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Abstract 
This work deals with minority carrier diffusion coefficient study in silicon so-
lar cell, under both temperature and applied magnetic field. New expressions 
of diffusion coefficient are pointed out, which gives attention to thermal be-
havior of minority carrier that is better understood with Umklapp process. 
This study allowed to determine an optimum temperature which led to max-
imum diffusion coefficient value while magnetic field remained constant. 
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1. Introduction 

The photovoltaic conversion efficiency depends on the nature and structure of 
the semiconductor, its manufacturing processes and the operating conditions. In 
order to improve solar cell performance, several characterization techniques of 
semiconductor material have been proposed. Among the most important para-
meters in the different characterization techniques, it can be noted the diffusion 
coefficient [1] [2] of the minority carrier (D). Thus, the diffusion coefficient was 
determined versus: 

The applied magnetic field (B) [3] [4] [5],  
The base doping rate (Nb) [6],  
Modulated frequency (ω) [7] [8],  
The damage coefficient (Kl) and the irradiation flux (Φp) [9], 
The minority carrier recombination velocity at the grain boundaries (Sg) and 
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the grain size (g) [10], the temperature (T) [11] [12] and the electric field (E) 
[13] [14] [15]. 

Many of previous parameters can be combined to produce new expressions of 
diffusion coefficient [15], such as, D (ω, Nb) [16] [17], D (B, ω) [18] [19], D (Φp, 
ω) [9] [20] [21] [22], D (Sf, Sb) [23] [24]. 

It then affects the determination of the recombination parameters in the bulk 
i.e. lifetime (τ) and on the surfaces, specially, the back surface recombination 
velocity (Sb) and junction surface recombination velocity (Sf)) [24] [25]. It then 
affects the determination of the recombination parameters in the bulk i.e. life-
time (τ) and on the surfaces, specially, the back surface recombination velocity (Sb) 
and junction surface recombination velocity (Sf)) [24] [25] [26] according to the 
operating conditions [11] [12] [27] [28] (steady state, dynamic frequency and tran-
sient) and according to the space dimensional model [29] under study i.e. (1D) or 
(3D) of the solar cell, diffusion coefficient gets new expressions [30]-[35]. Taking in-
to account the emitter, the ambipolar diffusion coefficient is then derived [20] [21]. 

In static regime, the photocurrent Iph is studied versus absorption coefficient 
wavelength dependent (λ) and leads to spectral response [36] [37] [38]. The well 
known current-voltage (I-V) characteristic (under dark or illumination) allows 
the determination of the electrical parameters such as series (Rs) and shunt re-
sistances (Rsh), and junction transition capacitance (Cz) [39] [40]. 

In frequency regime, we note the studies of both Sb and Sf, excess minority 
carrier recombination velocity respectively at the junction and at the back side 
surfaces, by the help of Bode and Nyquist diagrams, leading to electrical equiva-
lent models, with effect of both external (B, E, Φ, kl) and internal (g, Sg, (λ)) pa-
rameters [3] [41] [42] [43]. 

In this article, the study focuses on the minority carriers diffusion coefficient 
in silicon solar cell under both temperature and applied magnetic field. 

2. Presentation of the Solar Cell 

We consider a back surface field (B.S.F) silicon solar cell (n+-p-p+ type) under 
influence of temperature and applied magnetic field (Figure 1). 

3. Diffusion Coefficient 

When the solar cell is illuminated, the phenomena of generation, diffusion and 
recombination of the minority carriers in the solar cell base are considered. 

The minority carrier diffusion coefficient D × (B) in the base under the influ-
ence of applied magnetic field B [3], is extended with applied temperature T and 
then gives the following equation:  

( )0
2

*( , )
1 ( ( ) )

D T
D B T

T Bµ
=
 + × 

                   (1) 

where D0(T) is the diffusion coefficient versus temperature T, in the solar cell with-
out magnetic field. It is given by the Einstein-Smoluchowski relation [44] [45]: 

0 ( ) ( ) bk T
D T T

q
µ

×
= ×                      (2) 
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With μ(T) is the minority carriers mobility temperature [46] [47] dependent 
in the base and expresses as: 

( ) 9 2.42 2 1 11.43 10 cm V sT Tµ − − −= × ⋅ ⋅                (3) 

q is the electron elementary charge and kb is Boltzmann’s constant given as kb = 
1.38 × 10−23 m2·kgs−2·K−1. 

3.1. Magnetic Field Effect on the Diffusion Coefficient 

Figure 2 shows the minority carrier diffusion coefficient versus magnetic field 
logarithm for different temperature values. 

For a given temperature, the diffusion coefficient is maximum and almost 
constant when the magnetic field is weak. Indeed, for low magnetic field values, 
the carrier mobility is not strongly influenced by magnetic field variation and 
this explains the bearing observed. On the other hand, when the magnetic field is  

 

 
Figure 1. An n+-p-p+ silicon solar cell scheme. 

 

 
Figure 2. Diffusion coefficient versus magnetic field logarithm. 
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greater than 10−3 T, mobility and minority carrier diffusion decrease with the 
magnetic field [48] [49]. The diffusion coefficient is more sensitive to tempera-
ture for weak magnetic field values. However an inversion is observed when B is 
greater than 10−3 T, where the diffusion coefficient increases with temperature. 

3. 2. Temperature Effect on Diffusion Coefficient 

Figure 3 shows the profile of the diffusion coefficient versus temperature for 
different magnetic field values, obtained by plotting combined Equations (1) (2) 
and (3). 

