Modern Physics, 2017, 8, 126-132 
http://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

DOI: 10.4236/jmp.2017.81011  January 23, 2017 

 
 
 

Introduction of the Tensor Which  
Satisfied Binary Law 

Koji Ichidayama  

716-0002 Okayama, Japan  

  
 
 

Abstract 
P: For every coordinate system, there is no immediate reason for preferring certain 
systems of co-ordinates to others. If we don’t recognize that P is establishment, we 
must recognize to existence of the absolute coordinate system. Therefore, we must 
recognize that P is establishment. Nevertheless, I got conclusion that P isn’t es-   
tablishment for all coordinate systems , , , ,x x x xµ ν σ λ

 . If P is establishment, this is 
the trouble. As against, I got conclusion that if we consider “Binary Law” for all 
coordinate systems , , , ,x x x xµ ν σ λ

 , P is establishment for all coordinate systems 
, , , ,x x x xµ ν σ λ

 . If we consider Binary Law for all coordinate systems , , , ,x x x xµ ν σ λ
 , 

we must consider Binary Law for the coordinate systems using into Tensor, too. So, I 
decided to report for the Tensor which satisfied Binary Law. 
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1. Introduction 

Definition 1. For every coordinate system, there is no immediate reason for pre- 
ferring certain systems of co-ordinates to others. 

Definition 2. I named , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  “Binary Law”. 
Definition 3. x xµ

µ≠  is established. 
Definition 4. x xν

ν≠  is established. 
Definition 5. x xµ µ≠ −  is established. 
Definition 6. Convariant and contravariant tensor of the first rank , , ,A A A Aµ ν

µ ν  

satisfied ,x xA A A A
x x

ν µ
µ ν

µ νµ ν

∂ ∂
= =
∂ ∂

 [1]. 

Definition 7. Tensor of rank zero ,A Aµ ν
µ ν  satisfied A Aµ ν

µ ν=  [1]. 
Definition 8. If tensor Aµ

ν  satisfied A Aµ ν
ν µ= , this tensor Aµ

ν  was named sym- 
metric tensor [1]. 
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Definition 9. Convariant differentiation for Convariant Bector ;Aµ ν  satisfied 

{ };
1,
2

A A g gg
A A A g

x x x x x
µ µ µσ µντσ νσ

µ ν τ τν ν ν µ σµν τ
∂ ∂ ∂ ∂ ∂

= − = − + − 
∂ ∂ ∂ ∂ ∂ 

 [1]. 

Definition 10. 1g µ
µ =  and ( )0 :g µ

ν µ ν= ≠  are establishment [2]. 
Definition 11. Convariant differentiation for contravariant bector ;Aµ

ν  satisfied 

{ };
1,
2

g g gA AA A A g
x x x x x

µ µ
µ τ τ µσ τσ νσ τν
ν ν ν ν τ στν µ

∂ ∂ ∂∂ ∂  = + = + + − ∂ ∂ ∂ ∂ ∂ 
 [2]. 

Definition 12. Convariant differentiation for Scalar ;S ν  satisfied ;
SS
xν ν

∂
=
∂

 [2]. 

2. About Reason to Take Binary Law into Consideration 

We will have to receive existence of the absolute coordinate system if Definition 1 is not 
established. Therefore, we must accept establishment of Definition 1.  

Proposition 1. Definition 1 is not established for all coordinate systems  
, , , , .x x x xµ ν σ λ

  
Proof: All coordinate systems , , , ,x x x xµ ν σ λ

  thinks about xµ  in a standard and 
can divide it into two next groups.  

,x xµ µ=  

, , , .x x x x x xµ ν µ σ µ λ≠ ≠ ≠                       (1) 

I think that I change the coordinate systems of the standard xµ  of (1) for all coordi- 
nate systems , , , ,x x x xµ ν σ λ

  sequentially now. By the way, the difference cannot 
occur between each conclusion to be provided here if Definition 1 is established. This 
reason is that all coordinate systems , , , ,x x x xµ ν σ λ

  has a privilege of the equality 
each other if Definition 1 is established. At first (1) gets an invariable conclusion for 

,µ µ  exchange. Therefore, at least (1) must get an invariable conclusion for the next 
,µ ν  exchange if Definition 1 is established. Here, I get  

,x xν ν=  

, , ,x x x x x xν µ ν σ ν λ≠ ≠ ≠                       (2) 

by ,µ ν  exchange from (1). Therefore, (2) must be equal with (1) if Definition 1 is 
established. By the way, ,x x x xµ µ µ ν= ≠  of (1) is equal with ,x x x xν ν ν µ= ≠  of (2), 
but , ,x x x xµ σ µ λ≠ ≠   of (1) is not equal with , ,x x x xν σ ν λ≠ ≠   of (2). In other 
words, (2) is not equal with (1). Therefore, Definition 1 is not established for all coor- 
dinate systems , , , ,x x x xµ ν σ λ

 .  
-End Proof 

Establishment of Proposition 1 is a problem in thinking that Definition 1 must be 
established. Therefore, I aim at getting establishment of Definition 1 for all coordinate 
systems , , , ,x x x xµ ν σ λ

 . 
Proposition 2. If all coordinate systems , , , ,x x x xµ ν σ λ

  satisfies  
, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = = , Definition 1 is established for all coordinate systems 

, , , ,x x x xµ ν σ λ
 . 

