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Abstract 
The rank of a graph is defined to be the rank of its adjacency matrix. In this 
paper, the Matlab was used to explore the graphs with rank no more than 5; 
the performance of the proposed method was compared with former me-
thods, which is simpler and clearer; and the results show that all graphs with 
rank no more than 5 are characterized. 
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1. Introduction 

In this paper only consider simple graph of finite and unordered.  
( ) ( )( ),G V G E G=  is a graph, ( ) { }1 2, , , nV G v v v=   is vertices set of a graph 

G , the adjacency matrix ( )A G  of a graph G  is the n n×  symmetric matrix 

ija    such that 1ija =  if iv  is adjacent to jv , and 0ija =  otherwise. Ob-
viously, ( )A G  is a real symmetric matrix, and all eigenvalues are real number, 
denoted by eigenvalues of a graph G . The rank of a graph G , written as ( )r G , 
is defined to be the number of the rank of matrix ( )A G . The nullity of a graph 
G  is the multiplicity of the zero eigenvalues of matrix ( )A G  and denoted by 
( )Gη . Clearly, |)(=|)()( GVGrG +η . In chemistry, the nullity is correlated 

with the stability of hydrocarbon that a graph G  represented (see [1]-[6]). 
Collatz and Sinogowitz [1] posed the problem of characterizing all non- singular 
graphs, which is required to describe the issue of all nullity greater than zero; al-
though this problem is very hard, still a lot of literature research it (see [5] [7] 
[8]). It is known that the rank ( )r G  of a graph G  is equal to 0 if and only if 
G  is a null graph (i.e. a graph without edges), and there is no graph with rank 1. 
The graph G  with the rank ( )r G  is equal to 2 or 3, which is completely cha-
racterized in [8]. The graph G  with the rank ( )r G  is equal to 4, which is 
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completely characterized in [9]. Although in [10], the graphs with rank 5 are 
characterized by using forbidden subgraph. In the paper, we completely charac-
terize the graphs with rank no more than 5 by using Matlab. Compared to the 
method in [10], the method of this paper is simpler and clearer. 

For a vertex x  in G , the set of all vertices in G  that are adjacent to x  is 
denoted by ( )GN x . The distance between u  and v , denoted by ( )dist ,G u v , 
is the length of a shortest u , v -path in graph G . The distance between a ver-
tex u  and a subgraph H  of G , denoted by ( )dist ,G u H , is defined to be the 
value ( ) ( ){ }min dist , :G u v v V H∈ . Given a subset ( )S V G⊆ , the subgraph of 
G  induced by S , is written as [ ]G S . The n -path, the n -cycle and the n - 
complete graph are denoted by nP , nC  and nK , respectively. 

A subset ( )I V G⊆  is called an independent set of G  if the subgraph 
[ ]G I  is a null graph. Next we define a graph operation (see page 53 of [6]). 

Give a graph G  with ( ) { }1 2, , , nV G v v v=  . Let ( )1 2, , , nm m m= m  be a 
vector of positive integers. Denoted by G m  the graph is obtained from G  
by replacing each vertex iv  of G  with an independent set of im  vertices 

1 2, , , mi
i i iv v v  and joining s

iv  with t
jv  if and only if iv  and jv  are adjacent 

in G . The resulting graph G m  is said to be obtained from G  by multi- 
plication of vertices. For graphs 1 2, , , kG G G , we denote by ( )1 2, , , kG G G  
the class of all graphs that can be obtained from one of the graphs in { }1 2, , , kG G G  
by multiplication of vertices. 

2. Preliminaries  

Lemma 2.1. [9] Suppose that G  and H  are two graphs. If ( )G H∈ , 
then ( ) ( )r G r H= .  

By Lemma 2.1, we know that the rank of a graph doesn't change by multipli-
cation of vertices. Let G  be a graph, if exists a graph ( )H G  such that 

( )G H∈ , we call G  is a non-basic graph. Otherwise, G  is called a basic 
graph. The following we need find all basic graphs with rank no more than 5. 