For lower magnetic field values (<10−3 T), the diffusion coefficient increases 
with temperature and reaches a maximum value corresponding to a temperature 
called optimum temperature Topt (B) then decreases. Indeed, when the temper-
ature is below Topt (B), the Umklapp process [50] does not limit the thermal 
conductivity which varies with T3 [51], so the thermal resistance decreases ac-
cording to the temperature which leads to an increase of the diffusion coefficient 
[51] [52]. High thermal resistance induced by high temperatures is due to the 
exponential establishing of Umklapp process which provides 1/T thermal con-
ductivity dependent [51] [52] [53]. Thermal agitation reduces minority charge 
carrier mobility of and causes the diffusion coefficient decreasing [48]. 

On the other hand, when the magnetic field is greater than 10−3 T, the diffu-
sion coefficient increases with temperature. 

Moreover, it may be noted that the optimum temperature increases according 
to the magnetic field intensity 

3. 3. Magnitude of the Diffusion Coefficient as a Function of the 
Optimum Temperature for Different Magnetic Field Values 

The optimum temperature Topt (B) for maximum diffusion is determined using 
two methods:  
• Graphical method 

From the curves in Figure 3, the maximum diffusion coefficient values are 
determined according to the optimum temperature for different magnetic field 
values. 

 

 
Figure 3. Diffusion coefficient versus temperature for different magnetic field values. 
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From Table 1, we represent in Figure 4 the profile on log-log scale, diffusion 
coefficient versus optimum temperature. 

Considering the average right, the following relationship is obtained: 
( )maxln ( )optD B a T B b= × +                   (4) 

( ) ( )max ;  with 
a

optD B k T B K eb ⇒ = × =              (5) 

The constants a and b are determined from the curve, the following equations 
is obtained:  

3.507 5.54a b= +                        (6) 
3.206 5.73a b= +                        (7) 

The resolution of the equations constituted by relations (6) and (7) gives:   
a = −1.58 (cm2/s·T) et b = 12.26 (cm2/s) 
Hence the relationship Topt: 

( ) ( ) 1.585
max 2.1 10 optD B T B

−
 = × ×                 (8) 

• Analytical method 
The diffusion coefficient is maximum when the temperature is equal to Topt 

for a given magnetic value B which remained constant. Thus, by annulling its 
derivative versus temperature, we can determine Topt while keeping B constant 
value. 

 
Table 1. Diffusion coefficient with optimum temperature. 

Magnetic field B (T) 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 

Optimum  
temperature T (K) 

255 285 308 335 355 380 400 410 

Diffusion coefficient 
D (cm2/s) 

33.364 28.178 24.694 22.206 20.276 18.763 17.571 16.642 

 

 
Figure 4. Log-log diffusion coefficient versus optimum temperature. 

5,5 5,6 5,7 5,8 5,9 6,0 6,1
2,7

2,8

2,9

3,0

3,1

3,2

3,3

3,4

3,5

3,6

Ln(Topt)

Ln
(D

m
ax

) 

5.5                 5.6                 5.7                 5.8                 5.9                 6.0                6.1   

3.6

3.5

3.4

3.3

3.2

3.1

3.0

2.9

2.8

2.7



R. Mane et al. 
 

6 

The derivative of the diffusion coefficient at T = Topt is given by the relation 
as: 

18 2 4.84 3
2.42

218 2 4.84

1 4.907 10 10
* ( , ) 175

1 2.05 10

B T
D B T T

B T

−
−

−

 − + × × × × ′ = × ×
 + × × × 

   (9) 

We then deduce the relationship: 
9 2 24.84( ) 2.4 (1.43 10 )optT B B= × × ×               (10) 

Using the relation (10), the optimum temperature can be calculated for dif-
ferent magnetic field values. Results are presented in Table 2. 

For a comparative study of the two methods, we represent in Figure 5, on log- 
log scale, profiles of the amplitude of diffusion coefficient versus the optimum 
temperature. The results for the two methods are identical to one decimal place. 
The two curves are almost confused. So for the rest of this work, we can justify 
the choice of temperatures set in the study of various parameters of the solar cell. 
For a given value of the magnetic field, the temperature to be used must obey the 
relation (8) in order to obtain an optimal response of the solar cell under mag-
netic field. 

 
Table 2. Optimum temperature with magnetic field. 

Magnetic field B (T) 0.0003 0.0004 0,0005 0.0006 0.0007 0.0008 0.0009 0.001 

Optimum  
temperature (K) 

254.7 286.6 313 336.5 361.4 381.9 401.0 418.8 

Diffusion  
coefficient (cm2/s) 

33.368 28.173 24.66 22.202 20.259 18.757 17.561 16.548 

 

 
Figure 5. Log-log maximum diffusion coefficient versus optimum temperature for both 
methods. 
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4. Conclusions 

The minority carrier diffusion coefficient *( , )D B T  study has shown much more 
sensitivity to temperature for weak applied magnetic field. For low magnetic field 
value, the minority carrier diffusion decreases with temperature which reduces 
the solar cell performance.  

Otherwise, the diffusion coefficient increases with temperature, reaches a max-
imum value corresponding to a temperature called optimum temperature. For a 
fixed magnetic field value, the diffusion coefficient decreases with the optimum 
temperature. The relation obtained between the maximum value of the diffusion 
coefficient and the optimum temperature allows justifying the selection of the 
temperature values for the study of the solar cell parameters. 
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