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Abstract 
We consider the concept of deformed gauge invariance. The described formalism al-
lows the vector gauge bosons to be massive independently of Higgs mechanism. It 
also allows the possibility for the variability of gauge coupling constants in space- 
time. 
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1. Introduction 

The mass problem for elementary particles in general, and for gauge vector bosons in 
particular, has been of actual character in many aspects, mostly in the construction of 
various unification models based on gauge invariance principle [1]-[7] where the Higgs 
mechanism for mass creation plays a crucial role. 

On the other hand, in our recent works [8]-[12], a mechanism for mass creation in 
space-time with extradimensions has been proposed. For vector bosons, this problem 
has been treated in more detail in [8]. 

In this work, an alternative approach is proposed to give the possibility for gauge 
vector bosons to acquire mass independently of Higgs mechanism. It is based on a 
modified gauge principle and referred to as deformed gauge invariance [12]. 

As a consequence, the proposed mechanism also allows the possibility for gauge 
coupling constants to be variable in space-time. This would be meaningful for the study 
of both micro and macro world [13] [14]. 

2. Deformed U(1) Gauge Invariance 

Let ( )xϕ  be some matter field with ( )1U  charge q and the transformation law  
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( ) ( ) ( ) ( )e iq xx x xωϕ ϕ ϕ−′→ =                      (1) 

under gauge transformation with parameter ( ).xω  
The covariant derivative is constructed by the formula 

( ) ( ) ( ) ( ) ( )eg xD x x iq A x xµ µ µϕ ϕ ϕ= ∂ −                  (2) 

with the gauge field ( )A xµ  obeying the transformation law:  

( ) ( ) ( ) ( )e g xA x A x xµ µ µω
−′ = − ∂                     (3) 

( )g x  being some scalar function parameter. 
The conventional field strength defined as 

( )F x A Aµυ µ υ υ µ≡ ∂ − ∂                         (4) 

is no more imvariant under the transformation (3) but its deformed version:  
( ) .gF F g A g Aµυ µυ µ υ υ µ≡ + ∂ ⋅ − ∂ ⋅                      (5) 

Hence the corresponding invariant Lagrangian should be taken of the form: 

( ) ( ) ( ) ( )

( )2

1
4

1 1 1 .
4 2 2

g g gL A F F

F F g g A A g A F g A

µυ µυ

µυ µ υ µ µ υ
µυ µ υ µ µυ

≡ −

= − − ∂ ⋅∂ ⋅ + ∂ ⋅ − ∂ ⋅
     (6) 

The Euler–Lagrange equation 
( ) ( )

( )
0

g gL L
A Aµ
υ µ υ

δ δ
δ δ

− ∂ =
∂

                       (7) 

then gives: 

( )
0.

g g g A g g A g A

A g A g A

µ µ µ
µ υ υ µ υ µ

µ µ µ
υ µ υ µ υ µ

−∂ ⋅∂ + + ∂ ⋅∂ ⋅ + ∂ ⋅∂

−∂ ∂ − ∂ ∂ ⋅ − ∂ ⋅∂ =

 

            (8) 

Let us put the constraint on the gauge field Aµ : 

.A g Aµ µ
µ µ∂ = ∂ ⋅                             (9) 

This coincides with the ordinary Lorentz gauge condition when g  is constant. 
Equation (8) now reads: 

( ) 2 0.g g g A g Aµ µ
µ υ υ µ−∂ ⋅∂ + − ∂ ∂ ⋅ =                   (10) 

Now we restrict the consideration to a special form of ( )g x , namely 

( ) 2g x ax px c= + +                          (11) 

where px p xµ
µ≡ , α  and c being some scalar parameters, pµ -some vector parame-

ter. 
With Equation (11) inserted Equation (10) becomes: 

( ){ } ( )2 24 1 0p a px ax A xµ− + − − =                   (12) 

which corresponds to the expression 

( )2 2 24 1Am p a px ax= − + − −                      (13) 
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for mass of gauge boson A. 
Equation (13) shows that in general mA can vary in value in space-time, except for 

the special case 0a = , where 2 2
Am p= − . It takes the value 

2 24Am a p= −                             (14) 

at the origin 0xµ = . 