Lemma 2.2. [3] (1) Let 1 2G H H= ∪ , where 1H  and 2H  be two graphs. 
Then ( ) ( ) ( )1 2r G r H r H= + . 

(2) Let H  be an induced subgraph of G . Then ( ) ( )r H r G≤ .  
Lemma 2.3. Let G  be a connected graph with rank ( )2k ≥ . Then there ex-

ists an induced subgraph H  (of G ) on k  vertices such that ( )r H k= , and 
( )dist , 1G u H ≤  for each vertex u  of G .  

Proof. Without loss of generality, suppose the previous k  row vectors of 
( )A G  are linear independence, and the rest of the row vectors of ( )A G  are 

linear combination of the previous k  row vectors. Since ( )A G  is a symme-
trical matrix, we know that the rest of the column vectors of ( )A G  are linear 
combination of the previous k  column vectors. Therefore we can obtain the 
following matrix by using elementary transformation for ( )A G ,  

( ) 0
0 0
A H 
 
 
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where H  is the induced subgraph (of G ) with the k  vertices which is cor-
respondent to the previous k  vectors, and ( ) ( )r H r G k= = . 

Suppose ( )v V G∈  satisfying ( )dist , 2G v H = . Then there exists an induced 
subgraph F  of G  such that  

( )

( )

1 2

1

2

0 1 0 0 0
1 0
0

,
0

0

k

k

x x x
x

A F
x

A H
x

… 
 … 
 

=  
 
 
 
  

 

 

where { }0,1 , 1,2, , .ix i k∈ =   Obviously, ( ) ( ) 2 2r F r H k= + = + , this con- 
tradicts to ( )r G k= . □  

Let H  be an induced subgraph of G . For a vertex subset U  of ( )V H , 
denote by H

US  (Abbreviated as US ) the set  
( ) ( ) ( ) ( ){ }Gx V G V H N x V H U∈ ∩ = . 

3. Main Result  

Let G  be a graph with n  vertices, 1 2, , , nv v v  be ordered vertices of G . 
( )u V G∈ , n -dimensional column vector ( )1 2, , ,u nx x xα = 

  is called adja-
cency vector of u , where 1ix =  if u  is adjacent to iv , and 0ix =  otherwise. 

For obtaining all connected basic graphs with rank r , we have two steps. 
Step 1. Find out all graphs with rank r  which have exactly r  vertices. De-

note them by 1 2, , , sG G G . 
Step 2. Find out all connected graphs with rank r  which have more than r  

vertices. Let G  be a graph with rank r . By Lemma 2.3, we know that G  con-
tains an induced subgraph { }( )1,2, ,iG i s∈   with rank r  and  

( )dist , 1G iu G ≤  for each vertices u  of G . Therefore, we consider the adjacent 
relation between u  and the vertices of iG . Let  

( ) ,
0

iA G
B

α
α
 

=  
 

  

satisfying  

( ) ( )( ) ( ),           ir B r A G r= = ∗  

where ( )iA G  is adjacency matrix of iG , ( )1 2, , , rx x xα =  , { }0,1ix ∈  
( )1,2, ,i r=   is a ( )iV G -dimensional column vector. We calculate all vectors 
α  satisfying condition ( )∗  by MATLAB. 

Obviously, ( )0,0, ,0α = 

  and adjacency vectors of any vertex v  in iG  
satisfy ( )∗ ; this implies that u  is not adjacent to iG  or 

( )
i
G vi

G
Nu S∈ . This is not 

the connected basic graphs that we need to find. Therefore, these 1r +  vectors 
are called trivial vectors and the rest of the vectors (if it is exist) are non- trivial 
vectors. If there exist non-trivial vectors 1 2, , , tα α α  such that ( )∗  holds, 
then for any vector ( )1,2, ,j j tα =  , we can obtain a basic graph ijG  on 

1r +  vertices; its adjacency matrix is  
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( )
,