Proof: I get  

,x xµ µ=  
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,x xµ ν≠                              (3) 

,x xν ν=  

x xν µ≠                              (4) 

from (1), (2) if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies  

, , , .x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =                    (5) 

(3) is equal with (4) here. In other words, (2) is equal with (1) if all coordinate sys- 
tems , , , ,x x x xµ ν σ λ

  satisfies (5). Therefore, Definition 1 is established for all coordi- 
nate systems , , , ,x x x xµ ν σ λ

  if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). 

-End Proof 
Proposition 3. If all coordinate systems , , , ,x x x xµ ν σ λ

  satisfies  
, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = = , all coordinate systems , , , ,x x x xµ ν σ λ

  shifts to 
only two of , .x xµ ν   

Proof: If all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5), I get ,x xµ ν  than all 

coordinate systems , , , ,x x x xµ ν σ λ
 .  

-End Proof 
Proposition 4. If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established, x xµ ν≠  is esta- 

blished. 
Proof: I get  

, , ,x x x x x x x xµ µ ν ν µ µ ν ν≠ ≠ = =                   (6) 

from (5), (7) if I assume establishment of  

x xµ ν=                             (7) 

when (5) is established. Because (6) includes contradiction,  

x xµ ν≠                             (8) 

is established when (5) is established.  
-End Proof 

Proposition 5. If , , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =  is established,  
, , ,x x x x x x x xν µ ν µ

µ ν ν µ= = = − = −  are established. 
Proof: When (5) is established, (8) is established from Proposition 4. Therefore, I get  

( )Falsex xµ
µ≠                         (9) 

from (8), (10) if I assume establishment of x xν
µ≠  when (5) is established. I can 

rewrite x xν
µ≠  as  

( )Falsex xν
µ=                        (10) 

here. When (5) is established, I get  

x xµ
µ≠                           (11) 

from Definition 3. Because (9) includes contradiction for (11),  

x xν
µ=                           (12) 

is established when (5) is established. 
Similary, I get  



K. Ichidayama 
 

129 

( )Falsex xν
ν≠                            (13) 

from (8), (14) if I assume establishment of x xµ
ν≠  when (5) is established. I can 

rewrite x xµ
ν≠  as  

( )Falsex xµ
ν=                           (14) 

here. When (5) is established, I get  

x xν
ν≠                              (15) 

from Definition 4. Because (13) includes contradiction for (15),  

x xµ
ν=                              (16) 

is established when (5) is established. 
Similary, I get  

( )Falsex xµ µ≠ −                         (17) 

from (8), (18) if I assume establishment of x xν µ≠ −  when (5) is established. I can 
rewrite x xν µ≠ −  as  

( )Falsex xν µ= −                         (18) 

here. When (5) is established, I get  

x xµ µ≠ −                            (19) 

from Definition 5. Because (17) includes contradiction for (19),  

x xν µ= −                            (20) 

is established when (5) is established. And, I get  

x xν µ= −                            (21) 

from (12), (16), (20).  
-End Proof 

3. About the Tensor Which Satisfied Binary Law 

We will have to think about adaptation of the establishment of Binary Law for the 
coordinate systems , , , ,x x x xµ ν σ λ

  in the tensor if we think about establishment of 
Binary Law for all coordinate systems , , , ,x x x xµ ν σ λ

 . Therefore, I decided to report 
Tensor when all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied Binary Law. 
Proposition 6. If all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied  
, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = = , Convariant and Contravariant Tensor of the first 

rank does not change the form of the equation. 
Proof: I get  

,x xA A A A
x x

ν µ
µ ν

µ νµ ν

∂ ∂
= =
∂ ∂

                  (22) 

from Definition 6 if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). Definition 6 

and (22) are equal here. Therefore, if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfied 

(5), Convariant and Contravariant Tensor of the first rank does not change the form of 
the equation.  
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-End Proof 
Proposition 7. Tensor of the second rank becomes Symmetric Tensor if all coor- 

dinate systems , , , ,x x x xµ ν σ λ
  satisfies , , , .x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = =   

Proof: I get  

A Aµ ν
µ ν=                             (23) 

from Definition 7 if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). Definition 7 

and (23) are equal here. We can use (12), (16), (20), (21) for (23) by considering Pro- 
position 5 here. And we can rewrite (23) by using (12), (16) for  

, ,

, .