3. Deformed Non-Abelian Gauge Invariance 

We now proceed to the case of non-abelian gauge. Let ( ){ }xϕ  be some matter field 
multiplet obeying the transformation law under gauge transformation 

( ) ( ) ( )( ) ( )j
i i ji

x x S x xϕ ϕ ϕ′→ =                     (15) 

( ) ( )e a aai x MS x ω− ∑≡  

aM  being representation matrices of the symmetry algebra 

[ ],a b abc cM M if M=                          (16) 

abcf —structure constants. 
The covariant derivative is introduced by the formula: 

( ) ( ) ( ) ( ) ( )e
jg x

i i ji
D x x iG A xµ µ µϕ ϕ ϕ= ∂ −                (17) 

a a
a

A A Mµ µ≡ ∑  

with the gauge fields ( )aA xµ  transforming according to the rule:  

( ) ( )1 1e g xiA x SA S S S
Gµ µ µ

−− −′ = + ⋅∂                  (18) 

G being gauge coupling constant. 
The deformed field strength ( )g

aFµυ  is constructed from the conventional one 

a a aF A Aµυ µ υ υ µ≡ ∂ − ∂                        (19) 

in a similar way as Equation (5), namely: 
( ) ( )

,
eg g x

a a a a abc b c
b c

F F g A g A G f A Aµυ µυ µ υ υ µ µ υ≡ + ∂ ⋅ − ∂ ⋅ + ∑           (20) 

with the transformation law: 
( ) ( ) 1g gF SF Sµυ µυ

′ −=                          (21) 

( ) ( ) .g g
a a

a
F F Mµυ µυ≡ ∑  

Hence, the invariant Lagrangian for gauge fields should be: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )int

1
2

1 1
4 2
1
2

g g g

a a a a

g
a g a a a

L A TrF F

F F g g A A

g A A F g A L A

µυ
µυ

µυ µ υ
µυ µ υ

µ υ µ υ
µ υ µυ

= −

= − − ∂ ⋅∂ ⋅

+ ∂ ⋅ ⋅ ∂ ⋅ − ⋅∂ ⋅ +

        (22) 

where ( ) ( )int
gL A  is proportional to egG  and ( )2

egG .  
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By performing further calculations in a similar way as for the ( )1U -gauge with the 
deformed Lorentz gauge condition 

a aA g Aµ µ
µ µ∂ = ∂ ⋅                          (23) 

taken into account the same expression (13) for mass mA will be obtained. 

4. Variable Coupling Constants 

From the Equations (2) and (17) of covariant derivatives it follows immediately that in-
stead of the gauge coupling constants q  and G one should use 

( ) ( )eg xq x q≡ ⋅  ( ) ( )eg xG x G≡ ⋅                     (24) 

in the corresponding gauge interaction Lagrangians instead of q  and G. 
For example, the ( )1U -gauge interaction Lagrangians for charged scalar field ( )xφ  

and spinor field ( )xψ  should be: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )22
int , e eg x g xL A q x x A x q x x A x A xµ µ

µ µφ φ φ φ φ+ += ⋅ ∂ ⋅ +


  (25) 

( ) ( ) ( ) ( ) ( )int , eg xL A q x x A xµ
µψ ψ γ ψ= ⋅ ⋅  

respectively. 
Hence, according to the formalism presented here the fine structure constant α can 

change the value in space-time. In this connection it is worth mentioning that the 
problem concerning the variability of α  is significant for the study of both macro and 
micro world. In fact, is has been realized that if so, many phenomena of the Nature re-
lated to the time evolution of the Universe might be theoretically explained. Take for 
example the Red Shift in cosmology traditionally treated as Doppler effect. Within our 
proposed mechanism, it might be explained in an alternative way more compatible with 
static Universe in General Relativity. Another example would be the Oklo problem [13] 
[14] which might be theoretically explained if the value of α  some milliards years ago 
was far different from that at present time. 