0
i j

j

A G
B

α
α
 

=  
 

  

( ) ( )ij ir G r G r= =   

(In fact, suppose ijG  is not a basic graph. Then it is obtained from some 
graph ( )ijH G  by multiplication of vertices. Thus there are two vertices sv  
and tv  which are not adjacent in ijG ; the adjacent relation between sv  and 
any vertex of ijG  and the adjacent relation between tv  and any vertex of ijG  
are the same. Since jα  is non-trivial vector, we have { },s tu v v∉ . Hence the 
adjacent relation between sv  and any vertex of ijG u  and the adjacent rela-
tion between tv  and any vertex of ijG u  are the same. (where ij iG u G=  is 
the graph obtained from ijG  by removing the vertex u  and all edges asso-
ciated with u ). Note ij iG u G= , we have ( )ir G r< , a contradiction.) 

Repeat the above process for ijG , it will obtain a family of basic graphs. Con-
tinue to repeat the above process for these basic graphs until every basic graph 
does not produce non-trivial vectors. We can find out all basic graphs with rank 
r . Now we give two examples. 

Example 3.1. Let G  be a connected graph and ( ) 2r G = , then ( )2G K∈ . 
In fact, 2K  is a unique graph [7] with rank 2 which have exactly two xertice. 

Calculating by MATLAB, have three and only three vectors  
( ) ( ) ( )1 2, 0,0 , 1,0x xα = =    and ( )1,0   satisfying that the rank of matrix B  

is 2, and they are trivial.  

1

2

1 2

0 1
1 0

0

x
B x

x x

 
 =  
  

 

Hence, 2K  is unique basic graph with rank 2, thus ( )2G K∈ . 
Example 3.2. Let G  be a connected graph and ( ) 3r G = , then ( )3G K∈ . 
In fact, 3K  is a unique graph [7] with rank 3 which have exactly three vertic-

es. Calculating by MATLAB, have four and only four vectors  
( ) ( ) ( ) ( )1 2 3, , 0,0,0 , 1,1,0 , 1,0,1x x xα = =     and ( )1,1,0   satisfying that the 

rank of matrix B  is 3, and they are trivial.  

1

2

3

1 2 3

0 1 1
1 0 1
1 1 0

0

x
x

B
x

x x x

 
 
 =
 
 
 

 

Hence, 3K  is unique basic graph with rank 3, thus ( )3G K∈ . 
The paper [9] has given all basic graphs with rank 4 (see Figure 1). It is easy 

to obtain these graphs with our method. We write the following theorem with-
out proof. 

Theorem 3.1. [9] Let G  be a graph. Then ( ) 4r G =  if and only if G  can 
be obtained from one of the graphs shown in Figure 1 by multiplication of ver-
tices. 

Theorem 3.2. [7] Suppose that G  is a graph on 5 vertices. Then ( ) 5r G =  
if and only if G  is one of the graphs shown in Figure 2. 
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Figure 1. Basic graph with rank 4. 

 

 
Figure 2. Graphs have exactly five vertices with rank 5. 

 
Theorem 3.3. Let G  be a graph without isolated vertices. Then ( ) 5r G =  if 

and only if G  can be obtained from one of the graphs shown in Figure 2 and 
Figure 3 by multiplication of vertices. 

Proof. We now prove the necessary part. Assume that G  is not connected, 
then 1 2G H H= ∪  and ( )1 2r H = , ( )2 3r H = , where 1H  and 2H  are two 
graphs. By the example 1 and example 2, we have ( )2 3G K K∈ ∪ . Now as-
sume that G  is connected. By Lemma 2.3, there exist induced subgraphs 

( )1,2, ,9iH G i= =   of G  (see Figure 2) such that ( )dist , 1G u H ≤  for each 
vertex u  of G . According to the differences of induced subgraphs that G  
contains, we consider the following Case 1-Case 5. 



H. C. Ma, X. H. Liu 
 

31 

 

Figure 3. The basic graphs ( )10,11, ,25iG i =   have more than five vertices with rank 5. 