A A A A

A A A A

ν µν ν
νµ ν ν

µ µ νµ
µ µν µ

= =

= =
                       (24) 

Then, I get  

,A A A Aµν νµ
νµ µν= =                        (25) 

from (23),(24). And we can rewrite (23) by using (20), (21) for  

, .A A A Aν ν µ ν
µ ν ν ν− = − =                       (26) 

Then, I get  

A Aν µ
µ ν=                              (27) 

from (26). Therefore, Tensor of the second rank becomes Symmetric Tensor than 
consideration of Definition 8 when all coordinate systems , , , ,x x x xµ ν σ λ

  satisfies 
(5).  

-End Proof 
Proposition 8. If all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied  
, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = = , The distance of two points be able to change oneself 

in connection with the metric of space. 
Proof: I get  

( )1, 0 :g gµ µ
µ ν µ ν= = ≠                         (28) 

from Definition 10 if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). I get  

;
1
2

A g gg
A A g

x x x x
µ µν µννν νν

µ ν νν ν µ ν

∂ ∂ ∂ ∂
= − + − 
∂ ∂ ∂ ∂ 

 

1
2

A g
A

x x

ν
µ ν

νν µ

∂  ∂
= −  
∂ ∂ 

                        (29) 

1
2

A g
A

x x

σ
µ ν

σν µ

∂  ∂
= −  
∂ ∂ 

                        (30) 

1
2

A g
A

x x

σ
µ σ

νν µ

∂  ∂
= −  
∂ ∂ 

                        (31) 

from Definition 9 if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). By the way, 

we cannot handle (30), (31) according to Proposition 3. We can use (12), (16), (20), (21) 
for (29) by considering Proposition 5 here. And we must rewrite (29) by using (16) for  
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;
1
2

A gA A
x x

νµ
µµ

µ νµ
µ

∂  ∂
= −  ∂ ∂ 

                       (32) 

1 .
2

A g
A

x x

ν
µ µν

µ
µ

∂  ∂
= −  
∂ ∂ 

                       (33) 

I decide not to handle (33) by consideration of (28) here. Well, I get conclution from 
(32) that if all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied (5), Scalar quantity be able 
to change oneself in connection with the metric of space. Here, This Scalar quantity 
expressed the all of quantity expressed as Scalar. Therefore, I get conclution that the 
distance of two points be able to change oneself in connection with the metric of space.  

-End Proof 
Proposition 9. If all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied  
, , ,x x x x x x x xµ µ ν ν µ ν ν µ≠ ≠ = = , convariant differentiation for Contravariant Bector 

;Aµ
ν  behave like a convariant differentiation for Scalar ; .S ν   
Proof: I get  

;
1
2

g g gAA A g
x x x x

µ
µ ν µν νν νν νν
ν ν ν ν ν

∂ ∂ ∂∂  = + + − ∂ ∂ ∂ ∂ 
 

1
2

gA A
x x

µµ
νν

ν ν

 ∂∂
= +  
∂ ∂ 

                        (34) 

1
2

gA A
x x

µµ
σσ

ν ν

 ∂∂
= +  
∂ ∂ 

                        (35) 

1
2

gA A
x x

µµ
σν

ν σ

 ∂∂
= +  
∂ ∂ 

                        (36) 

from Definition 11 if all coordinate systems , , , ,x x x xµ ν σ λ
  satisfies (5). By the way, 

we cannot handle (35), (36) according to Proposition 3. We can use (12), (16), (20), (21) 
for (34) by considering Proposition 5 here. And we must rewrite (34) by using (21) for  

;
1
2

gAA A
x x

µµ
µ νν
µ µ µ

 ∂∂
− = − −  

∂ ∂ 
 

1 .
2

gA A
x x

µµ
µ ν

µ ν

 ∂∂
= − −   ∂ ∂ 

                    (37) 

And, I can get  

;
AA
x

µ
µ
µ µ

∂
− = −

∂
                         (38) 

from (37) for consideration of (28). And we can rewrite (38) by using (21) for  

; .AA
x

µ
µ
ν ν

∂
=
∂

                          (39) 

Because the second term of the right side of (38) does not exist here, we may adopt 
(38) and (39) description form of which. Well, I get conclution from (39), Definition 12 
that if all coordinate systems , , , ,x x x xµ ν σ λ

  satisfied (5), Convariant differentiation 
for Contravariant Bector ;Aµ

ν  behave like a Convariant differentiation for Scalar ;S ν .  
-End Proof 
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4. Discussion 

About Definition 2: 
I named (5) “Binary Law” by Proposition 3. 
About Proposition 6: 
Convariant and contravariant tensor of the first rank don’t change the formula 

whether it’s satisfied (5) or not. 
About Proposition 8: 

In (32), we can think that 
A
x
µ

µ

∂

∂
 expressed the distance of two points in 0g

x

νµ

µ

∂
=

∂
 is  

establishment and this is constant. And, ;Aµ
µ  expresses the distance of two points in 

general and this is not constant. 
About Proposition 9: 

In (39), we can handle A
x

µ

ν

∂
∂

 as tensor similarly ;Aµ
ν . 
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