The variability of coupling constants in space-time might also have the relation to the 
renormalization problem in quantum field theory, this topic is the subject of our fur-
ther consideration. 

5. Conclusion 

In this work, the concept of deformed gauge is considered. The key idea is the intro-
duction of some parameter function ( )g x  in the transformation law for gauge fields. 
The proposed formalism might be considered as the generalization of the traditional 
gauge invariance which corresponds to the special case ( ) 0g x = . The formalism al-
lows the gauge vector bosons to acquire mass with the value expressed in terms of 
( )g x . It also allows the possibility for the gauge coupling constant to be variable in 

space-time. 

References 
[1] Furlan, G., Jengo, R., Pati, J.C., Sciama, D.W. and Shafi, O. (1997) Superstrings, Supergrav-

ity and Unified Theories. World Scientific, Singapore City.  



D. V. Duc et al. 
 

86 

[2] Konuma, M. and Maskawa, T. (1981) Grand Unified Theories and Related Topics. World 
Scientific, Singapore City. 

[3] Zee, A. (1985) Unity of Forces in the Universe. World Scientific, Singapore City. 

[4] Becker, K., Becker, M. and Schwarz, J.H. (2007) String Theory and M-Theory. 

[5] Green, M.B. and Gross, D.J. (1981) Unified Field Theory. World Scientific, Singapore City. 

[6] O’Raifeartaigh, L. and Straumann, N. (1997) Earky History of Gauge Theories and Kalu-
za-Klein Theories. arXiv-helth /98/05. 

[7] Moriyasu, K. (1985) An Elementary Primer for Gauge Theory. World Scientific, Singapore 
City. 

[8] Duc, D.V. and Giao, N.M. (2013) Journal of Modern Physics, 4, 991. 
https://doi.org/10.4236/jmp.2013.47133 

[9] Duc, D.V. and Giao, N.M. (2014) Journal of Modern Physics, 5, 477. 
https://doi.org/10.4236/jmp.2014.56058 

[10] Duc, D.V., Giao, N.M. and Dung, T.T. (2015) International Journal of Theoretical Physics, 
54, 1071. https://doi.org/10.1007/s10773-014-2300-9 

[11] Duc, D.V. and Giao, N.M. (2016) International Journal of Theoretical Physics, 55, 959. 
https://doi.org/10.1007/s10773-015-2740-x 

[12] Duc, D.V. (2011) Communications in Physics (Vietnam), 21, 259. 

[13] Yasumori, F. (2004) Oklo Constraint on the Time Variability of Fine Structure Constant, 
Astrophysics, Clocks and Fundamental Constants. Lecture Notes in Physics. Springer Ber-
lin, 167-185. 

[14] Lamoreaux, S.K. and Torgeson, J.R. (2004) Physical Review D, 69, 1217016. 
https://doi.org/10.1103/PhysRevD.69.121701 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best service 
for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jmp@scirp.org 

https://doi.org/10.4236/jmp.2013.47133
https://doi.org/10.4236/jmp.2014.56058
https://doi.org/10.1007/s10773-014-2300-9
https://doi.org/10.1007/s10773-015-2740-x
https://doi.org/10.1103/PhysRevD.69.121701
http://papersubmission.scirp.org/
mailto:jmp@scirp.org

	Deformed Gauge Invariance with Massive Gauge Vector Bosons
	Abstract
	Keywords
	1. Introduction
	2. Deformed U(1) Gauge Invariance
	3. Deformed Non-Abelian Gauge Invariance
	4. Variable Coupling Constants
	5. Conclusion
	References