 
Case 1. G  contains an induced subgraph 1 5G K= , ( ) { }1 1, 2,3, 4,5V G = ,  

( )1

0 1 1 1 1
1 0 1 1 1

.1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

A G

 
 
 
 =
 
 
  

 

The following we first determine basic graph contain 1.G  Let  

( )1

0
A G

B
α

α
 

=  
 



 
where ( )1 2 3 4 5, , , ,x x x x xα = , { }0,1ix ∈  ( )1,2, ,5i =  . For α  satisfying 
( ) ( )( )1 5r B r A G= =  (or ( )det 0B = ), calculating by MATLAB, we obtain  

( ) ( ) ( ) ( ) ( ) ( )0,0,0,0,0 , 0,1,1,1,1 , 1,0,1,1,1 , 1,1,0,1,1 , 1,1,1,0,1 , or  1,1,1,1,0 .α =  

This implies that not exist non-trivial vectors such that ( ) 5r B = , hence 1G  
is unique basic graph contain 1G  with rank 5, then ( )1G G∈ . 

Case 2. G  contains an induced subgraph 2 5G C= , ( ) { }2 1, 2,3, 4,5V G = . 
Similar with Case 1, we know ( )2G G∈ . 
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Case 3. G  contains an induced subgraph 3G , ( ) { }3 1, 2,3, 4,5V G = . Similar 
with Case 1, we know ( )3G G∈ . 

Case 4. G  contains an induced subgraph 4G , ( ) { }4 1, 2,3, 4,5V G = ,  

( )4

0 1 1 0 0
1 0 1 0 0

.1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

A G

 
 
 
 =
 
 
  

 

First considering basic graph contain 4G , let  

( )4

0
A G

B
α

α
 

=  
 



 

where ( )1 2 3 4 5, , , ,x x x x xα = , { }0,1ix ∈  ( )1,2, ,5i =  . For α  satisfying 
( ) 5r B = , calculating by MATLAB, we obtain 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0,0,0,0,0 , 0,1,1,0,0 , 1,0,1,0,0 , 1,1,0,1,0 , 0,0,1,0,1 , 0,0,0,1,0 ,

1,0,1,1,0 , 0,1,1,1,0 , 1,0,0,1,1 , 0,1,0,1,1 , 1,1,0,0,0 .

α =
 

we know the first six vectors is trivial. 
Case 4.1. For non-trivial vector ( )0,1,1,1,0α = , (or ( )1,0,1,1,0 ), then there 

exists a graph 10G  (the adjacency matrix of 10G  is B), it is a basic graph con-
tain 4G  with rank 5. ( ) { }10 1, 2,3, 4,5,6V G = , Same as above, calculating by 
MATLAB for 10G , we obtain 3 non-trivial vectors. ( ) ( )0,1,0,1,1,1 , 1,0,1,1,0,1α = , 
(or ( )1,1,0,0,0,1 ). 

Case 4.1.1. For non-trivial vector ( )0,1,0,1,1,1α = , then there exists a graph 

11G  is a basic graph contain 10G  with rank 5. Same as above, calculating by 
MATLAB for 11G , we obtain not exist non-trivial vectors. Hence 11G  is a 
unique basic graph contain 11G  with rank 5. 

Case 4.1.2. For non-trivial vector ( )1,0,1,1,0,1α = , then there exists a graph 

12G  is a basic graph contain 10G  with rank 5. Same as above, calculating by 
MATLAB for 12G , we obtain not exist non-trivial vectors ( )1,1,0,0,0,1,1 , the 
resulting produce a graph 13G  is a basic graph contain 12G  with rank 5. Cal-
culating by MATLAB for 13G , we obtain not exist non-trivial vectors, Hence 

13G  is a unique basic graph contain 13G  with rank 5. 
Case 4.1.3. For non-trivial vector ( )1,1,0,0,0,1α = , then there exists a graph 

14G  is a basic graph contain 10G  with rank 5. Calculating by MATLAB for 

14G , we obtain exist a non-trivial vectors ( )1,0,1,1,0,1,1α = . The resulting pro-
duce a graph 13G  is a basic graph contain 14G  with rank 5. Similar with Case 
4.1.2, 13G  is a unique basic graph contain 13G  with rank 5. 

Case 4.2. For non-trivial vector ( )0,1,0,1,1α = ,(or ( )1,0,0,1,1 ), then there 
exists a graph 15G  is a basic graph contain 4G  with rank 5. ( )15 1, 2,3, 4,5,6V G = , 
Same as above, calculating by MATLAB for 15G , we obtain 3 non-trivial vectors. 

( ) ( )1,1,1,0,1,0 , 1,0,0,1,1,1α = , (or ( )0,1,1,1,0,1 ). 
Case 4.2.1. For non-trivial vector ( )1,1,1,0,1,0α = , (or ( )1,0,0,1,1,1 ), then 

there exists a graph 16G  is a basic graph contain 15G  with rank 5. Same as 
above, calculating by MATLAB for 16G  exist a non-trivial vectors ( )1,0,0,1,0,1,1 , 
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the resulting produce a graph 17G  is a basic graph contain 16G  with rank 5. 
Calculating with MATLAB for 17G , we obtain not exist non-trivial vectors. 
Hence 17G  is a unique basic graph contain 17G  with rank 5. 

Case 4.2.2. For non-trivial vector ( )0,1,1,1,0,1α = , then there exists a graph 

11G  is a basic graph contain 15G  with rank 5. Similar with Case 4.1.1, 11G  is a 
unique basic graph contain 11G  with rank 5. 

Case 4.3. For non-trivial vector ( )1,1,0,0,0α = , there exists a graph 18G  is 
a basic graph contain 4G  with rank 5. Same as above, calculating by MATLAB 
for 18G , we obtain three non-trivial vectors ( ) ( )1,1,1,0,1,0 , 0,1,1,1,0,1α = , (or 
( )1,0,1,1,0,1 ). 

Case 4.3.1. For non-trivial vector ( )1,1,1,0,1,0α = , there exists a graph 19G  
is a basic graph contain 18G  with rank 5. Same as above, calculating by 
MATLAB for 19G , we obtain not exist non-trivial vectors. Hence 19G  is a 
unique basic graph contain 19G  with rank 5. 

Case 4.3.2. For non-trivial vector ( )0,1,1,1,0,1α =  ,(or ( )1,0,1,1,0,1α =  ), 
there exists a graph 14G  is a basic graph included 18G  with rank 5. Similar 
with Case 4.1.3, we obtain 13G  and 14G  it is only one basic graph contain 14G  
with rank 5. 

In a word, basic graph contain 4G  with rank 5 are 4G , ( )10,11, ,19iG i =  . 
Let G  be a graph contain 4G  with rank 5, then it must be a multiplication of 
vertices graph of one of 4G , ( )10,11, ,19iG i =  , thus  

( )( )4,10,11, ,19iG G i∈ =  . 
Case 5. G  contains an induced subgraph which is ( )5,6,7,8iG i = , similar 

with Case 4, we first find basic graphs contain iG  with rank 5. The result and 
logic levels below in Figure 4 and process is omitted. 

 

 

Figure 4. The level indicate figure of basic graphs contain ( )4,5, ,9iG i =   with rank 5. 
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Summarize the previous cases, we can obtain ( )( )1,2, , 25iG G i∈ =  . 
Sufficiency is obvious by the proof process of the necessity. The proof is com-

pleted.  
By Examples 3.1, 3.2 and Theorems 3.1-3.3, we immediately get the following 

Theorem  
Theorem 3.4. Let G  be a graph, then ( ) 5r G ≤  if and only if ( )G H∈ , 

where H  is an induced subgraph of 1 2 3 11 13 17 19, , , , , ,G G G G G G G  and 24G  (see 
Figure 2 and Figure 3).  
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